Estimating and Testing Investment-based Asset Pricing Models™

Frederico Belof Yao Deng! Juliana Salomao$

October 2022

Abstract

The standard investment-based asset pricing model with homogeneous of degree
one operating profit and adjustment cost functions predicts that a firm’s stock return
should be equal to physical capital investment return, state-by-state. Yet, previous
work testing the model typically examines the weaker prediction that stock returns
and investment returns should be equal on average, and focuses on simple specifica-
tions with one physical capital input and quadratic adjustment costs. We document
that by following this approach, the implied time series R? of the standard model
is negative. We show how to incorporate both the model-implied time series and
cross sectional restrictions in the estimation and testing of investment-based models
using the generalized method of moments. Our approach uncovers a novel tradeoff
between cross sectional and time series fit in the data: the baseline one-capital input
investment-based model with quadratic adjustment costs cannot fit both sets of mo-
ments simultaneously. Perhaps surprisingly, even when only the time series moments
are used in the estimation of the model to maximize its time series fit, the implied time
series R? of the model remains negative. Our approach can be extended to estimate
and test non-homogeneous of degree one models in which the state-by-state equality
between investment and stock returns does not hold. By incorporating a larger set
of model predictions in the estimation and testing of investment-based models, our
methodology can be useful to guide improvements in the specification of this class of

models in future research.
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1 Introduction

The neoclassical investment-based asset pricing model links firm characteristics to stock
returns. Under constant returns to scale, the model predicts that realized investment returns,
which can be measured in the data through a production function from investment and
output data, should be equal to stock returns state-by-state at any point in time (Cochrane
1991, and Restoy and Rockinger 1994). Despite this strong prediction, most of the structural
work in investment-based asset pricing to date, tests the model by the generalized methods
of moments (GMM) using the weaker condition that stock returns and investment returns
should be equal on average. Following this procedure, Liu, Whited, and Zhang (2009)
(henceforth LWZ) shows, through structural estimation, that the neoclassical investment-
based model with one capital input and quadratic adjustment costs matches well the cross-
section of average stock returns of a large range of portfolio sorts.

In this paper, we estimate the investment-based model incorporating the theoretical pre-
diction that realized investment and stock returns should be equal at any point in time, not
just on average. Methodologically, our analysis augments the set of moments targeted in the
GMM estimation of the model, raising the bar for the evaluation of the model. Specifically,
if the model is correctly specified, the average sum of squared residuals (difference between
investment and stock returns) for each portfolio, should be zero. Thus, as in nonlinear least
squares, we select the model parameters to minimize the distance between stock returns and
model-implied investment returns at each point in time. We label this set of moments, time
series moments. In addition, as in previous work, we also consider cross sectional moments,
that is, the model prediction that, investment and stock returns should be equal on average.

In the baseline estimation of the investment-based model with one capital input and
quadratic adjustment costs, we follow LWZ and estimate the model by the GMM at the
portfolio-level, using ten book-to-market portfolios (we also consider other test assets in
the appendix). Estimating the model using portfolios allows to characterize the data in a

simple manner as the number of portfolios is significantly smaller than the number of firms



in the data, and to reduce the impact of regression noise. The estimation targets twenty
moments: ten cross sectional moments as in LWZ, and our novel ten time series moments.
To understand the role of the two set of moments on the results, we investigate how the
estimation results change when we vary the relative weight of the two set of moments on
the GMM weighting matrix. If the model is correct, the set of moments used should not
matter much for the results: the same set of model parameters should match both the cross
sectional and the time series moments.

Our methodology and analyses focus on the economic evaluation of the fit of investment-
based model. In particular, how well the model is able to simultaneously capture the average
cross sectional variation and the time series variation of stock returns across portfolios, as
opposed to a statistical evaluation or rejection of the model. To that end, we focus our
evaluation of the model mostly on measures such as cross sectional R?, time series R?, and
magnitude of the pricing errors (average residuals). Statistically speaking, as discussed in
Cochrane (1991), the investment-based model should be rejected at any level of significance.
The model predicts that stock returns and investment returns are equal at each point in
time without any error term, which is not possible to achieve in the data. Nevertheless, if
the model is a good description of reality, the residuals should be small, and largely random
either across portfolios or over time, that is, they should not exhibit a systematic behavior.
Hence, as part of the evaluation of the model, we also study the properties of the error terms
(residuals) implied by the estimation.

Our empirical results can be summarized as follows. First, consistent with previous work,
when we only use the equality of the average stock and investment returns as moments in
the GMM estimation, the model matches the data very well, with low pricing errors (about
1.1% per year) and a cross sectional R? of a standard plot of the average portfolio-level
stock returns against the average portfolio-level estimated investment return of 65%. The
inspection of the model residuals in the time series reveals, however, some problems for the

model: stock returns and the residuals are strongly positively correlated in the time series



(correlation on average 83% across portfolios) which means that most of the time series vari-
ation of stock returns is captured by the residuals, not by the predicted investment returns.
Thus, in contrast with the model predictions, stock returns and investment returns are far
from perfectly correlated: on average across portfolios, the correlation is either negative, or
close to zero. We conclude that when estimating the baseline model using the cross sectional
moments only, the model fails to capture its time series implications.

Second, when we incorporate the model-implied time series moments in the estimation
using GMM to help improve the fit of the model on the time series, we uncover a novel
tradeoff between cross sectional fit and time series fit: the baseline investment-based model
with one capital input cannot fit both sets of moments simultaneously. As we increase the
relative weight of the time series moments in the estimation, the fit on the cross sectional
moments deteriorates significantly: the cross sectional R? decreases from 65% when only
cross sectional moments are used in the estimation, to -78% when only time series moments
are used in the estimation. Perhaps surprisingly, even when only the time series moments
are used in the estimation, the model fit is poor: the average time series R? is on average
-27%. That is, the standard investment-based model with one capital input and quadratic
adjustment costs is not able to capture the time series behavior of stock returns in the data
even when the estimation is designed to maximize its time series fit.

We investigate potential empirical reasons for the poor fit of the model in the time series,
despite its success in the cross section. First, we address the possibility that quantities (e.g.
investment) and asset prices are misaligned in the real data. For example, stock prices (and
hence stock returns) might respond instantaneously to aggregate shocks, whereas investment
might take more time to adjust, in which case investment returns lag stock returns (see, for
example, Lamont 2000 for a more formal analysis of this issue). To address this concern,
we investigate the time series fit of the model using 5-year (instead of annual) compounded
returns. If the misalignment in the data is relatively short lived, the misalignment should

be less pronounced at longer-horizon returns (we confirm this conjecture using simulated



data from a calibrated version of the baseline model). We show that using 5-year horizon
compounded returns the average (across portfolios) stock and investment return correlation
indeed increases from -19% to 16%. Still, the time series R? across portfolios remains very
low at -20%. Thus, the data misalignment in asset prices and real quantities does not appear
to be the main cause for the inability of the model to explain the time series behavior of
stock returns.

Second, we investigate the role of portfolio aggregation for the results. As noted in
Belo, Gala, Salomao, and Vitorino (2022), (henceforth BGSV) and Gongalves, Xue, and
Zhang (2020) (henceforth GXZ), the portfolio aggregation procedure in LWZ suffers from
an aggregation bias. Specifically, in this approach, the portfolio-level investment return is
computed by first computing the portfolio-level characteristics (e.g., the portfolio-level in-
vestment rates), and then plugging these aggregate characteristics directly in the investment
return formula. Given the nonlinearity of the investment returns, the portfolio-level invest-
ment return obtained using this procedure is no longer equal to a value- or equal-weighted
portfolio stock return.

We thus investigate if the aggregation bias induced by the LWZ portfolio-level aggrega-
tion can explain the poor fit of the investment-based model in the time series. Following
BGSV and GXZ, we estimate the model using portfolio-level investment returns properly
aggregated from firm-level investment returns. Specifically, for each firm, we first compute
the investment return, and then compute the portfolio-level investment return as the value-
or equal-weighted average of the firm-level investment returns. We find that the fit of the
model in the time series remains poor (R* of -26% when only time series moments are tar-
geted). Thus, portfolio-level aggregation issues also do not appear to be the main cause for
the inability of the model to explain the time series behavior of stock returns.

Our approach can be extended to models without homogeneous of degree one operating
and adjustment cost functions, in which case the state-by-state stock and investment return

equality does not hold. As we show here, most investment-based asset pricing models imply



a strong relationship between stock returns and firm characteristics, such as, for example,
a firm’s current marginal product of capital or current and lagged investment rate. This
relationship can be assessed in the model and in the data, both in the cross section and
in the time series. A successful investment-based model should have a link between stock
returns and its characteristics that are consistent with the data (in terms of slope coeffi-
cients and goodness of fit). We apply this approach to a more general specification of the
investment-based model with decreasing returns to scale, nonconvex adjustment costs, and
operating fixed costs. We document that this version of the model also cannot match the
time series relationship between stock returns and firm characteristics observed in the data.
This approach can be used simply as an external validity test or be incorporated in the
estimation of the structural parameters of any investment model as an additional moment
condition using the simulated method of moments.

Our findings have implications for future research in investment-based asset pricing. Our
methodology helps detect a dimension of the fit of standard specifications of the investment-
based model that requires improvement. To help the fit of the investment-based model in
the time series, additional capital inputs (intangible capital and physical capital) and labor
inputs as in BGSV, intangible capital as in Peters and Taylor (2017), or short-term and
long-term assets as in GXZ, can be added to the analysis. In addition, explicitly accounting
for firm- or industry-level heterogeneity in the technologies, which are assumed to be similar
in the baseline analysis, as well as more general specifications of the adjustment cost func-
tions should be investigated,. Taken together, our methodology, which adds the time series
implications of the model explicitly into the testing and estimation of the investment-based
model, can thus be useful to help improve the specification of investment-based models in

future research.



