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ABSTRACT

Risk-based pricing of loans is well-accepted. Left unstudied, however, is the con-
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asset-level consumer automobile asset-backed security data, we find that default risk
conditional on survival converges for borrowers in disparate credit risk bands well be-
fore scheduled termination, a phenomenon we call credit risk convergence. We then use
actuarial techniques to derive the conditional market-implied credit spread by credit
risk band to estimate current deep subprime and subprime borrowers eventually over-
pay by annual percentage rates of 285-1,391 basis points. Our results are robust to
various sensitivity tests.
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FOR NEARLY ONE HUNDRED YEARS the American consumer has relied on installment credit
to purchase automobiles and other expensive goods (e.g., Hughes and Cain, 2011). And for
nearly as long, the discourse of political economy has contemplated the amount of protection
required for individual consumers in financial transactions. After the economic calamities
of the Great Depression, for example, Franklin D. Roosevelt famously pledged “a new deal
for the American people” in his 1932 acceptance speech for the Democratic nomination
(Roosevelt, 1932). Exactly thirty years later, the eventual Nobel laureate Milton Friedman
wrote, “Underlying most arguments against the free market is a lack of belief in freedom it-
self” (Friedman, 2002). Forty-eight years later in 2010, shortly following the Global Financial
Crisis amid a historical cyclicality befitting poetry, then President Barack Obama remarked
during the signing of the Dodd-Frank Wall Street Reform and Consumer Protection Act that,
“We all win when consumers are protected against abuse. And we all win when folks are
rewarded based on how well they perform, not how well they evade accountability” (Obama,
2010). The literature has naturally followed suit, with noteworthy contributions on payday
loans (e.g. Melzer, 2011; Bertrand and Morse, 2011), credit cards (e.g. Gross and Souleles,
2002; Agarwal et al., 2014), and automobile loans (e.g. Adams et al., 2009; Grunewald et al.,
2020) to name but a few.

Much of the traditional focus in these studies is on the moments prior to and including
contract signing or the aftereffects of such consumer contracts. We examine the well-accepted
practice of risk-based pricing (Edelberg, 2006) but spanning the entire lifetime of a current
loan. In other words, the risk-based cost of borrowing is traditionally a function of a singular
point-in-time historical assessment of a consumer’s credit risk profile (Phillips, 2013). A
borrower’s credit profile is dynamic, however, and this disconnect leads to a natural question:
how many on-time payments does it take for a high-risk borrower to no longer be considered
high-risk? We find that the answer is considerably less payments than the original term of
the loan, which raises an inevitable second question: what are the financial and economic
implications of loan contracts for borrowers originally charged a high-risk cost of borrowing
that remain current? This paper is dedicated to providing the first empirical answers to
both of these questions.

Our findings may be split into two major categories. The first is a statistical argument
that borrowers of secured consumer automobile loans in disparate credit risk bands who

remain current eventually converge in default risk. We call such a phenomenon credit risk



convergence.! Specifically, we find that the conditional monthly probability of default given
survival to at least that month eventually converges for borrowers from disparate risk bands
after approximately 28 to 49 months on consumer automobile loans with an original term of
72-73 months. The second major finding is that borrowers originally from high-risk credit
bands (deep subprime, subprime, near-prime) who remain current and thus migrate to low-
risk credit bands (near-prime, prime, super prime) eventually overpay in comparison to the
prevailing market risk-based cost of borrowing by amounts ranging from approximately 285
to 1,391 basis points, as measured by an annual percentage rate (APR). Both of these results
are robust to a variety of sensitivity tests covering the economic shock of the Coronavirus
pandemic economic shutdown of Spring 2020, alternative definitions of consumer credit risk
bands based on the contracted interest rate rather than credit score, and assumptions made
beyond the estimable window of conditional probabilities.

The statistical analysis is based on consumer automobile loan performance data from
publicly issued asset-backed securities (ABS) containing borrowers over a wide spectrum
of different credit risk profiles. The asset-level performance data is available to the public
through the Electronic Data Gathering, Analysis, and Retrieval (EDGAR) system operated
by the Securities and Exchange Commission (SEC). Recent regulatory changes have made
such data available to the public for the first time (Securities and Exchange Commission,
2014, 2016), though it remains surprisingly underutilized in the literature. We thus compile
a unique data set of monthly performance from 50,107 individual 72-73 month consumer
automobile loans from four completed ABS bonds (i.e., CarMax, 2017; Ally, 2017; Santander,
2017b,a). We select loans to be as comparable as possible (i.e., no co-borrowers, used vehicles
only, etc.). We assign borrowers to risk bands via the borrower’s application credit score by
using the same classification ranges as the Consumer Financial Protection Bureau (2019). We
then write software to determine the outcome of a loan from the asset-level performance data:
either a complete repayment or default.? Finally, we empirically estimated a recovery rate by

default time. For details, see Section I and for computer code, see the online supplemental

Tt should be stated that two consumers who completely repay their loans will trivially converge in
credit risk to a zero probability of default. The same may be said for two consumers that default, except
convergence will occur to a probability of default of unity. The major analysis, therefore, is determining if
such convergence occurs prior to a loan outcome and, if so, its financial implications.

2All our analysis adjusts for prepayment behavior. In other words, while we consider both prepayments
and repayments as “non-defaults”, the distribution of loan repayments and therefore all subsequent analysis
is adjusted for the timing of observed repayments.



material. Later robustness checks consider an additional 56,683 consumer loans selected from
later offerings of the same ABS issuers (i.e., CarMax, 2019; Ally, 2019; Santander, 2019b,a)
and redefining the credit risk bands by contracted interest rate, see Section IV for details.