Related Literature:

Our work is closely related to Liu, Whited, and Zhang (2009) who first estimate the neo-
classical investment-based model on the cross section of stock returns. Different from LWZ,
and similar to BGSV, our estimation procedure requires the model to match the realized
time series of the observed stock returns as close as possible, and not just on average. LWZ
document that the implied stock and investment returns have low correlation, which they
label a correlation puzzle. Similarly, the correlation puzzle is documented at the aggregate
level in Kuehn (2009). Our analysis is broader in that we show how to incorporate the time
series implications of the model directly in the estimation and evaluation of the model, and
we discuss potential alternative empirical reasons for the poor fit of the model. In robustness
analysis, LWZ includes the cross section of portfolio variance moments in the estimation,
but, as we show here, matching variance moments does not help with the time series fit of
the model.

Li, Ma, Wang, and Yu (2021) estimate an investment-based model with two capital
inputs using firm-level data and Bayesian estimation methods. Like our work, their approach
also looks at the time-series implications of the model. Different from our approach, and
departing from the baseline neoclassical investment-based model with stable technologies,
they estimate time-varying technological parameters.

Gongalves, Xue, and Zhang (2020) documents the aggregation bias in the the original
LWZ portfolio-level aggregation approach (see also BGSV and Zhang 2017 for earlier discus-
sions of this aggregation bias in LWZ). Our analysis shows that the aggregation bias alone
cannot explain the poor fit of the investment-based model with one-capital input in the time
series.

Delikouras and Dittmar (2021) estimate and test standard investment-based models using
GMM with cross sectional moments and investment Fuler equations, which requires the
specification of a stochastic discount factor, and also find that the baseline investment-based

model is unable to match both sets of moments jointly. Our paper shares the goal of testing



investment-based models across a larger set of model implications, but differs in the approach.
Our analysis emphasizes the tension in the model’s cross sectional fit versus time series fit.
More importantly, our analysis focuses on the properties of the firm’s technology and does
not require the specification of a stochastic discount factor, thus avoiding the joint hypothesis
testing problem. This allows researchers to focus on the properties of the firm’s technology,
and how the specification of the firm’s technology affects the time series and cross sectional
fit of the model in a simple manner. Naturally, the ultimate goal is to obtain a specification
of firm’s technology and of the stochastic discount factor that simultaneously matches the
cross sectional, the time series, and the investment Euler equations as in Delikouras and
Dittmar (2021). Our paper thus complements their approach by providing the first step
towards that goal, that is, how to specify the firm’s technology to better match the data.

Finally, this paper is closely related to the strand of production-based asset pricing lit-
erature that links firm characteristics to asset returns. See, for example, Zhang (2005),
Belo (2010), Belo, Lin, and Bazdresch (2014), Imrohoroglu and Tiizel (2014), Kogan and
Papanikolaou (2014), Kung and Schmid (2015), Croce (2014), and Deng (2021), among
many others. We contribute to this literature by improving the econometric methodology
for estimating and testing these models.

The rest of the paper is organized as follows. Section 2 presents the model, Section 3
describes econometric methodology. Section 4 reports estimation and tests results. Section

5 proposes a general specification-free test of the model. Section 6 concludes.

2 The Neoclassical Investment-Based Model

We briefly present here the standard neoclassical investment-based model of the firm with
one capital input as in LWZ. We use their notation whenever possible. Time is discrete
and the horizon infinite. Firms choose costlessly adjustable inputs each period, taking their

prices as given, to maximize operating profits (revenues minus expenditures on these inputs).



Taking operating profits as given, firms choose investment and debt to maximize the market
equity.

Operating profits for firm i at time t are given by II (K, X;;), in which K is capi-
tal and X;; is a vector of exogenous aggregate and firm-specific shocks. The firm has a
Cobb-Douglas production function with constant returns to scale. As such, II (K, X;) =
K01l (K, Xit) /0Ky, and the marginal product of capital, OIl (K, Xy) /0Ky = aYy /Ky,
in which « is the capital’s share in output and Yj; is sales.

Capital depreciates at an exogenous rate of d;;, which is firm-specific and time-varying:

Kir =Ty + (1 — 04) Ky, (1)

in which I; is investment. Firms incur adjustment costs when investing. The adjustment
costs function, denoted ® (I, K ), is increasing and convex in [, is decreasing in Kj;, and

has constant returns to scale in I;; and K;;. We use a standard quadratic functional form:

C Iit 2
® (L ) = 5 () K (2)

in which ¢ > 0 is the slope parameter.

Firms finance investment with one-period debt. At the beginning of period ¢, firm 7 issues
an amount of debt, denoted Bj;,, that must be repaid at the beginning of ¢ + 1. Let r%
denote the gross corporate bond return on Bj;. We can write taxable corporate profits as
operating profits minus depreciation, adjustment costs, and interest expense: I (K, X;;) —
0Ky — @ (L, Kiy) — (rﬁ — 1) B;;. Let 7, denote the corporate tax rate. We define the payout

of firm 7 as:
Dy=1—7)[H(Ky, Xit) — P (Lig, Kit)] — Lit + Bit 1 _TgBit+TtéitKit+Tt (7”5 — 1) By, (3)

in which 7,0, K;; is the depreciation tax shield and ; (7“5 — 1) B;; is the interest tax shield.



Let M;,, denote the stochastic discount factor from period ¢ to ¢ + 1, which is correlated
with the aggregate component of the productivity shock X;;. The firm chooses optimal

capital investment and debt to maximize the cum-dividend market value of equity:

Vie = mazx - E; [Z Mt+sDit+s‘| ) (4)

{Tit+s: Kits+1,Bit+s+1} o =0

subject to a transversality condition given by limr_, oo Fy [Mii7Biir+1] = 0.
Firms’ equity value maximization implies that E; [Mtﬂrilt +1} = 1, in which r},,, is the

investment return, defined as

(1 —7441) [a[}?t:l + 5 (I““ )2] + 74105001 + (1 — 0i41) [1 +(1—=7q1)c (M)]

I Kt Kit1
1+ (1 —Tt)C(%)

Tit41 =

(5)

The investment return is the ratio of the marginal benefits of investment at period ¢ + 1 to
the marginal costs of investment at ¢.

The first-order condition of maximizing Equation (4) with respect to By, implies that

E; [Mtﬂrgil} = 1, in which 5%, =5, — (ri}fﬂ - 1) Ti+1 is the after-tax corporate bond

return. Define Py, = Vj; — D;; as the ex-dividend equity value, r 11 = (Pig1 + Diggr) /Pu

as the stock return, and wy = Bji11/ (Pit + Bity1) as the market leverage. Under constant

returns to scale, the investment return equals the weighted average of the stock return and

the after-tax corporate bond return:

Tz'It+1 = witrﬁil + (1 —wy) rgﬂ. (6)

Equivalently, the stock return equals the levered investment return, denoted r{t”ﬁl:

I Ba
I P (T Tit41 — WitTip 41 (7)
it+1 = Tiep1 = :

1— Wit



We let Py = V;; — Dy be the ex-dividend equity value. The first-order condition of
maximizing Equation (4) with respect to I; implies that the market value of the firm is

given by:

I
Py + Biss — [1+ (1 —Tt)c(K )] Kinsr. (8)
it

3 Econometric Methodology

Section 3.1 describes moment conditions in existing studies and presents our new moment
conditions. Section 3.2 illustrates our GMM estimation methodology. Section 3.3 proposes

both economic and statistical tests to evaluate the model.

3.1 Moment conditions

To test the investment-based asset pricing model, existing studies as in LWZ and Belo,
Xue, and Zhang (2013) (henceforth BXZ) test a weaker set of moment conditions, i.e. cross
sectional moments, implied by Equation (7): expected stock returns equal expected levered

investment returns on average,

g =E [Tist—&-l - Tz'Itlj-l = 0. (9)

Specifically, we define the model errors from the moment conditions as:

e;® = Er [Ti+1 - rz'Itl—l&)—l} ) (10)

in which Er [-] is the sample mean of the series in brackets. We call e the cross sectional
error.

The g-theory model has rich implications on both the time series and cross section di-
mensions, as implied by Equation (7). Unlike existing studies, which estimate the model

parameters by matching the time series means of stock and levered investment returns, we
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require the estimation to match the time series of stock and levered investment returns as
closely as possible. This estimation procedure utilizes valuable time-series information when
estimating the structural parameters and evaluating the fit of the underlying structural
model.

We specify the time series moment condition for each portfolio as the average of the
squared differences between stock returns and levered investment returns as in the nonlinear

least squares estimation (henceforth NLLS):

2
¢ =E (riﬂ — rftlil) =0. (11)

We define the model errors from above moment conditions by removing the cross-sectional

mean and focusing only on the time-series fit. We call it the time series error:

el = (T‘;S;_H — Er {riﬂ]) - (réﬁl — Ep [r{;il]) . (12)

We note that we use the nonlinear least squares objective function as the target time series
moment for each portfolio. Under the null that the model is correctly specified, this moment
should be zero for each portfolio, and hence it is a valid moment condition. Naturally, if
there is some noise in the data, the moment will deviate from zero (stock returns will deviate
from investment returns), but it should not deviate too much.