Our probabilistic model follows from the field of survival analysis or time-to-event model-
ing. Time-to-event modeling is a logical tool in this application because both the time-until-
default and time-until-repayment affect the profitability of a loan. Because our data come
from ABS pools, it is subject to incompleteness due to left-truncation and right-censoring.
Furthermore, the nature of a loan contract requires us to work with discrete-time. Extended
detail may be found in the theoretical study of Lautier et al. (2021) for left-truncation and
the asset-pricing analysis of Lautier et al. (2022), which considers both left-truncation and
right-censoring in the context of modeling a consumer lease ABS. The desire to differentiate
between default and prepayment requires us to generalize the work of Lautier et al. (2022) to
a competing risk model. Competing risks have been used to model loans (e.g., Banasik et al.,
1999; Stepanova and Thomas, 2002; Dirick et al., 2017), but we find previous approaches in-
sufficient to address our requirements of modeling competing risks in discrete-time adjusted
for both random left-truncation and right-censoring (see Section II for additional references
and discussion details). Critically, we desire to estimate the cause-specific hazard rate by
risk band for defaults (prepayments), which is the probability of default (prepayment) in the
current month given that a loan has survived the previous month.

The crux of our analysis then relies on the asymptotic properties of these hazard rate esti-
mators, which are stated in Proposition 1 and formally proved in Appendix A, a contribution
to the statistical literature in its own right. The asymptotic normality of the hazard rate
estimators allow us to construct 95% confidence intervals for the true hazard rate. Hence,
we can formally test for the equivalence between the hazard rate of two disparate credit risk
bands by searching for the month in which the confidence intervals between two disparate
risk bands overlap. As stated earlier, we conjecture that the conditional monthly probability
of default given survival to at least that month (i.e., the hazard rate) eventually converges
for borrowers from disparate risk bands after approximately 28 to 49 months on consumer
auto loans with an original term of 72-73 months. For details of the probabilistic model,
see Section I1.B, and for results see Section II1.C. We also find that credit risk convergence
of these consumer loans cannot be fully explained by the economic shock of the Coronavirus

pandemic economic shutdown of Spring 2020 and is robust to an alternative definition of



consumer credit risk bands based on the contracted interest rate rather than credit score,
see Sections IV.A and IV.B, respectively, for details.

Assessing the financial implications of credit risk convergence requires deconstructing the
fundamentals of risk-based pricing (Edelberg, 2006; Phillips, 2013; Livshits, 2015). Specifi-
cally, we can compartmentalize a borrower’s interest rate into a cost of capital, profit margin,
and an added spread that varies by risk-band. It is this added spread that we desire to re-
cover and analyze. That is, we can utilize the empirical estimates of the probabilistic model
in conjunction with actuarial techniques to derive a fair interest rate based on the expected
present value of future payments. Hence, any remaining spread over the fair actuarial rate is
the market-implied credit spread demanded for the uncertainty of future payments. Better
still, we can plot this market-implied credit spread as a function of a loan conditional on
survival, which illustrates the profitability dynamics of a current loan. Because the loan in-
terest rate is fixed for the lifetime of the contract, the shape of the conditional market-implied
credit spread over time reveals the proportion of the rate attributable to expected future
return for a current loan; that is, a dwindling (growing) conditional market-implied credit
spread suggests a growing (dwindling) expected profit. Not surprisingly, borrowers that pay
a higher interest rate and remain current are more profitable. What is noteworthy, however,
is that we can find a borrower with the same conditional default risk that is paying a much
lower rate, and so consumers originally from lower quality credit risk bands (deep subprime,
subprime, near-prime) that remain current and thus migrate to higher quality risk bands
(near-prime, prime, super prime) and do not refinance eventually overpay in comparison to
the prevailing market risk-based cost of borrowing. As stated earlier, we conjecture that this
unjustifiable overpayment ranges from approximately 285 to 1,391 basis points, as measured
by an annual percentage rate (APR). Much greater detail may be found in Section ITI. We
further find these these results are robust to assumptions made beyond the estimable window
of conditional probabilities, see Section I'V.C for details.

We also speak briefly on the economic implications and potential remedies. Because our
study focuses on secured automobile loans from within a core economic lending space by
major financial institutions, such large market inefficiencies are troubling. Encouragingly,
our estimates of prepayment behavior suggest that borrowers across all risk profiles increase
prepayment behavior as a loan matures. This suggests that some overpaying consumers do

refinance these auto loans and self-correct. On the other hand, a sizable portion continue



to make payments at a rate that is much higher than the market would dictate given an
improved credit profile. In our concluding remarks, we propose a consumer loan product that
is designed to lower future payments based on performance of the borrower. We speculate
that such a feature may act as an incentive for borrowers to keep making payments. We
also suggest competing lenders target these overpaying borrowers to lower the overall market
inefficiency. Finally, we suggest possible regulatory action.

Generally, this paper shares genetic material with financial research related to the per-
ceived machinations and true economic welfare of the consumer lending space. A natural
target is payday lending and so-called high-cost alternative financial service (AFS) lend-
ing. Melzer (2011) finds not only no evidence that payday loans reduce economic distress
but that access to such loans may exacerbate financial difficulties for low income individuals.
Bertrand and Morse (2011) use a field experiment to show that a disclosure designed to make
the cumulative costs of payday lending more apparent led to an 11% reduction in the utiliza-
tion of such loans in the subsequent four months. In times of unexpected financial distress,
Morse (2011) finds some evidence payday lenders offer a positive service. Financial literacy
also plays a role in consumers electing to use high-cost methods of borrowing, as Lusardi
and de Bassa Scheresberg (2013) find that consumers with higher financial literacy are much
less likely to have utilized high-cost borrowing methods. Lim et al. (2014) stress the need to
better understand the payday loan industry in the context of social work advocacy. Robb
et al. (2015) reach a similar financial literacy conclusion as Lusardi and de Bassa Scheresberg
(2013), but they also note that borrower overconfidence of self-assessed financial acumen in-
creases the chance of using high-cost AFS. Dobbie et al. (2021) find significant bias against
immigrants and older applicants when reviewing a high-cost lender’s long-run profit measure
for a U.K. high-cost lender. The model of Allcott et al. (2021) suggests that banning payday
lending would reduce economic welfare, though they note that limits on repeat borrowing
might increase welfare. Payday lending and AFS are generally more short-term products,
however, and so research has not considered the dynamics of default risk of current borrowers
over time.

In a close relative, credit card lending has also attracted a similar level of study. Both
Ausubel (1991) and Calem and Mester (1995) report that credit card interest rates remain
sticky relative to the cost of funds, which does not conform to behavioral assumptions of a

perfect competition model. Gross and Souleles (2002) note that conventional models cannot



explain why borrowers carry a high-interest balance on their credit cards and simultaneously
hold low yielding assets (the so-called “credit card puzzle”; see a proposed model based on
credit volatility in Fulford (2015)). Alan and Loranth (2013) find that only low-risk borrowers
that fully utilize their credit cards reduced credit demand when presented with an increase
in interest rates. They also find that a rate increase of 5% would significantly increase lender
profitability without inducing more delinquencies over a short time horizon. Agarwal et al.
(2014) find that regulation in the credit card market can benefit consumers by analyzing the
effectiveness of the Credit Card Accountability Responsibility and Disclosure (CARD) Act.
Of note, they estimate the CARD Act saved consumers $11.9 billion a year. Heidhues and
K6szegi (2016) find that credit card lenders use information about a borrower’s naiveté to
increase interest revenue. We consider consumer automobile loans, however, and we again
note these studies do not consider the borrower risk profile over time.

Our work naturally aligns with previous studies on the consumer automobile lending
space, which have found that consumers are subject to various forms of troubling economic
behavior. For example, there is evidence of racial discrimination found in studies that
span decades (e.g., Ayres and Siegelman, 1995; Edelberg, 2007; Butler et al., 2022). For
an overview of the used car industry and the challenges presented to poor consumers in
purchasing and keeping transportation, see Karger (2003). Adams et al. (2009) look at
the effect of borrower liquidity on short-term purchase behavior within the subprime auto
market. Namely, they observe sharp increases in demand during tax rebate season and
high sensitivity to minimum down payment requirements. Grunewald et al. (2020) find that
arrangements between auto dealers and lenders leads to incentives that increase loan prices.
They also find consumers are less responsive to finance charges than vehicle charges and
that consumers benefit when dealers do not have discretion to price loans. While consumer
auto loans and subprime borrowers have attracted significant attention, we again do not find
consideration of the borrower risk profile over the lifespan of the loan.

So how does one classify this paper? As this previous research indicates, the consumer
already faces an uphill battle in most financial transactions. Lenders knowingly hide interest
rates to select for borrowers who make decisions based on payment size (Stango and Zinman,
2011). Given the complexity of modern financial markets, pervasive financial ignorance
is unsurprising and contributes meaningfully to wealth inequality (Campbell, 2016). In

thinking about economic inequality, Pressman and Scott (2009) argue that consumer debt



should be a component of measuring poverty and economic inequality. Perhaps partially
motivated by this backdrop, Zingales (2015) asks us to “blow the whistle” on financial
practices that do not work. We have thus focused on the borrower with poor credit who
signs a contract with a major financial institution to purchase an essential economic asset: an
automobile. The rate for this contract may be upwards of 20% APR to reflect a perceived
high level of risk. Subsequently, this borrower makes payments on time to the point an
updated assessment of credit risk in combination without refinancing would suggest this
borrower eventually overpays by potentially over 1,000 basis points of APR. We thus write
on behalf of these borrowers.

The paper proceeds as follows. We first introduce and detail the supporting consumer
auto loan data from securitization pools in Section I. The consequential statistical analysis
occurs in Section II, which includes estimating the conditional default probabilities based
on survival time along with large sample confidence intervals. The financial analysis then
follows in Section III, which utilizes the probabilistic estimates of Section II to calculate a
conditional expected rate of return to ultimately derive the market-implied credit spread. We
perform a series of robustness checks in Section IV, and Section V concludes. Appendices A
and B contain proofs, and Appendix C provides a large sample simulation study for reference.
For interested readers, the online supplemental material contains data details and replication

code.

I. Data

On September 24, 2014, the SEC adopted significant revisions to Regulation AB and other
rules governing the offering, disclosure, and reporting for ABS (Securities and Exchange
Commission, 2014). One component of these large scale revisions, which took effect Novem-
ber 23, 2016, has required public issuers of ABS to make freely available pertinent loan-level
information and payment performance on a monthly basis (Securities and Exchange Commis-
sion, 2016). We have utilized the EDGAR system operated by the SEC to obtain complete
loan-level performance data for the consumer automobile loan ABS bonds CarMax Auto
Owner Trust 2017-2 (CarMax, 2017), Ally Auto Receivables Trust 2017-3 (Ally, 2017), San-
tander Drive Auto Receivables Trust 2017-2 (Santander, 2017b), and Drive Auto Receivables
Trust 2017-1 (Santander, 2017a). Henceforth, we will use the standard industry shorthand



of CARMX, AART, SDART, and DRIVE to refer to each of these four bonds, respectively.
The bonds CARMX, AART, SDART, and DRIVE began actively paying in March, April,
May, and April of 2017, respectively, and each trust was active for 50, 44, 52, and 52 months,
respectively. The bonds were selected to span approximately the same months to ensure all
underlying loans were subject to the same macroeconomic environment. By count, the total
number of loans for CARMX, AART, SDART, and DRIVE were 55,000, 67,797, 80,636, and
72,515, respectively.

We elected to use consumer automobile loans for two reasons. The first is the practicality
of subject matter expertise of the lead author to the nuances of the auto loan ABS market
(e.g., which bonds to select, obtainment of data, etc.). Second, consumer auto loans typically
represent a high priority of payment for a borrower amid many potential monthly credit
obligations: housing, auto loans, credit cards, student loans, consumer loans, etc.® In other
words, if we do not observe a declining conditional default risk over time for a secured,
high-priority of payment loan like a consumer auto loan, then it likely is not an observable

phenomenon in other types of consumer loans with a lower priority of payment.