An alternative approach to implement NLLS with GMM is to use the first order condi-
tions of the NLLS optimization problem which minimizes the sum of the squared differences

between stock returns and levered investment returns across N portfolios:

rs-roc _ 1
N

S _ dw ariltqflj—l =0 13
Y > (Tz‘t+1 Tz‘t+1> 20 | = (13)

i=1t=1

N =

in which 6 = (a, ¢). The first order conditions by definition should be zero at the minimum,
and can directly be used as the moment conditions. Indeed, that is the standard approach

used to map NLLS into GMM (see, for example, Cochrane (2009), Chapter 11).
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Following this procedure, if the estimation is just identified (using 2 first order conditions
as moments to estimate 2 parameters), the weighting matrix does not matter for the results
because all moment conditions can be zero. Hence, the GMM estimates using the NLLS
first order conditions yield exactly identical estimates to the NLLS estimation. But when
the model is over-identified, as is the case here (since we also use cross sectional moments in
the estimation and several portfolios), the choice of different weights on the NLLS first order
conditions in the GMM estimation affects the results, because it is not possible to match
all the NLLS first order conditions at the same time. This makes the interpretation of the
results more cumbersome because the size of the deviation of each first order condition of the
NLLS moments does not have a natural interpretation. Hence, we use the NLLS objective
function, not the NLLS first order conditions, as target moments in the estimation, because
the magnitude of the errors have a natural interpretation as the average sum of squared
residuals of each portfolio.!

An alternative way of incorporating the time series restrictions of the model in the esti-
mation is to augment the set of moment conditions by adding instruments (variables that
should be orthogonal to the error terms) in a manner that is analogous to the estimation of
conditional asset pricing moments. This approach is well suited for model implied moment
conditions in which the errors in each point in time are expectation errors (such as, for exam-
ple, in the moment conditions implied by investment Euler equations). This is because when
the error term is an expectation error, this error term should be orthogonal to any variable
(called instrument) in the agent’s information set available at each point in time. In turn,

this orthogonality gives rise to a set of unconditional moment conditions that incorporate

1One potential issue with this approach is that, as noted, in the presence of measurement error or other
noise in the data, the residuals will not be zero, in which case the NLLS objective function (and hence the
corresponding moment conditions) will not be zero even if the model is correct due to data issues. In turn,
this might affect the interpretation of the chi-square tests assessing the validity of the model. This is not
a concern for our analysis given that our focus is on the economic interpretation of the model fit, and less
on the statistical tests of the model. Indeed, for the same reason, most of our analyses are based on first
stage GMM (which minimizes the residuals), not on optimal GMM. Nevertheless, our statistical tests are
still valid under the standard null that the model is valid. Also, in robustness checks, we confirm that the
main results reported here are similar to those obtained when we use the NLLS first order conditions as test
moments (see online appendix).
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the time series implications of the model and can be estimated using standard GMM. In our
approach, however, the error term inside each moment conditions are not expectation er-
rors because the model predicts that stock and (levered) investment returns should be equal
state-by-state without any error. Hence, the error terms in our approach arise due to, for
example, measurement or misspecification errors, and hence the theory does do not imply
the orthogonality conditions in the same way that the expectation errors do. Therefore, we
do not follow this approach to incorporate time series restrictions here.

Together with the cross sectional moments, LWZ also investigate if the model can match
the cross section of stock return variances, which should be equal to the cross section of
levered investment return variances. Thus, to compare these variance moments with our time
series moments, we also include the variance moments in some of our analyses. Specifically,

following LWZ, we define the variance moment condition as:

gVa'r —FE

('Q‘Stﬂ - b {7’5+1D2 - (Tz‘ltﬁl — B {T{tlil})Z] =0. (14)

Accordingly, we define the model errors as below and call it the variance error:

eV =F

2

('Q'St+1 - FE {"’iHDQ - (rijtﬁl - E {Tzltlj—l})z} : (15)

A simple inspection of the previous equations reveals that minimizing the variance errors
is not equivalent to minimizing the sum of squared residuals, hence it does not maximize
the model fit in the time series. Indeed, as we confirm in the estimation below, the model
fit in the time series actually deteriorates once these variance moments are included in the

estimation.
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3.2 GMM estimation

We estimate the parameters a and ¢, using one-step GMM to minimize a weighted average

XS

X5 a weighted average of eI, or a weighted average of e and el®. We view that

of e
g-theory model implications should be present in both the cross section and the time series
dimension. Therefore, the objective of the estimation is to minimize a combination of the
cross sectional errors and the time series errors.

Specifically, we stack the cross sectional moment conditions and the time series moment
conditions in the matrix g = {gXS : gTS] We then estimate the parameters 6 = (o, c), by

minimizing a weighted combination of the sample moments, denoted by gr:
. /
min grWar, (16)

in which W is the prespecified weighting matrix. As suggested in Cochrane (2009), a pre-
specified weighting matrix can force the estimation and evaluation to pay attention to eco-
nomically interesting moments, in contrast to an optimal (or other) weighting matrix. In
our context, we use several different specifications of the weighting matrix, which vary on
the relative weights of the cross sectional and time series moments in the estimation. Ac-
cordingly, W = [I, 0] indicates that we put identity weights on g** and zero weights on g7
(we label this as Only XS in the tables below). This is a special case of our methodology
identical to the GMM estimation in existing studies as in LWZ/BXZ. When W = [0, I], we
assign identity weights on g7 and no weights on g*“ (we label this as Only TS in the tables
below). More generally, when the weights on g*° and ¢g7° are both positive, we can specify
relatively more or less weights on ¢*° over ¢7”. It allows the estimation to match relatively

more or less the cross-section or time-series features of the data.
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3.3 Model evaluation

As noted, our goal is to evaluate the fit of the investment-based model on economic grounds,
in particular, how well the model is able to capture the average cross sectional variation
and the time series variation of stock returns across portfolios. Accordingly, most of our
analyses focuses on first stage GMM estimates, and the evaluation of the model is based
on the properties of easy to interpret measures such as cross sectional R? of predicted vs
realized average returns of the portfolios, the model-implied time series R? for each portfolio,
and the magnitude of the cross sectional and time series mean absolute pricing errors. (In
the online appendix we show that our conclusions are similar if we use second stage GMM.)

Statistically speaking, as discussed in Cochrane (1991), the investment-based model
should be rejected at any level of significance. The model predicts that stock returns and
investment returns are equal at each point in time without any error term, which is not pos-
sible to achieve in the data. Nevertheless, we also perform standard statistical tests of the
model. We assume that stock return and investment returns are observed with an error. The
general distribution theory applies to GMM with prespecified weighting matrices (Cochrane
2009). Let D = O0gr/00. We estimate S, a consistent estimate of the variance-covariance
matrix of the sample errors gr, with a standard Bartlett kernel with a lag length of two.

The estimate of 6, denoted é, is asymptotically normal with the variance-covariance matrix:

var (6) = ! (D'WD) ' DWSWD(DWD)™". (17)

]

To construct standard errors for individual model errors, we use:

1
T

var (gr) = = |1 = D(D'WD) ' D'W| S I - D(D'WD)™ D’W}/ : (18)

which is the variance-covariance matrix for gr. We follow Hansen (1982) to form a x? test
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on the null hypothesis that all of the model errors are jointly zero:

gy [var (g;p)]Jr gr ~ X° (#moments — #paras) (19)

in which y? denotes the chi-square distribution, and the superscript + denotes pseudo-

inversion.?

4 Estimation and Tests Results

Section 4.1 describes the data. Section 4.2 reports the estimation and tests results in match-
ing the cross sectional moments. Section 4.3 and 4.4 report the joint estimation and tests
results of the cross sectional moments and the time-series moments as well as the joint esti-
mation of the cross sectional moments and the variance moments, respectively. Section 4.5

explores and tests potential reasons for the poor time-series fit of the model.

4.1 Data

To facilitate the comparison with prior studies, we make minimal changes on the sample
construction from LWZ. We download the publicly available data from LWZ and make only
one adjustment. We measure the capital stock, K;;, as net property, plant, and equipment
(PPE), as opposed to gross PPE, following more recent studies as in BXZ and many others.
Net PPE is more consistent with the capital accumulation Equation (1), in which K is
defined as net of capital depreciation, ;K ;. LWZ use 30 testing portfolios: 10 book-to-
market (BM) portfolios, 10 standardized unexpected earnings portfolios, and 10 corporate
investment portfolios. To save space, we report our results with 10 BM portfolios. Our basic

conclusions are similar if other testing portfolios are used (see online appendix).

2We also develop an external validity specification test of the model. In particular, we ask the estimation
to match the cross sectional moments as closely as possible and evaluate how the fitted model matches the
time series moments. Similar conclusions are obtained as from the economic fit of the model. More details
on the statistical test and results are reported in the online appendix.
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The estimation and tests are conducted at the portfolio level, to facilitate the analysis and
to reduce the impact of noise in the data. We consider two alternative portfolio aggregation
methods. The first aggregation method follows LWZ. Here, portfolio-level characteristics
are computed as l;yq /Ky :Jgjl Lijia/ g:l Kijir, Y/ Ki :Jgjl Yijt/ jg:l Kiji, etc, where
portfolio is indexed by ¢, and firm is indexed by 7. We then plug in these characteristics
in the formulas of the investment return to compute the portfolio-level investment return.
The second aggregation method is based on a proper aggregation of the firm-level invest-
ment returns (following BGSV and GXZ). In particular, portfolio-level investment return is
computed as an equal-weighted average of the firm-level investment return, r} = % gjl rifjt ,
to be consistent with the fact that portfolio-level stock return is also computed as ail_equal—
weighted average of the firm level stock returns. To construct the firm-level investment
return we need additional firm-level data items that are not provided in the LWZ sample
(which only provides portfolio-level data). In the online appendix we describe in detail the

firm-level data used to construct the firm-level investment return.