LA. Loan Selection and Defining Risk Bands

To ensure the underlying loans in our analysis were as comparable as possible, we employed
a number of filtering mechanisms. First, we removed any loan contracts that included a co-
borrower. Second, we required each loan to have been underwritten to the level of “stated not
verified”, which is a prescribed description of the amount of verification done to a borrower’s
stated income level on an initial loan application (Securities and Exchange Commission,
2016). Third, we removed all loans originated with any form of subvention (i.e., additional
financial incentives, such as added trade-in compensation or price reductions on the final sale
price). We then required all loans to correspond to the sale of a used vehicle. We further
dropped any loan with a current status of “repossessed” as of the first available reporting
month of the corresponding ABS. Further, to minimize the chance of inadvertently including
a loan that has been previously refinanced or modified, we only considered loans younger
than 18 months as of the first available ABS reporting month. In addition, we removed

any loans with a “Not Available” or NA for the credit score field. For loan term, we only

30n this point, the unwritten code of traders in the consumer ABS space is “you can live in your car,
but you can’t drive your house to work”.



included loans with an original term of 72 or 73 months. As a final data integrity check, we
removed any loans that did not pay enough total principle to pay-off the outstanding balance
as of the first month the trust was active and paying but had a missing value (NA) for the
outstanding balance in the final month the trust was active and paying. In other words, the
loan outcome was not clear from the data; the loan did not pay enough principal to pay off
the outstanding balance nor default but stopped reporting monthly payment data. In total,
this final data integrity check only impacted 2,338 or 4.5% of the filtered loan population.
This left 50,107 individual consumer auto loan contracts, summary details of which may be
found in Section I.C. Complete replication code and other data details may be found in the
online supplementary material.

Next, we assigned each loan into a credit risk category or risk band depending on a
borrower’s credit score as of the initial loan application. A credit score is a numerical
representation of a borrower’s likelihood of repaying a loan in full and on-time. While
multiple companies may compute a credit score, scores will typically range from 300-900,
with a higher score representing a stronger credit. To be consistent with industry standards,
we have used the same borrower risk classification categories as the Consumer Financial
Protection Bureau (2019). Specifically, going from highest risk to lowest risk, credit scores
below 580 are considered “deep subprime”, credit scores between 580-619 are “subprime”,
620-659 is “near-prime”, 660-719 is “prime”, and credit scores of 720 and above are “super-
prime”. An examination of the third row of Figure 2 shows that, generally speaking, the
borrower’s interest rate increases as the risk band credit quality decreases. This suggests
that, under an assumption of risk-based pricing as described in Section III, defining the risk
bands by consumer credit score is a reasonable approximation of the true lender risk bands.
We remark here that we also consider a robustness check of our analysis by instead assigning

risk bands by interest rate, details of which may be found in Section IV.B.

I.B. Estimating Recovery Upon Default

Consumer auto loans are secured with the collateral of the attached automobile. In the event
of a defaulted loan, the lender has legal standing to repossess the vehicle to make up the
outstanding balance of the loan. In most cases, particularly for deep subprime borrowers,

the value of a repossessed automobile in the event of default is an important component
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in the initial pricing of a loan. In this section, therefore, we briefly discuss our process to
estimate a recovery assumption, which is ultimately defined as a monthly percentage of the
initial loan balance.

The loan level data of Securities and Exchange Commission (2016) is detailed, and so we
may utilized the associated fields to perform the estimation. Specifically, we calculated a sum
total of the recoveredAmount field for all loans that ended in default. The recoveredAmount
field includes any additional loan payments made by the borrower after defaulting, legal set-
tlements, and repossession proceeds (Securities and Exchange Commission, 2016). As a next
step, we took an average of this total recoveredAmount divided by originallLoanAmount at
each month a default was observed. Next, for convenient use within the profitability anal-
ysis of Section III.A, the results were then nonparametrically smoothed using the loess ()
function in R (R Core Team, 2022). Finally, for the purposes of extrapolating beyond the
recoverable sample space of loan age from the data, we fitted the estimated loess curve to
a gamma-kernel via an ordinary minimization of a sum-of-squared differences. The results
are in Figure 1.

The shape of the recovery curve warrants some commentary. Loans that default shortly
after origination generally have a low recovery amount as a percentage of the initial loan bal-
ance, between 10-20%. This is likely because a loan that defaults so quickly after origination
may be due to fraud in the initial loan application, extreme circumstances for the borrower
(i.e., rapid decline in physical health), or severe damage to the vehicle. In the case of damage
to the vehicle, it is possible the borrower has also lapsed on auto insurance. Overall, it can
be difficult to recover a meaningful amount in these circumstances. The recovery percentage
then peaks around month 18 at just over 42% before declining towards zero as the loan
age approaches termination (72-73 months). Since all vehicles in our sample are used, the
decline in recoveries most likely reflects the depreciating value of the automobile over time.

The economic welfare of an automobile repossession has attracted the attention of re-
searchers. Generally, the results are mixed. On the one hand, Pollard et al. (2021) discuss a
vicious cycle of subprime auto lending where the same car may be bought, sold, and repos-
sessed 20-30 times. This suggests repossessions may negatively impact economic welfare. A
earlier result by Cohen (1998) finds that manufacturers preferred to offer prospective bor-
rowers interest discounts over equivalent cash rebates because a legal technicality finds such

a discount is financially beneficial to the lender in the event of repossession. In this case, the
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Figure 1: Estimation of the recovery upon default assumption. The point estimates are
formed using the asset-level data of Securities and Exchange Commission (2016) for the 50,107
filtered loans summarized in Figure 2. Specifically, they are the monthly average of the sum total
of the recoveredAmount field, which includes any additional loan payments made by the borrower
after defaulting, legal settlements, and repossession proceeds (Securities and Exchange Commission,
2016), divided by the originalLoanAmount field for each loan that ended in default. The dashed
line represents a nonparametric smoothing via the loess function in R Core Team (2022). The
solid line is a fitted gamma-kernel using an ordinary minimization of a sum-of-squared differences,
which may be used to extrapolate beyond the recoverable sample space.

legal circumstances of a repossession may influence market behavior. Along the same lines
and an argument for the potential economic benefits of repossession, Assuncao et al. (2013)
find that a 2004 credit reform in Brazil, which simplified the sale of repossessed cars, lead
to an expansion of credit for riskier, self-employed borrowers. In other words, a reform de-
signed to make recouping money from a repossessed automobile easier for lenders improved
the ability of riskier borrowers to access credit. It is noteworthy, however, that the reform

also lead to increased incidences of delinquencies and default.
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I.C. Summary of Selected Loans

After the data cleaning and filtering of Section LA (again, further detail and replication
code is available in the online supplemental material), we have payment performance for
50,107 consumer auto loans that span a wide range of borrower credit quality based on the
traditional credit score metric. Figure 2 presents a summary of each bond by obligor credit
score and interest rate as of loan origination. We can see that generally DRIVE is a deep
subprime/subprime pool of borrowers, SDART is a subprime/near-prime pool, CARMX is
a near-prime/prime pool, and AART is a prime/super-prime pool of borrowers. Naturally,
the interest rate percentage is higher for borrowers of lower credit, with DRIVE and SDART
generally at or above a 20% annual percentage rate (APR) and declining to around a 10-15%
APR for CARMX and under a 10% APR for AART.

The loans are well dispersed geographically among all 50 states and Washington, DC, with
the top five concentrations of Texas (13%), Florida (12%), California (9%), Georgia (7%),
and North Carolina (4%). Similarly, the loans are well diversified among auto manufacturers,
with the top five concentrations of Nissan (12%), Chevrolet (9%), Ford (7%), Toyota (7%),
and Hyundai (7%). Notably, none of the parent companies of the four bonds represent
financing subsidiaries of auto manufacturers. For additional details on the makeup of the
loans, see the associated prospectuses (Ally, 2017; CarMax, 2017; Santander, 2017a,b).

Table 1 provides a summary of borrower counts by bond and performance. The total
pool of 50,107 loans is weighted towards deep subprime and subprime borrowers, which are
44% and 24% of the total, respectively. Similarly, DRIVE and SDART supply over 80%
of the total loans in our sample. The smallest risk band is super-prime, which totals 3,636
loans for 7% of all loans. This suggests a robust sample for estimating a probabilistic model
for each risk band.

In terms of loan performance, we can observe some clear trends in Table 1. First, nearly
half of all deep subprime risk band loans defaulted, and this percentage declines by risk
band until super-prime, in which only 7% of loans defaulted during the observation win-
dow. We also see varying performance by bond. For example, while 51% of deep subprime
loans defaulted in the DRIVE pool, only 24% of deep subprime loans in the CARMX pool
defaulted. Overall, within each risk band, DRIVE loans perform the worst, followed by
SDART, AART, and finishing with the best performance of CARMX auto loans. Within
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Figure 2: Borrower credit profile and annual interest rate by bond, risk band. A
summary of the borrower credit profiles (top row) and charged APR (middle row) of the 50,107
filtered consumer automobile loans used in the analysis of Sections IT and III by ABS bonds CarMax
Auto Owner Trust 2017-2 (CarMax, 2017) (CARMX, 6,834), Ally Auto Receivables Trust 2017-3
(Ally, 2017) (AART, 2,171), Santander Drive Auto Receivables Trust 2017-2 (Santander, 2017b)
(SDART, 16,246), and Drive Auto Receivables Trust 2017-1 (Santander, 2017a) (DRIVE, 24,856).
The bottom row shows the distribution of interest rates by risk band for the same set of 50,107

loans.

each bond, however, we see that the percentage of defaulted loans declines as the credit
quality of the risk band increases. This again suggests that our credit-score based risk band
approximation has largely captured the main component of the different parent company’s

underwriting practices.
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Table 1: Borrower Counts by Risk Band, Bond, and Loan Outcome. Summary statistics
and loan outcomes of the 50,107 filtered consumer automobile loans summarized in Figure 2.

deep subprime

subprime

near-prime

prime

super-prime

Total

Total 22,093 (44%) 11,853 (24%) 6,486 (13%) 6,039 (12%) 3,636 (7%) 50,107 (100%)
DRIVE 14,904 (67%) 6,095 (51%) 2,293 (35%) 1,172 (19%) 392 (11%) 24,856 (50%)
SDART 6,804 (31%) 4,740 (40%) 2,602 (40%) 1451 (24%) 649 (18%) 16,246 (32%)
CARMX 385 (2%) 1,018 (9%) 1,501 (25%) 1,953 (32%) 1,887 (52%) 6,834 (14%)
AART 0 (0%) 0 (0%) 0 (0%) 1,463 (24%) 708 (19%) 2,171 (4%)

Total 22,093 (100%) 11,853 (100%) 6,486 (100%) 6,039 (100%) 3,636 (100%) 50,107 (100%)
Defaulted 10,655 (48%) 4,405 (37%) 1,793 (28%) 940 (16%) 246 (7%) 18,039 (36%)
Censored 4,352 (20%) 2,731 (23%) 1,777 (27%) 1,952 (32%) 1,435 (39%) 12,247 (24%)
Repaid 7,086 (32%) 4,717 (40%) 2,916 (45%) 3,147 (52%) 1,955 (54%) 19,821 (40%)

Total 22,093 (100%) 11,853 (100%) 6,486 (100%) 6,039 (100%) 3,636 (100%) 50,107 (100%)

@ Defaulted 7,651 (51%) 2,567 (42%) 819 (36%) 307 (26%) 55 (14%) 11,399 (46%)
E Censored 2,689 (18%) 1,196 (20%) 445 (19%) 213 (18%) 115 (29%) 4,658 (19%)
O Repaid 4,564 (31%) 2,332 (38%) 1,029 (45%) 652 (56%) 222 (57%) 8,779 (35%)
Total 14,904 (100%) 6,095 (100%) 2,293 (100%) 1,172 (100%) 392 (100%) 24,856 (100%)
£ Defaulted 2012 (43%) 1639 (35%) 710 (21%) 271 (19%) 56 (9%) 5,588 (34%)
2 Censored 1496 (22%) 1,095 (23%) 638 (25%) 361 (25%) 227 (35%) 3,817 (23%)
2 Repaid 2,396 (35%) 2,006 (42%) 1254 (48%) 819 (56%) 366 (56%) 6,841 (42%)
Total 6,804 (100%) 4,740 (100%) 2,602 (100%) 1451 (100%) 649 (100%) 16,246 (100%)
% Defaulted 92 (24%) 199 (20%) 264 (17%) 162 (8%) 76 (4%) 793 (12%)
= Censored 167 (43%) 440 (43%) 694 (44%) 891 (46%) 833 (44%) 3,025 (44%)
S Repaid 126 (33%) 379 (37%) 633 (40%) 900 (46%) 978 (52%) 3,016 (44%)
Total 385 (100%) 1,018 (100%) 1,591 (100%) 1,953 (100%) 1,887 (100%) 6,834 (100%)
. Defaulted 0 0 0 200 (14%) 59 (8%) 250 (12%)
= Censored 0 0 0 487 (33%) 260 (37%) 747 (34%)
= Repaid 0 0 0 776 (53%) 389 (55%) 1,165 (54%)
Total 0 0 0 1,463 (100%) 708 (100%) 2,171 (100%)
II. The Probabilistic Model