4.2 Matching the cross sectional moments

We first estimate the investment-based model using only the cross sectional moments given
by Equation (9), as in LWZ. Column (1) in Table 2 reports the point estimates and overall
performance of the model. The parameter estimates, capital share, «, and the adjustment
cost parameter, ¢, are similar to those reported in LWZ. In addition, consistent with LWZ,
the model does a good job in explaining the cross sectional variation in average returns

XS
7

of the 10 BM portfolios (value premium). The mean absolute cross sectional error, |e

Y

given by Equation (10) is only 2.47% per annum. The mean absolute high-minus-low cross

, is 1.13% per annum which is quite small. The XS — R? is the cross

XS
CaML

sectional error,
sectional R? of the average stock and investment returns of 10 portfolios. The XS — R? of
65% shows that the model is able to explain the value spread in the cross section. Finally,

the x? test examines the joint errors of 10 cross sectional moments, and the model is not
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rejected statistically with a p-value of 0.42.

In contrast with the good cross sectional fit, the model is unable to explain the time
series variation of the stock returns of the 10 BM portfolios. Panel A in Table 1 shows that,
although the mean and standard deviation of stock and investment returns match reasonably
well, the stock and investment returns are negatively correlated for every portfolio, with an
average time-series correlation of -0.19. This is in sharp contrast with the model prediction
that stock returns and investment returns should be equal at each point in time without
any error term, in which case the correlation between stock and investment return should
be one. As a result, the stock returns and the residuals are strongly positively correlated in
the time series (correlation is on average 0.83 across portfolios) which means that most of
the time series variation of stock returns is captured by the residuals, not by the predicted
investment returns.

Column (1) in Table 2 provides additional evidence for the poor time-series fit of the

eTs

model. The mean absolute time series error, , given by Equation (12) is about 24% per

annum. The T'S — R? is the time series R?, computed using the pooled stock and investment
returns of 10 portfolios across time, and indicates a bad fit with a value of -86%.

We also perform a principal components analysis of the residuals. If the model is a good
description of reality, the residuals should be small, largely random across portfolios and over
time, and not exhibit a systematic behavior either across portfolios or over time. The results
in the last column of Table 1 reveal that the residuals have a strong systematic component.
Over 80% of the time series variation is due to the first principal component. This large
systematic component in the residuals suggests that the time series fit is unlikely due to
random noise in the data.

Figure 1 plots the stock returns of 10 BM portfolios at each point in time against the
levered investment returns and the error terms, respectively. This figure illustrates in a clear
manner the model’s overall poor time series fit. If the model performs perfectly, all the

observations should lie on the 45-degree line. However, the top left figure shows that the
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scattered points of stock and investment returns are largely random with a pooled correlation
of -0.12. In sharp contrast with this pattern, the scattered points of stock returns and error
terms on the top right are very well aligned along the 45-degree line, with a pooled correlation
of 0.80. Thus, almost all of the time series variation in stock returns of each portfolio is

explained by the model residual, not by the model-implied fitted investment return.

[Table 1 here]

[Figure 1 here]

4.3 Matching the cross sectional and the time series moments
jointly

To improve the time series fit of the model, we now evaluate the fit of the model after adding
the time series moments in the estimation using GMM.

Table 2 reports the results. We uncover a novel tradeoff between cross sectional fit and
time series fit: the baseline investment-based model with one capital input cannot fit both

sets of moments simultaneously. Figure 2 illustrates this tradeoff.

[Table 2 here]
[Figure 2 here]

As we increase the relative weight of the time series moments in the estimation from
column (1) (zero weight on TS moments, all weight on XS moments) to column (8) (all
weight on T'S moments, zero weight on XS moments), the fit on the cross sectional moments
deteriorates significantly: the mean absolute cross sectional error monotonically increases
from 2.47% per annum when only cross sectional moments are used in the estimation (column
1), to 5.45% when only time series moments are used in the estimation (column 8), the mean
absolute high minus low cross sectional error increases from 1.13% per annum (column 1)

to 17.36% (column 8), and the cross sectional R? decreases from 65% (column 1) to -78%
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(column 8). There is, as expected, an improvement in the fit on the time series: the mean
absolute time series error monotonically decreases from 23.97% per annum (column 1) to
19.47% (column 8) and the time series R? increases from -86% (column 1) to -27% (column
8). Perhaps surprisingly, even when only the time series moments are used in the estimation
(column 8); the model fit on the time series is still poor. Thus, the standard investment-
based model with one capital input and quadratic adjustment costs is not able to capture
the time series behavior of stock returns in the data even when the estimation is designed

to maximize its time series fit.

4.4 Matching the cross sectional and the variance moments jointly

To compare our time series moments with the variance moments proposed in LWZ, we
combine cross sectional moments and variance moments in the estimation using GMM.
Panel C in Table 3 reports the results. Unlike our time series moments, including the
variance moments in the estimation do not improve the time series fit of the model. As
we increase the weights of the variance moments in the estimation from column (11) (zero
weights on variance moments) to column (15) (all weights on variance moments), the mean
absolute time series error and the time series R? get slightly worse. The lack of improvement
in the time series fit is not surprising because, as discussed in section 3.1, the variance
moments in LWZ are not designed to improve the time series fit. Specifically, matching
variance does not take into account the time-series correlation between stock returns and
investment returns. As an extreme example, take two time series with the same variance
but that move in opposite direction to each other. Thus, the variance moments are not a
powerful test of the model prediction that stock and investment returns should be equated

at each point in time.

[Table 3 here]
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4.5 Potential empirical reasons for the poor time series fit

In this subsection, we investigate two potential empirical reasons for the poor fit of the
baseline model in the time series, despite its success in the cross section. Here, we focus
on empirical reasons, and not on theoretical reasons, given that we only tested one version
of the investment-based model: one physical capital input and quadratic adjustment costs.
The set of alternative specification of the investment-based models is potentially infinite.
The previous results should be interpreted as documenting the poor time series fit of the
baseline specification of the model, and not a general test and rejection of this class of models.
Nevertheless, the methodology we propose here can be applied to any specification of the

investment-based model, as we discuss in more detail below.

4.5.1 Aggregation bias

First, we investigate the role of portfolio-level aggregation for the results. As noted in BGSV
and GXZ, the portfolio aggregation procedure in LWZ suffers from an aggregation bias.
Specifically, in this approach, the portfolio-level investment return is computed by first com-
puting the portfolio-level characteristics (e.g., the portfolio-level investment rates), and then
plugging these aggregate characteristics directly in the investment return formula. Given the
nonlinearity of the investment returns, the portfolio-level investment return obtained using
this procedure is no longer equal to a value- or equal-weighted portfolio stock return. As
a result, the estimatio does not recover the structural parameters. For a proper aggrega-
tion, the investment return should be first computed for each firm, and the portfolio-level
investment return should be then computed as the value- or equal-weighted average of the
firm-level investment returns (and matched with the corresponding value- or equal-weighted
portfolio stock return).

To investigate if the aggregation bias induced by the LWZ portfolio-level aggregation
can explain the poor fit of the investment-based model in the time series we perform two

sets of analysis. First, we use simulated data in which the model holds at the firm-level
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(the firm-level stock return and investment return are equal), and evaluate the impact of
portfolio-aggregation error. Second, we do a proper portfolio-level aggregation in the real

data and investigate the results.

The impact of aggregation bias using artificial data

We generate artificial data from a model economy in which the assumptions of the baseline
investment-based model hold (and hence the stock and investment return equality holds). To
generate the data in a simple manner, we use the real data on firm-level characteristics (in-
vestment rate, sales-to-capital, etc) as inputs to construct model-implied investment return.
We set the true model parameter values for capital share as a = 0.05, and the adjustment
cost parameter as ¢ = 5, and compute the artificial model-implied firm-level investment
return using the real data as in equation (5). To generate firm-level stock return data in
this economy, we then use the stock and investment return equality equation implied by the
neoclassical model as in Equation (7). Thus, by construction, the observed stock return and
the model-implied investment return are equal at each point in time. As in the empirical
analysis, we create 10 BM portfolios which we use to replicate the GMM estimation in the
empirical analysis. The parameter values used generate a value premium in the artificial
data that is similar to that in the real data, as reported in Panel A in Table 4.3

To examine the impact of aggregation on the evaluation of the model, we replicate the
LWZ portfolio aggregation method using the artificial data. Panel A in Table 5 confirms
the aggregation bias in the parameter estimates, consistent with BGSV: the estimation fails
to recover the true parameter values. Another evidence of the aggregation bias is that the
parameter estimates vary with the set of moments used (column 1 to column 5). The aggre-
gation bias is also able to break the perfect correlation between stock return and investment

return: Panel A in Table 5 shows that the maximum TS-R2 that the model can achieve is

3In untabulated results, we confirm that GMM with a correctly specified model (homogeneous of degree
one) and with proper firm-level aggregation recovers the true model parameters. In addition, the model fit
is perfect, and using cross sectional moments or time series moments in the estimation makes no difference
in the estimation and evaluation of the model.
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0.14. While this number is not negative as in the data, it is substantially smaller than one,
giving some hope that the aggregation bias alone might be an important contributor for the
poor empirical time series fit of model. But when we look at correlations, the evidence is
less supportive. Panel A in Table 4 reports that the average time series correlation between
stock returns and investment returns across portfolios remains significantly higher than in
the data, around 0.50 here versus -0.19 in the real data.

The results using the artificial data also show that our time series moments are more
powerful to detect aggregation error. When estimating and testing only cross sectional
moments as in column (1) Table 5, the mean absolute cross sectional error and mean absolute
high-minus-low cross sectional error are both low, the XS R? is very high, 98%, and the model
is not rejected with a p-value on testing the joint errors of 10 cross sectional moments of
0.99. In contrast, when estimating and testing with time series moments as in column (5)
Table 5, both the cross sectional fit and time series fit are poor, and the p-value on testing
the joint errors of 10 time series moments is only 0.13, indicating a poor model fit stemming

from, in this case, aggregation bias.