From the perspective of a lender, it is important to distinguish between a loan that defaults
shortly after it is originated versus a loan that defaults after a much longer period of time.
The reason for this is natural; a loan that makes more payments before defaulting will likely
be more profitable. The same may be said for prepayments. Thus, it is essential to derive
a time-to-event distribution to effectively model the expected present value of a potential

consumer loan. From a statistical perspective, modeling a random time-to-event falls under
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the branch of survival analysis. As a nuanced but important point of emphasis, our data
is from pools of consumer automobile loans found in publicly traded asset-backed securities
(see Section I for details). Thus, we must consider a model and subsequent estimator capable
of working in discrete-time and with incomplete data subject to random left-truncation and
random right-censoring. For details on this point, see the discrete-time work of Lautier
et al. (2021) for the case of left-truncation and Lautier et al. (2022) for the case of both
left-truncation and right-censoring in the context of modeling a consumer lease asset-backed
security. The finite term of a consumer loan contract allows us to anchor our model on a
finite time horizon.

In addition to modeling a time-to-event random variable, we also desire to distinguish
between the type of event. Again, from the perspective of a lender, this is natural; a loan
that is repaid (or prepaid) in a given month is much more profitable than a loan that defaults
in the same month. We therefore desire to differentiate between loans ending in default and
loans ending in prepayment. To do so, we can define the problem in terms of a competing
risk framework, which is a specialized branch of survival analysis.

The literature in this field is substantial. It is common to specify a competing risk model
using a cause-specific hazard rate with covariates, see for example Prentice et al. (1978) and
the well-known semiparametric proportional hazards model for the cumulative incidence
function in Fine and Gray (1999). The work has since been anthologized into textbooks,
such as Crowder (2001), Pintilie (2006), and Kalbfleisch and Prentice (2011, Chapter 8). For
related work in discrete-time, see Tutz and Schmid (2016, Chapter 8), Lee et al. (2018b),
and Schmid and Berger (2021). For the incomplete data case of left-truncation and right-
censoring with covariates, see Geskus (2011).

Our framing of the problem is different, however. We will be working in terms of a
multistate process (e.g., Andersen et al. (1993, Example II1.1.5) or Beyersmann et al. (2009))
and thus may estimate the conditional cause-specific hazard rates directly. This is similar
to recovering a bivariate distribution function in the presence of left-truncation and right-
censoring (e.g., Sankaran and Antony, 2007; Dai et al., 2016), but we do not assume two
lifetimes. Instead, we will be using a multistate process adjusted for left-truncation and
right-censoring (e.g., Andersen et al. (1993, Example IV.1.7) for the absolutely continuous
lifetime distribution case) in discrete-time (e.g., Andersen et al. (1993, pg. 94) for the general

discrete case without incomplete data) but over a finite time horizon for two competing

16



events. Specifically, we will generalize the discrete-time, left-truncation and right-censoring
work of Lautier et al. (2022) to the case of two competing events: default and repayment.
Competing risks have been used to model loans successfully in the past. For an early
comparison of various survival analysis techniques applied to credit scoring of personal loans,
including competing risks, see Banasik et al. (1999). Similarly, Stepanova and Thomas
(2002) consider competing risks to examine early repayment behavior of personal loans. For
a more recent benchmark study, see Dirick et al. (2017). In terms of more focused studies on
competing risks to model credit risk, De Leonardis and Rocci (2008) use the Cox proportional
hazard method adjusted for discrete-time and applied to small and middle-sized Italian firms.
In our setting, however, we will not be assuming the Cox method. Zhang et al. (2019) provide
a mixture cure model under competing risks for the purposes of credit scoring peer-to-peer
consumer loans. The model uses a latent failure times approach and assumes independence
between the two competing risks (prepayment and default), however, which does not fit our
specifications. Wycinka (2019) uses regression analysis to model the probability of default
over time for consumer loans, which differs from our setting as well. For a specific study
on time-varying covariates within the context of competing risks for the semi-parametric
Cox model, see Thackham and Ma (2022). More recently and in the machine learning space,
Blumenstock et al. (2022) evaluate the predictive performance of DeepHit (Lee et al., 2018a),
a deep learning-based competing risk model and random survival forests in the context of US
mortgages, and Frydman and Matuszyk (2022) use random survival forests for competing
risks (Ishwaran et al., 2014) in an application to automobile leases from a Polish financial
institution. While the number and breadth of these studies is extensive, we were unable to
find a previous method that meets our setting of two competing states in discrete-time over

a finite time horizon adjusted for both random left-truncation and right-censoring.

II.A. Defining the Cause-Specific Hazard Rate Estimator

We will use the notation of Lautier et al. (2022) and construct the probabilistic model
within the context of an automobile loan ABS. Specifically, define the random time until a
loan contract ends by the random variable X. Let Y represent the left-truncation random
variable, which is a shifted random variable derived from the random time a loan is originated

and the securitized trust begins making monthly payments. That is, we only observe X if
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X>Y.

Since we require that X and Y are independent, it is worthwhile to justify this assump-
tion. In a securitization context, Y represents the time an ABS first starts making payments.
Typically, the decision to issue a securitization is more related to investment market condi-
tions and the financing needs of the parent company than the performance of the underlying
assets, in this case automobile loans. In other words, the forming and subsequent issuance
of an ABS bond has little to do with the time-to-event distribution of each individual loan,
which is represented by X. Hence, the assumption that X and Y are independent is actually
quite reasonable within the context of the securitization process.

Further, define the censoring random variable as C' =Y + 7, where 7 is a constant that
depends on the last month the securitization is active and making monthly payments. Note
that independence between X and C' follows trivially from the assumed independence of X
and Y. For those familiar with incomplete data from observational studies, we can think of
the period of time the ABS is active and paying as the observation window. Hence, random
left-truncation occurs because we only observe loans that survive long enough to enter into
the trust, and right-censoring occurs because we only observe the exact termination time of
loans that end prior to end of the securitization. For completeness, we will assume discrete-
time because a borrower’s monthly obligation is considered satisfied as long as the payment
is received before the due date. Therefore, we may assume the recoverable distribution of X
is integer-valued with a minimal time denoted by A + 1 for A > 0, A € N, where N denotes
the nonnegative integers, and a finite maximum end point, which we denote by & > A + 7,
¢ € N. We emphasize the word recoverable, further discussion of which may be found in
Lautier et al. (2021) and Lautier et al. (2022).

The classical quantity of interest in survival analysis is the hazard rate, which in discrete-
time represents the probability of a loan contract terminating in month z, given a loan has

survived until month x. Formally,

AMz)=Pr(X=z|X>2)=

Pr(X =x) (1)

Pr(X > )

Let F represent the cumulative distribution function (cdf) of X. If we can reliably estimate

v
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(1), we can recover the complete distribution of X by the uniqueness of the cdf since

1-Fa—)=Pr(X>2)= [] {1-Ak)} (2)

A+1<k<z

with the convention HkA:AH{l —Ak)}=1.

We generalize Lautier et al. (2022) to the case of two competing risks as follows. First,
consider two competing risks as a multistate process, such as in Section 3 of Beyersmann
et al. (2009). Formally, let (Z,),>1 be a discrete-time competing risk process. Given a loan

terminates at time x, we assume the loan must be in one of two states, Z, € {1, 2}:

1. This is the event of interest. Loans move into this state if a default occurs. The

probability of moving into state 1 at time z is the cause-specific hazard rate for state
1, denoted A% (x).

2. This is the competing event. Loans move into this state if a prepayment occurs. The
probability of moving into state 2 at time x is the cause-specific hazard rate for state
2, denoted A\"?(z).

It may be of help to see the related Beyersmann et al. (2009, Figure 1). Given this
framework, it is not difficult to introduce right-censoring and left-truncation along the lines
of Lautier et al. (2022). Formally, assume a trust consists of n > 1 consumer automobile
loans. For 1 < j < n, let Y denote the truncation time, X; denote the loan ending time,
and C; =Y} 4 7; denote the loan censoring time. Because of the competing events, we also
have the event-type random variable Zx, = i, where we observe Zx, given X; for i = 1,2.

The discrete-time cause-specific hazard rate is defined as

Pr(X ==x,7Z, =1)
Pr(X > x)

Ni(w)=Pr(X =2,Z, =i| X >x) = L i=1,2 (3)

We include a 7 subscript to remind us that right-censoring is present in the data. Conve-

niently, therefore, from the law of total probability, we have

9

A
>
I

)T T P(X >4 PrX =) "

() = i) Pr(X=ux72,=1) Pr(X=uz2,=2) _ o

w
=
.
v

Within a competing risk framework, A\, (x) may be referred to as the all-cause hazard. For
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some readers, it may be illuminating to review Table 5 in the simulation study of Appendix
C for a numeric example of our competing risk model. If we assume independence between Y
and the random vector (X}, Zx;) (not at all unreasonable given the securitzation backdrop),
then we may similarly derive estimators for (3) that follow the set-up of Lautier et al. (2022).
We demonstrate as follows. Let a = Pr(Y < X)) and for ¢ = 1,2, define

02 (ZL")

*,T

Pr(X; =, X; < Cj, Zx, = 1)

Pr(X =2, X<C Z,=i| X>Y)
(X=z,2<C,Z,=i,2>Y)/Pr(X >Y)

= (1/a){Pr(X =2,Z, =) Pr(Y <2z < O)},

T
T

and
Cr(z) = Pr(Y; <z <min(X;,C)))
=Pr(Y <z <min(X,C) | X >Y)
= (1/a){Pr(Y <2 < C)Pr(X > z)}.
Thus, ‘
0y P X =22, =0 [i(2)
S ey s e GA T )

In terms of our observable data, for a given loan j, 1 < j < n, we observe Y}, min(Xj;, C;),
and 1x,<c,, where 1 = 1 if the statement @) is true and 0 otherwise. Further, if we observe
an event for loan j, we will also observe the information Zx, =i, i = 1,2. Therefore, using

the standard estimators vis-a-vis the observed frequencies
1 n
£0i _
*,7771(:6) - ; Z lXjSCj 1ZXj:z’1min(X]~,C]~):x7
j=1

and

~

1 n
Crn(x) = - Z 1y, <o<min(x;,0));
=1
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we obtain the estimate for (4)

300 () = EZTn(x) . Z?:l 1Xj§0j1ij=i1min(ijCj)=fv (5)
o Crn(2) Z;‘lzl 1y, <a<min(x;,0))

II.B.  Asymptotic Properties of the Cause-Specific Estimator

The vector of estimators using (5) for A +1 < x < £ has convenient asymptotic properties,

which we now summarize. For proofs of these properties, see Appendix A.

PROPOSITION 1 (A?’n Asymptotic Properties). For i € {1,2}, define A(T)Zn = (S\S’n(A +
1),..., A% ()T, where

roiT,n

n
(@) B ijl 1ngcj1ZXj:¢1min(Xj,Cj):z

0
N () =2 _ i
’ Crn(2) > i—1 1y, <e<min(x;,c))

Then,

(i)

A . 7) .
ASjn =AY asn — oo;

(ii)
Vi(AY, — A%) =5 N(0,5%), asn — oo,

where AY = (AP(A+1),..., 2%(&)" with XY, (x) = f (x)/Cr(z) and

n

o (FEAEDICA) - ALY} OGO — )
: G+ 1) CAGE |
That is, the cause-specific hazard rate estimators S\BZn(A +1),.. ,S\(T”n(f) are consistent,

asymptotically normal, and independent.

Often, it is of interest to construct confidence intervals for the cause-specific hazard rate
estimators such that the confidence intervals have the desirable property of falling within

the interval (0,1). We may do so as follows.
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LEMMA 1 (A\%(z) (1—6)% Confidence Interval). The (1—0)% asymptotic confidence interval
bounded within (0,1) for \(z), z € {A+1,...,&},i=1,2 is

Crul@) — [ (2) } 7 (6)

nCyn(x)fo ()

*, 7,

exp { In /A\Ezn (x) £ Z(1-9/2)
where Z_g/9) represents the (1 — 0/2)th percentile of the standard normal distribution.