[Table 4 here]

[Table 5 here]

The impact of aggregation bias using real data

We now investigate the model fit in the real data using a proper portfolio-aggregation and
hence avoiding the aggregation bias. Panel C in Table 1 and Panel B in Table 3 report the
estimation results from this analysis. Although the time series fit of the model improves
significantly with the correct aggregation, it remains poor (e.g., time series R? of -26% when
only time series moments are targeted and average time series correlation of -0.06).

Taken together, the results from these analyses suggest that portfolio-level aggregation
issues do not appear to be the main cause for the inability of the model to explain the time

series behavior of stock returns.
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4.5.2 Misalignment between asset price data and quantities

As a second possible empirical cause for the poor time series fit of the baseline investment-
based model, we address the possibility that quantities (e.g. investment) and asset prices
are misaligned in the real data. For example, stock prices (and hence stock returns) might
respond instantaneously to aggregate shocks, whereas investment might take more time to
adjust, in which case investment returns lag stock returns (see, for example, Lamont 2000, for
a more formal analysis of this issue). However, if the misalignment in the data is relatively
short lived, the misalignment should be less pronounced at longer-horizon returns. Thus,
we conjecture that compounded investment and stock returns should be significantly less

affected by data misalignment issues than one year horizon returns.

The impact of data misalignment using artificial data

We use artificial data to formally test the conjecture that compounded (here, using a five-
year horizon) investment, and stock returns should be significantly less affected by the data
misalignment issues than annual return data.

Asin the previous section, we first generate artificial data from a specification of the model
where the equality between investment and stock returns holds (using the same parameter
values as in the previous section), and introduce misalignment in estimation. To evaluate the
impact of data misalignment, we estimate the model using annual returns and compounded
returns, and compare the results. To properly identify the impact of misalignment on the
results, we estimate the model at the portfolio-level using the proper aggregation method.
In this case, the only reason for the imperfect time series fit of the model is due to data
misalignment, and not by the portfolio-level aggregation bias.

We introduce misalignment in the artificial data as follows. If investment return lags
stock returns, in the real data, we should match the more timely stock return data with
stale investment return. Thus, in artificial data, we purposely estimate and test the model

by matching stock return at ¢ + 1 (r5;) with lagged investment return at ¢ (r}*) in both
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the cross section and in the time series.

Panel B in Table 4 and Table 5 shows that the data misalignment alone breaks signifi-
cantly the perfect time series fit of the model. The average time series correlation between
stock and investment return is 0.17, the mean absolute time series error becomes sizable,
and the time series R? turns negative, consistent with the data. This suggest that data
misalignment is potentially a good explanation for the empirical poor time series fit of the
model using annual returns.

As noted, in the presence of data misalignment, using compounded returns in the esti-
mation should mitigate the impact of the misalignment and improve the time series fit (i.e.
increase the correlation between compounded stock returns and investment returns). To
verify this conjecture, we now perform the estimation of the model using 5-year annualized
compounded stock and investment returns in the time series moments. Panel C in Table
4 and Table 5 report the results. The average time series correlation between stock and
investment return increases to 0.83, the mean absolute time series error drops significantly,
and the time series R? is above 80%. Taken together, this result suggests that the issues
introduced by data misalignment should be significantly mitigated if we estimate the model
using compounded returns, that is, if we focus on the model-implied relationship between

stock and investment returns at longer horizons.

The impact of data misalignment using real data

In light of the previous analysis using artificial data, we now investigate the time series fit of
the investment-based model when we use 5-year compounded (instead of annual) returns in
the real data. Table 1 Panel B reports the results. When we use long horizon compounded
returns in the estimation, the average time series correlation between stock and investment
returns indeed increases from —0.19 when annual returns are used to 0.16. Similarly, Table 3
Panel A shows that the mean absolute time series error and time series R? improve compared

with annual returns. Despite this significant improvement, the time series fit of the model
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is far from satisfactory. The (average) time series R? remains very low at —20 as reported
in Table 3 column (5) when only the time series moments are used in the estimation. Taken
together, the results from this analysis suggest the misalignment between price and invest-
ment data (at least the type of misalignment examined here) also does not appear to be the

main cause for the inability of the model to explain the time series behavior of stock returns.

5 Specification-free Tests

The analysis so far has been based on the specification of the investment-based model in
which the Hayashi (1982) conditions hold (i.e. homogeneous of degree one operating profit
and adjustment cost functions), and hence, stock returns and levered investment returns
should be equal (Equation (7)). This result underlies the moment conditions in Section 3.1
used to estimate and test the investment-based model. Although the Hayashi conditions
are strong assumptions and should be more properly interpreted as an approximation of the
reality, it is natural to question the validity of this assumption, especially in light of the poor
time series fit of the baseline investment-based model reported in the previous sections.

Here, we propose a general way to evaluate the performance of investment-based asset
pricing models that can be used in practice even when the Hayashi conditions do not hold.
We label this more general method as a specification-free approach to evaluate investment-
based models because it does not rely so heavily on functional form assumptions. As a result,
this approach is useful for a broader set of specifications of the investment-based model.

The Hayashi conditions might not hold due to several reasons such as, for example,
decreasing returns to scale technology, nonconvex adjustment cost, or fixed operating costs.
In this case, the stock return and investment return equality does not hold, and the moment
conditions used in the previous sections are not valid for the estimation and evaluation of
the model.

Most investment-based asset pricing models, however, imply a relationship between stock
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returns and firm characteristics X;; 11 of the firm. For example, we can investigate this

relationship using a simple linear regression of the form:

T = BXit, (20)

which we can estimate in both the time series (using the time series of portfolio returns and
portfolio-level characteristics to reduce the noise in firm-level data) and in the cross section
(using the average portfolio returns against the average portfolio-level characteristics). For
example, in the baseline neoclassical model in which the Hayashi conditions hold, the key
firm characteristics X1 in the investment return (Equation (5)) include current profitability
(marginal product of capital), and current and lagged investment rate. In other investment-
based models, the key relevant firm-level characteristics might be different and model specific,
but as long as the firm characteristics can be measured in both the real data and in the
model, we can evaluate if the model generates a relationship between stock returns and firm
characteristics that is consistent with the data. A successful investment-based model should
have estimation results inside the model that are consistent with the real data both in terms
of slope coefficients in the regression, and in terms of goodness of fit of the regression.

Similar arguments have been made in the investment-q literature. Eberly, Rebelo, and
Vincent (2008) show that when Hayashi conditions do not hold thus q no longer serves as
a sufficient statistic for investment, optimal investments from a model featuring decreasing
return to scale and a fixed cost can still be very closely approximated by a log-linear func-
tion of q. Gala, Gomes, and Liu (2020) show that even under very general assumptions
about the nature of markets, production and investment technologies, optimal investments
are functions of and well captured by the relevant state variables such as firm size and
productivity.

To illustrate how this approach can be used to evaluate investment-based models, we

estimate the time series and cross sectional relationships between stock returns and firm
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characteristics defined in equation 20 in the the real data, and also using simulated data
from two different calibrated versions of the investment-based models. Thus, here, we are
using these stock return-firm characteristics regressions as a way to evaluate the calibrated
investment-based models. More generally, however, the stock return-firm characteristics
relationship can also be used to estimate the model parameters as well. Given that in
general we do not have closed form expressions for the equilibrium stock returns in the
specifications of the investment-based model in which the Hayashi conditions do not hold,
the estimation can be done using the Simulated Method of Moments (SMM), using the stock
return-firm characteristics regression estimated in the data as a set of target moments. This
estimation is outside the scope of our paper, however. Our goal here is to show how future
research can incorporate the time series and cross sectional implications of investment-based
models in order to do a proper evaluation and testing of these models.

We consider two specifications of the investment-based model. The first specification
is the standard neoclassical investment-based model where, as in the previous sections, we
assume that the Hayashi conditions hold, in which case stock returns and investment returns
are equal. We generate data from this model in the same way as in the previous Section 4.5.
This specification of the model is useful here because we already know that in this model
stock returns and firm characteristics are closely linked by Equation (7), and this strong
relationship should be preserved in the stock return-firm-characteristics regressions.

The second model is an off-the-shelf investment-model based on Lin and Zhang (2013)
where the Hayashi conditions do not hold. Specifically, a firm 4’s operating profit function

features decreasing returns to scale and a positive fixed cost:

Wy = XeZu K3 — f, (21)

in which 0 < a < 1 is the curvature parameter, and f > 0 is a positive fixed cost, capturing
the existence of fixed outside opportunity costs each period. X; and Z; are aggregate

and idiosyncratic productivity shocks respectively. Capital investment entails the following
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adjustment costs:

o (Iit7 Kzt) =130 Iit =0, (22>

a Ky + 5% (I’ft) Ky I; <0

where a= > a™ > 0 and ¢© > ¢© > 0 capture nonconvex and asymmetric adjustment
costs. Nonconvex part captures the cost independent of the size of investment. Convex part
captures higher cost for more rapid changes. Asymmetric part captures costly reversibility.
Firms face higher costs in contracting than in expanding.

Because this model does not satisfy the Hayashi conditions, the model-implied stock
returns do not equal investment returns. We label it as non-homogeneous of degree one
model, or non-HD1 model. To generate simulated data from this model, we calibrate the
model as in Lin and Zhang (2013) to match average quantities and asset prices moments
both in the aggregate and cross section, including the value premium.*

Table 6 reports the regression results in the real data, and using simulated data from

the two investment-based models. We assess the relationship between stock returns and the

following firm characteristics: profitability (Y K1 = ;?:“ ), investment growth (AIK; . =

Ilf:l/mt 1), size (Ky = logKy), and lagged investment rate ([K; = Ktt) over time
and in the cross section, in which case we average the characteristics over time for each
portfolio. We normalize both the dependent and the independent variables (using pooled

data). Consistent with the previous analysis, we run the regressions at the portfolio-level

(using 10 BM portfolios) to reduce noise in the firm-level data.
[Table 6 here]

Columns (1) and (2) in Table 6 report the results using the simulated data from the
neoclassical investment-based model in which the Hayashi conditions hold (homogeneous of

degree 1, HD1). As discussed before, this model predicts that stock returns and investment

4In the online appendix we provide a detailed description of the model, and its calibration.
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returns are equal state-by-state, and hence the model implies a tight relationship between
stock returns and firm-characteristics, both in the cross section and in the time series. This
tight relationship is confirmed in these regressions by the high cross sectional R? (98%), and
time series R? (86%). So, the simple linear functional form relationship preserves the model
implied strong link between stock returns and characteristics.

Columns (3) and (4) report the results using simulated data from the non-homogeneous
of degree one Lin and Zhang (2013) model.® Interestingly, even though this model does not
predict the equality between stock returns and investment returns, this model also implies
that stock returns and firm-characteristics are highly correlated, both in the cross sectional
(R? of 93%), and in the time series (R? of also 93%). This result suggests that the strong
link between stock returns and firm characteristics appears to be a more general feature of
investment-based models, and it is not specific to the specification of the model in which the
Hayashi condition holds.

The next step in the evaluation of the models is to compare the stock return-firm-
characteristic regression results in the model, with those in the real data. Columns (9)
and (10) in Table 6 report the regression results in the real data. Consistent with both the
baseline neoclassical investment-based model and the non-homogeneous of degree one Lin
and Zhang (2013) model, the cross sectional fit in the real data is quite high, about 98. But
the time series fit of the stock return-firm characteristics regression in the real data is very
poor, with a time series R? of about 3%, and the coefficients on the firm-characteristics are
mostly insignificant. Thus, this regression shows that once again none of the two specifi-
cations of the investment-based model considered here can match the observed time series
relationship between stock returns and firm characteristics.

We also investigate the role of data misalignment between price and investment data, on
the time series relationship between stock returns and firm characteristics. Analogous to the

analysis in Section 4.5, Column (5) and (6) show the regression results when we introduce

5Lagged investment rate is not included due to its high correlation with profitability in the simulated
data.
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misalignment in simulated data from the baseline investment-based model in which the
Hayashi conditions hold. Indeed, the time series R? drops from 86% to 31%, thus getting
closer to data, which has a time series R? of 3% as reported in column (10). We then replicate
the regressions using long-horizon relationship to mitigate the impact of data misalignment.
Column (7) and (8) show that when we use annualized 5-year compounded returns and
5-year average characteristics, the time series R? improves significantly to 84%. However,
when we replicate the same regression in the real data, Column (11) and (12) show that the
time series R? in the long horizon data is still very low, about 23%. Again, these results are
consistent with the analysis in Section 4.5 (the long horizon), and show that the linear stock
return-firm characteristics specification proposed here captures in a simple and consistent
way the relationship between these variables in both the model and the real data.

Taken together, the results here confirm the main finding of the paper that the standard
investment-based model fails on the time series prediction. In contrast to the previous
newly proposed method in this paper, the specification-free method does not need stock
and investment return equality as moment condition to estimate and evaluate the model.
Therefore, this method can be used for a broader set of investment-based models in at least
two ways.

First, it can be simply used as an external validity test as we do here. For any investment
model, researchers can do the standard calibration matching the first and second moments
and achieve a good fit on them. As a way to evaluate the model on the time series fit,
researchers can implement this method to assess the relationship between stock returns and
characteristics over time, and the model should match the empirical relationship estimated
in the data.

Second, the empirical relationship between stock returns and characteristics can be in-
corporated in estimating the structural parameters of any investment model as a moment
condition with simulated method of moments. Thus, the method picks the model parameters

that make the actual and simulated moments as close to each other as possible.
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6 Conclusion

This paper proposes a new set of moments for the estimation and testing of the standard
investment-based model. As in nonlinear least squares, these moments are based on the
average squared sum of the residuals of each portfolio, and hence capture the time series
implications of the model. Our results show that the standard investment-based model with
one-capital input and quadratic adjustment costs that is very successful at capturing the
cross sectional variation in average stock returns across several portfolio sorts, is unable to
capture the time series variation in stock returns: the model generates a time series R? that
is negative or close to zero. We also show how our approach can be extended to specifications
of investment-based models in which the Hayashi conditions do not hold, and show that the
poor time series fit is also present in a specification of the investment-based model with
decreasing returns to scale, non-convex adjustment costs, and fixed cost.

Our findings have implications for future research. Because we only test two specifications
of the investment-based model, our findings do not mean that the investment-based paradigm
cannot match the time series data well. Our findings do mean, however, that a different
specification of the model is needed to capture the time series dimension of the stock returns
in the real data, which we argue is an important dimension to match. To help the fit of
the class of investment-based models in the time series, additional capital inputs (intangible
capital and physical capital) and labor inputs as in BGSV, or short-term and long-term assets
as in GXZ, can be added to the analysis. In addition, different functional forms of adjustment
costs, or explicitly accounting for firm- or industry-level heterogeneity in the technologies,
which are assumed to be similar across firms in the baseline model, should be investigated.
Taken together, by incorporating the time series and cross sectional implications of the model
explicitly into the structural estimation of the investment-based model, our methodology
can be useful to detect model misspecifications and hence help improve the specification of

investment-based models in future research.
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Table 1. Description of stock returns, investment returns, and errors

This table reports the mean, standard deviation (Std), time-series correlation for stock re-
turns (r3), investment returns (r{*), and errors (e;). Errors are computed as e; = r5, — ri®.
Investment returns are based on estimation results from one-step GMM on the cross sec-
tional moments given by Equation (9), using BM deciles as the testing portfolios. In Panels
A and B, aggregation is at the portfolio level as in LWZ, and in Panel C, aggregation is based
on firm-level investment return. In Panel B, stock and investment returns are annualized
compounded 5-year returns. Weighting matrix is an identity matrix. Last column shows
the percent variability explained by each one of the first three principal components of the
errors. Out of 10 portfolios, we report results for 1, 5, 10, and the average of all portfolios
to save space.

Mean Std TS Correlation PCA
Portfolio 75 rl¥ ey ool ey (ro,rfoy (5 en)  (rh2)ew) Eit
Panel A: Annual returns
1 0.09 0.13 -0.04 0.28 0.15 0.34 -0.21 0.91 -0.60 80.02
5 0.18 0.15 0.03 0.25 0.15 0.32 -0.20 0.89 -0.63 7.68
10 0.26 0.29 -0.03 0.27 0.33 0.44 -0.05 0.65 -0.79 3.79
Avg 0.18 0.18 0.00 0.25 0.19 0.34 -0.19 0.83 -0.69 -
Panel B: Compounded 5-year returns (annualized)
1 0.05 0.09 -0.05 0.08 0.06 0.10 0.05 0.78 -0.58 66.08
5 0.15 0.13 0.02 0.09 0.05 0.09 0.36 0.81 -0.26 19.38
10 0.23 0.26 -0.04 0.10 0.25 0.24 0.27 0.13 -0.92 6.77
Avg 0.15 0.15 0.00 0.09 0.10 0.13 0.16 0.61 -0.63 -
Panel C: Firm-level aggregation
1 0.10 0.13 -0.03 0.25 0.05 0.27 -0.17 0.98 -0.36 83.69
5 0.16 0.15 0.02 0.24 0.08 0.26 -0.16 0.95 -0.45 7.49
10 0.25 0.27 -0.02 0.27 0.24 0.35 0.09 0.72 -0.62 3.30
Avg 0.17 0.16 0.00 0.24 0.09 0.26 -0.06 0.92 -0.40 -
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Table 2. GMM estimation and tests of the investment-based model

This table reports the one-step GMM results from estimating jointly the cross sectional
moments and the time series moments given by Equation (9) and (11) respectively, using
BM deciles as the testing portfolios. Each column differs in the prespecified weighting matrix,
in which the first component refers to the weights on the cross sectional moments and the
second component refers to the weights on the time series moments. « is the capital share and
c is the adjustment cost parameter. The t-statistics, denoted [t], test that a given parameter
X5 ’ is the mean absolute cross sectional errors given by Equation (10). |ex” L’

Ts
7

e

equals zero.

is the mean absolute high-minus-low cross sectional errors. |e

’ is the mean absolute time

series errors given by Equation (12). XS — R? is the cross sectional R?. T'S — R? is the time
series R%. x2, d.f., and p are the statistic, the degrees of freedom, and the T—Value for the 2

test on the null that all the errors are jointly zero. ’eXS ex |, and |el| are expressed as

7 )

a percentage per annum. Aggregation is at the portfolio level.

Only Only
XS Both XS and TS Moments TS
Column: (1) (2) (3) 4 6 (6 (7 (8)

Weights: [10]  [70.1] [103] [[05 [I1] [I2] [I10]  [01]

Parameter estimates

o 0.23 0.19 0.16 0.15 014 013 0.12 0.11
] 2.74 4.57 6.04 6.59 693 690 6.55 4.13
c 8.43 4.49 2.35 1.50  0.60 0.01 -0.55 -0.71
] 1.16 1.28 1.02 077 036 0.01 -0.42 -0.42

Goodness of fit
eXS| 247 249 294 331 391 443 5.14 5.45
XS, 113 472 792 966 11.98 1393 1641  17.36
]e;fs\ 23.97 2215 20.97 2050 20.05 19.79 1955  19.47

XS —R? 065 0.58 0.40 026 0.04 -0.20 -0.57 -0.78
TS —R?* -0.86 -0.61  -0.45 -0.39 -0.32 -0.29 -0.27 -0.27

x> 8.15 13.53 13.33 13.22 13.24 13.41 13.70 8.86
d.f. 8.00 18.00 18.00 18.00 18.00 18.00 18.00 8.00
D 0.42 0.76 0.77 078 078 0.77  0.75 0.35
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Table 4. Simulation: Description of stock returns, investment returns, and errors

This table reports the mean, standard deviation (Std), time-series correlation for stock re-

turns (r3), investment returns (r%), and errors (e;) from simulated data. Errors are com-

puted as €; = 15 — 7. Investment returns are based on estimation results from one-step
GMM on the cross sectional moments given by Equation (9), using BM deciles as the test-
ing portfolios. In Panels A, aggregation is at the portfolio level as in LWZ. In Panel B
and C, aggregation is based on firm-level investment return, and stock returns are matched
with lagged investment returns. In Panel C, stock and investment returns are annualized
compounded 5-year returns. Weighting matrix is an identity matrix. Last column shows
the percent variability explained by each one of the first three principal components of the
errors. Out of 10 portfolios, we report results for 1, 5, 10, and the average of all portfolios

to save space.

Mean Std TS Correlation PCA
. 5 T g T 51 5 7
Portfolio 7 r” €it re Tt €q (ro,ri) (ro,€n) (i, €i) €ir

Panel A: Aggregation bias

1 0.07 0.06 0.01 0.12 0.19 0.15 0.63 0.01 -0.77 49.29
5 0.09 0.08 0.00 0.15 0.19 0.13 0.71 0.12 -0.62 17.56
10 0.28 0.27 0.00 0.30 0.55 0.52 0.38 0.16 -0.85 8.46
Avg 0.12 0.12 0.00 0.16 0.27 0.24 0.50 0.12 -0.80 -

Panel B: Misalignment

1 0.07 0.07 0.00 0.13 0.12 0.13 0.40 0.59 -0.50 53.60
5 0.09 0.08 0.00 0.15 0.13 0.18 0.17 0.68 -0.60 15.50
10 0.28 0.28 -0.01 0.30 0.29 0.41 0.02 0.71 -0.69 9.36
Avg 0.12 0.12 0.00 0.16 0.15 0.20 0.17 0.67 -0.61 -

Panel C: Compounded returns

1 0.06 0.06 0.00 0.08 0.08 0.04 0.91 0.19 -0.24 57.00
5 0.07 0.07 0.00 0.07 0.07 0.04 0.79 0.31 -0.34 13.94
10 0.26 0.25 0.00 0.17 0.17 0.08 0.90 0.24 -0.21 9.04
Avg 0.11 0.11 0.00 0.08 0.08 0.05 0.83 0.28 -0.29 -
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Figure 1. Description of stock returns, investment returns, and errors

This figure scatter plots stock returns against investment returns, and stock returns against
error terms, based on estimation results from one-step GMM on the cross sectional moments
given by Equation (9), using BM deciles as the testing portfolios. Aggregation is at the
portfolio level (top) and at the firm level (bottom).
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Figure 2. Cross-sectional fit versus time-series fit

This figure plots the cross sectional R? and the time series R? (top) and the mean absolute
cross sectional errors (in percentage per annum) given by Equation (10) and the mean
absolute time series errors (in percentage per annum) given by Equation (12) (bottom).
Horizontal axis shows the prespecified weighting matrix, in which the first component refers
to the weights on the cross sectional moments and the second component refers to the weights
on the time series moments. Aggregation is at the portfolio level.
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Appendix A: Additional Analyses and Robustness Checks

Table A.1: Euler equation errors.

Table A.2: GMM estimation and tests of the investment-based model, second stage.

Table A.3: GMM estimation and tests of the investment-based model using alternative
testing portfolios.

Table A.4: GMM estimation and tests of the investment-based model using alternative time

series moments (NLLS first order conditions).
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Table A.1. Euler equation errors

This table reports the Euler equation errors in percentage terms. Results are from one-step
GMM from estimating jointly the cross sectional moments and the time series moments
given by Equation (9) and (11) respectively, using BM deciles as the testing portfolios. Each
column differs in the prespecified weighting matrix, in which the first component refers to
the weights on the cross sectional moments and the second component refers to the weights
on the time series moments. Aggregation is at the portfolio level. We report results for only
three (1, 5, 10) out of the 10 portfolios to save space.

Weights: [10] [[0.1] [[03] [[05 [I1] [I2 [[10] [01]]
g¥5.1 386 540 677 750 843 911 945 -0.15
gXS—5 2.52 2.06 1.83 1.78 1.83 202 272 331
g~%-10 -2.73  -0.68 1.15 2.16 3.55 483 696 8.21
g"5-1 11.53 10.73  10.08 9.79 948 930 9.16 9.07
gTS5 977 914 873 858 843 835 830 829
gTS—lO 1880 15.05 12.93 12.17 1151 11.23 11.20 11.30
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Table A.2. GMM estimation and tests of the investment-based model, second stage

This table reports the second stage GMM results from estimating jointly the cross sectional
moments and the time series moments given by Equation (9) and (11) respectively, using
BM deciles as the testing portfolios. FEach column differs in the first stage prespecified
weighting matrix, in which the first component refers to the weights on the cross sectional
moments and the second component refers to the weights on the time series moments. « is

the capital share and c is the adjustment cost parameter. The t-statistics, denoted [t], test

eXs ’ is the mean absolute cross sectional errors given

i
Ts

7

that a given parameter equals zero.

(&

by Equation (10). ‘eﬁf L’ is the mean absolute high-minus-low cross sectional errors. ‘ is
the mean absolute time series errors given by Equation (12). XS — R? is the cross sectional
R2. TS — R? is the time series R2. 2, d.f., and p are the statistic, the degrees of freedom,

and the p-value for the x? test on the null that all the errors are jointly zero. |eX®], [ex®

Y Y

and |el® ‘ are expressed as a percentage per annum. Aggregation is at the portfolio level.
Only Only
XS Both XS and TS Moments TS
Column: (1) (2) (3) ) 6 © (@) (8)

Weights: [10]  [[0.] [103] [[05 [I1] [I2] [I10]  [0]]

Parameter estimates

o 0.22 0.18 0.16 0.15 014 013 0.12 0.11
] 12.21 17.52 2523  29.28 2858 26.85 24.91 23.97
c 8.03 4.54 2.63 1.81 082 0.15 -0.45 -0.60
] 7.75 7.26 4.72 3.38 1.83 040 -1.40 -1.95

Goodness of fit
eXs| 253 285 330 353 387 435 5.03 5.32
exs,| 242 554 817 957 11.64 1357 1597  16.87

e;fps‘ 23.75 22.10  21.05 20.61 20.11 19.83 19.58 19.50

XS —R? 059 0.52 0.37 0.27  0.08 -0.15 -0.50 -0.69
TS —R*> -0.83 -0.61  -0.47 -040 -0.34 -0.30 -0.27 -0.27

X’ 8.15 13.53 13.34 1323 13.24 1342 13.71 9.65
d.f. 8.00 18.00 18.00 18.00 18.00 18.00 18.00 8.00
D 0.42 0.76 0.77 078 078 0.77  0.75 0.29
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Table A.3. GMM estimation and tests of the investment-based model using alternative
testing portfolios

This table reports the one-step GMM results from estimating jointly the cross sectional
moments and the time series moments given by Equation (9) and (11) respectively, using
standardized unexpected earnings (SUE) deciles (Panel A) and corporate investment (CI)
deciles (Panel B). Each column differs in the prespecified weighting matrix, in which the first
component refers to the weights on the cross sectional moments and the second component
refers to the weights on the time series moments. « is the capital share and ¢ is the adjustment
cost parameter. The t-statistics, denoted [t], test that a given parameter equals zero. |e;*®

e; ‘ is
the mean absolute cross sectional errors given by Equation (10). ‘eﬁf L‘ is the mean absolute

high-minus-low cross sectional errors. |el® ‘ is the mean absolute time series errors given by

Equation (12). XS — R? is the cross sectional R*. T'S — R? is the time series R?. x?, d.f.,
and p are the statistic, the degrees of freedom, and the p-value for the x? test on the null
that all the errors are jointly zero. ‘eZX 51, lex? L[, and el ‘ are expressed as a percentage per
annum. Aggregation is at the portfolio level.

Y

Panel A: SUE Panel B: CI

Only Both Only Only Both Only

XS XS and TS TS XS XS and TS TS

Comn: (1) (& @) @ 0 © M ® © (0
Weights:  [1 0] (I 1] [I5 [I10] [0 1] [I 0] [II] [I5] |[I10] [0 1]

Parameter estimates

@ 0.18 0.14 0.12 0.12 0.11 0.12 0.12 0.11 0.11 0.11

[t] 10.11 10.25 836 812 6.95 11.69 12.15 12.69 12.85 6.86

c 3.67 0.89 -0.59 -0.91 -1.28 0.41 0.22 -0.02 -0.10 -0.22

[t] 3.09 0.79 -0.53 -0.88 -1.93 1.85 0.97 -0.08 -0.34 -0.24

Goodness of fit

e;.XS‘ 0.69 1.70  3.07  3.45 3.98 1.59 1.77 205 221 2.48
’eﬁf,; 0.34 490 9.58 10.90 12.64 1.45 3.35 590 6.80 8.16
el's 18.01 16.94 16.33 16.24 16.17 18.74 18.69 18.62 18.59 18.55
XS—R? 096 0.75 024 0.04 -0.26 -0.42 -0.53 -1.04 -1.36 -2.07
TS — R?* -0.34 -0.18 -0.11 -0.10 -0.09 -0.23 -0.22 -021 -0.21 -0.21
e 4.61 11.13 11.539 11.69 6.86 10.41 12.60 12.51 12.49 6.16
d.f. 8.00 18.00 18.00 18.00 8.00 8.00 18.00 18.00 18.00 8.00

P 0.80 0.89 087 0.86 0.55 0.24 082 0.82 0.82 0.63
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Table A.4. GMM estimation and tests of the investment-based model using alternative
time series moments

This table reports the one-step GMM results from estimating jointly the cross sectional mo-
ments and the alternative time series moments given by Equation (9) and (13) respectively,
using BM deciles as the testing portfolios. Each column differs in the prespecified weighting
matrix, in which the first component refers to the weights on the cross sectional moments
and the second component refers to the weights on the time series moments. « is the cap-
ital share and c is the adjustment cost parameter. The t-statistics, denoted [t], test that

a given parameter equals zero. |eX®

‘ is the mean absolute cross sectional errors given by
els ‘ is

(&

Equation (10). |ex” L’ is the mean absolute high-minus-low cross sectional errors.

the mean absolute time series errors given by Equation (12). XS — R? is the cross sectional
R2. TS — R? is the time series R2. 2, d.f., and p are the statistic, the degrees of freedom,

and the p-value for the x? test on the null that all the errors are jointly zero. |eX?|, |ex?

€ » |CH-L|5

and |el® ’ are expressed as a percentage per annum. Aggregation is at the portfolio level.
Only Only
XS Both XS and TS Moments TS

Column: (1) 2 G @& 6 © (7 (8)
Weights: [[0]  [710] [I20] [I30] [I40] [I50] [I100] [0 1]

Parameter estimates

o 0.23 021 021 020 020 0.20 0.20 0.11
[t] 2.74 28 3.01 311 317  3.20 3.28 10.27
c 8.43 820 752 727t 716  7.10 7.06 -0.75
[t] 1.16 .15 1.15 116 1.16  1.17 1.19 -1.11

Goodness of fit
eX5| 247 292 315 324 328 331 3.36 5.51

xS, 113 310 3.84 412 425 433 443 17.55
eS| 2397 2378 2347 2336 2331 23.28 2326  19.46

XS—R* 065 047 040 038 036 0.35 0.33 -0.82
TS —R* -0.86 -0.84 -0.80 -0.78 -0.78 -0.77 -0.77 -0.27
X2 8.15 10.46 10.70 10.79 10.83 10.86 10.90 -
d.tf. 8.00 10.00 10.00 10.00 10.00 10.00  10.00 0.00
P 0.42 040 038 037 037 0.37 0.37 -
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Appendix B: Investment Model with Frictions

The model is closely related to Lin and Zhang (2013). Production only takes one input,

capital K, with decreasing return to scale. Firm 4’s operating profit function is given by
Hit — XtZZ‘tKg — f, (23)

in which 0 < a < 1 is the curvature parameter, and f > 0 is a positive fixed cost, captur-
ing the existence of fixed outside opportunity costs each period. Production is subject to
both aggregate and idiosyncratic productivity shocks. The aggregate productivity X, has a

stationary Markov transition function. Let z; = logX;, the transition function follows

Tip1 = Palt + Ogfhita, (24)

in which ;1 is an i.i.d. standard normal shock. Firm ¢’s productivity Z; has a transition
function follows

Zigr1 = 2 (1 — p2) + pozie + 02Vits1, (25)

in which z;; = logZ;, and v;41 is an i.i.d. standard normal shock. Two shocks are uncorre-
lated.

Firm ¢’s capital accumulates as
K1 = Iy + (1 = 6) Ky, (26)
in which ¢ is the rate of depreciation. Capital investment entails adjustment costs

@Ko+ 5 () Ky Ii>0

o (Iit7 Klt) =130 Iit =0, (27>

a K + % (%)QKZ I <0
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where a= > a™ > 0 and ¢ > ¢© > 0 capture nonconvex and asymmetric adjustment
costs. Nonconvex part captures the cost independent of the size of investment. Convex part
captures higher cost for more rapid changes. Asymmetric part captures costly reversibility.
Firms face higher costs in contracting than in expanding.

The stochastic discount factor is exogenously given, denoted by M,

eV (@ —mit1)

Mt-l—l = BEt [e’y(l‘t—lﬂt+l)]’

(28)

in which 0 < # < 1, v > 0 are constants. The risk-free rate is set to be constant.
Upon observing shocks, firms optimally choose investment to maximize the market value

of equity, given by
Viez=V (Kz'tu Xy, Zit) = TT}_CUTJ [Hit — I —® (Iita Kit) + E, [Mt+1v (Kit+17 Xit1, Zz‘t-l—l)“ . (29)

At the optimum, V;; = Dy + E; [Myy1Vigsq], with Dy = 11 — Ly — @ (I, Ki). Equiva-
lently, E; {MtH'r’gH} = 1 in which T;S;H = Viir1/ (Vi — Dyy) is the stock return. Similarly,
E, [Mtﬂrift +1] = 1, in which rilt 41 is the investment return. However, in this investment
model with frictions, Hayashi (1982) conditions do not hold, thus investment returns do not
equal to stock returns.

The model is calibrated at annual frequency. The time discount factor, § = 0.9718, is
set to match the real risk-free rate of 2.9% per annum. The price of risk parameter, v = 6,
is set to match the average Sharpe ratio. The persistence of aggregate corporate profits p,
is set to be 0.90 and conditional volatility o, = 0.06. For the adjustment cost parameters:
a® = 0.01, a= = 0.1, ¢ = 10, and ¢~ = 200; for the remaining parameters, p, = 0.90,
o, =0.10, z = —0.98, a = 0.65, § = 0.10, and f = 0.115.

The model is solved with value function iterations on discrete state space. In total 1000
artificial samples are simulated from the model, each with 3000 firms and 500 years. The

first 450 years are dropped to neutralize the impact of the initial condition. The remaining
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50 years of simulated data are treated as from the model’s stationary distribution. Empirical
tests are performed on each artificial sample and cross-simulation median results are reported
as model moments to compare with those in the real data. With the calibrated parameters,

the model produces a value premium of 4% per annum.
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Appendix C: External Validity Specification Test

When evaluating the investment-based asset pricing model, existing studies conduct the x?
test using the same set of moment conditions as in the estimation. We argue that this
procedure has low power to reject the model when presented with model misspecification.
Thus, we develop a Wald test for model errors that are not used for estimation. It holds
the model to a higher standard than a simple test of overidentifying restriction and thus
accomplishes a purpose similar to that of an out-of-sample test.

Specifically, we ask the estimation to match the cross sectional moments as closely as
possible and evaluate how the fitted model matches the time series moments. Following
the procedure described in Cochrane (2009), we start to estimate the parameters by only
using ¢¥5 and obtain the distribution of all moments var (gr). Denote var (g7)"" as the
block of time series moments in var (gr), and we use it to compute the joint error for g7°
to incorporate sampling uncertainty about the parameters from their estimation stage and
correlation between the estimation moments and the evaluation moments. We want to test
the null hypothesis that ¢”® = 0. This hypothesis constitutes a test of the external validity of
the model, as it assesses the model’s ability to explain patterns in the data that are not used
to estimate its parameters. Under the null hypothesis that the model is correctly specified,
these moments should equal zero. Formally, the x? test is:

, +
grs [var (gT)TS} g5 ~ X2 (#moments — #paras) . (30)

We compare standard overidentifying tests with our proposed external validity specifi-
cation tests. Although the standard test has some difficulties in rejecting the model, the
external validity specification test increases the power of the tests and hence can be useful
in practice to detect possible model misspecifications.

Table A.5 reports the results. Columns (1) and (2) report the standard overidentifying

tests results in which the same set of moment conditions, the cross sectional moments, are
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used in the estimation and tests. Columns (3) and (4) report the specification tests results
in which cross sectional moments are used in the estimation and time series moments are
used in the tests. Columns (1) and (3) report the results based on an identity weighting
matrix in the estimation, whereas columns (2) and (4) report the results based on the optimal
weighting matrix. Panel A, column (1) shows that the p-value on testing the joint errors of 10
cross sectional moments is 0.42 (0.44 with an optimal weighting matrix), far from rejecting
the model, despite the fact that the time series fit is very poor. In comparison, the p-value
on evaluating the joint errors of the 10 time series moments is 0.23 in column (3) (0.18 with
an optimal weighting matrix), getting the model much closer to rejection based on its time
series fit.

The poor time series fit is more prominent with the correct portfolio aggregation as re-
ported in Panel B in Table A.5. Column (1) shows that the p-value on testing the joint errors
of 10 cross sectional moments is 0.83 (0.82 with an optimal weighting matrix), indicating a
close to perfect model fit, despite the fact that the time series fit is very poor. In comparison,
the p-value on evaluating the joint errors of the 10 time series moments is 0.16 in column
(3) (0.19 with an optimal weighting matrix), much more likely leading to a rejection of the

model based on its time series fit.

[Table A.5 here]
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Table A.5. External validity specification test

This table reports the external validity specification test results based on different sets of
moments used in estimation and tests. The cross sectional moments, denoted ¢*°, are
given by Equation (9). The time series moments, denoted g7, are given by Equation (11).
Weighting matrix is either an identity matrix or an optimal weighting matrix. In Panels
A, aggregation is at the portfolio level as in LWZ, and in Panel B, aggregation is based on
firm-level investment return. x?2, d.f., and p are the statistic, the degrees of freedom, and the

p-value for the x? test on the null that all the errors are jointly zero.

Estimation

Tests

Column:
Weights:

gXS gXS

gXS gTS
(1) @) (3) (4)
[70] [S'o  [10] [S'o]

Panel A: Portfolio-level aggregation

815  7.96 10.55 11.36
8.00  8.00 8.00 8.00
042  0.44 0.23 0.18

Panel B: Firm-level aggregation

4.30  4.42 11.73 11.28
8.00  8.00 8.00 8.00
083  0.82 0.16 0.19
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