II.C.  Cause-Specific Hazard Rate FEstimates by Risk Band

We now apply the methods of Sections II.A and II.B to the consumer loan data of Section
I. Recall again the cause-specific hazard rate of (3). To make the economic connection
between loan default risk over time and the cause-specific hazard for default (cause 01), we
will emphasize the probability that the cause-specific hazard rate represents. Suppose the
current age of a loan is x months, where 1 < x < 72. Then the quantity A% (z) denotes
the probability that a loan will end in default in month z, given it has survived at least
x months. Therefore, if the default risk of a borrower changes over time, a plot of the
month-by-month hazard rate for a given risk band will provide a current risk estimate for
the borrowers within that risk band who have continued to make ongoing payments (i.e.,
“survived”). If the hazard rate remains constant, then the monthly default risk does not
change as a loan matures and continues to remain actively paying. On the other hand, if
the hazard rate declines (increases), this would suggest that the current month default risk
declines (increases) as a loan matures.

We plot the matrix of cause-specific hazard rate estimates for default in Figure 3. There
are a few notable observations. First, we generally see that the monthly conditional default
rate declines as the credit quality of the risk band improves, as expected. There is also
a large spike in the hazard rate for the deep subprime, subprime, and near prime risk
bands. With some approximate date arithmetic from the first payment month of the ABS
bonds (March-April-May 2017), we find that a loan age of 40 months corresponds to roughly
Spring 2020 (when adjusted for left-truncation). If we recall the economic impact of the
Coronavirus, which effectively stopped most economic activity in Spring 2020, it is not
difficult to understand why so many loans defaulted around loan age 40. This also provides

informal validation that the data sorting and estimation of the default cause-specific hazard
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rate has been effective. It is notable that the economic shutdown of the Coronavirus appears
to have had minimal impact on the prime risk band and almost no notable impact on the
super-prime risk band. We remark here that, due to left-truncation and right-censoring, we
have recoverable estimates of the hazard rate from month 4 through month 54 only; thus,
4 < X < 54 is the estimable window.

In addition to the cause-specific hazard rate estimators, we also plot the 95% asymp-
totic confidence intervals using (6). Because of the asymptotic properties of the estimator,
we cannot claim that the cause-specific hazard rate estimate of two different risk bands is
different on a statistically significant basis whenever the confidence intervals of two different
risk bands overlap. In other words, for two risk bands a, a/, where a # a’ (i.e., a,a’ would
represent one of the risk bands deep subprime, subprime, near-prime, prime, or super-prime),

we would fail to reject the following null hypothesis, Hy,
Hy : A?’f(a)(x) = )\(T)f(a/y (7)

at the 5% level of significance for an age x loan and ¢ = 1,2. Hence, for every comparison of
two risk bands, we can search for the first month that the conditional monthly default risk
converges by finding the first month that the cause-specific hazard rate confidence intervals
overlap. For example, the deep subprime risk band conditional monthly default rate appears
to converge with the subprime, near-prime, and prime risk bands, but it does not appear to
converge with the super-prime risk band. To interpret this economically, let’s again compare
a deep subprime and near-prime borrower. We see the cause-specific hazard rate for default
estimate’s confidence intervals overlap beginning around three years (loan age 36 months).
This would suggest that there is no statistically significant difference between the conditional
monthly default rate between these two risk bands for any loans that have remained active
and paying for three years. Since the deep subprime borrower is likely paying a higher
interest rate, however, it indicates that the lender is enjoying an increased profit for these
borrowers and the borrower, by not refinancing, is effectively overpaying and thus not acting
as a rational economic agent. In the upcoming Section III, we attempt to measure and
quantify these changing profit dynamics over time.

We will refer to the point of overlap of the asymptotic confidence intervals for the cause-

specific hazard rate estimate for default of two different risk bands as the point of credit
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Table 2: Estimated Month of Credit Risk Convergence. A summary matrix of the first
month after ten months that the asymptotic confidence intervals in Figure 3 overlap for three
consecutive months by risk band. This matrix can be interpreted as the estimated month of
consumer credit risk convergence between disparate risk bands of 72—73 month automobile loans.
Estimates are only available for loan ages 4 < X < 54.

deep subprime subprime near-prime prime super-prime

deep subprime 10 23 34 46 NA
subprime 10 11 42 49
near-prime 10 28 42
prime 10 10
super-prime 10

risk convergence. In Table 2, we present a matrix of the first month after ten months
that the asymptotic confidence intervals overlap for three consecutive months by risk band.
Under these conditions, we find a point of consumer loan risk convergence prior to the last
observation month (loan age 54 months) for all risk bands except for the deep subprime
and super-prime risk bands. The overall implication of Figure 3 and Table 2 is fairly clear:
regardless of the initial risk category of a borrower, the more payments made on-time, the
less likely it is to observe a default. Since the contracted interest rate is invariant to these
credit changes, more mature loans will likely be more profitable for the lender on a risk-
adjusted return basis. More detail on estimating the changing profit dynamics may be found
in Section III.

Figure 4 plots the cause-specific hazard rate for prepayments (cause 02) by loan age. It
is interesting to observe that prepayment behavior is generally consistent across risk bands.
Further, we see that the conditional probability of prepayment increases as a loan matures.
This suggests that some borrowers may realize that the offered interest rate is no longer an
accurate reflection of their credit risk and self-correct by refinancing. On the other hand,

borrowers may simply having an increasing desire to update their vehicle as the loan matures.

III. Financial Implications

Risk-based pricing is the standard in pricing consumer credit (Edelberg, 2006), and it has

been attributed to lowering the cost of credit for a majority of borrowers and expanding
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Figure 3: Estimated cause-specific hazard rate for default risk-band comparison. A
plot of X‘;}n (defaults) by loan age and risk band plus 95% confidence intervals using (6). If the
confidence intervals overlap for two disparate risk bands, we fail to reject the null hypothesis of
equivalence between the cause-specific hazard rate for default between the risk bands stated in (7).

credit availability to higher risk borrowers (Staten, 2015). Further, models have developed
in sophistication such that elements of an auto loan contract can be used to filter prospective

borrowers (Einav et al., 2012). For readers secking additional detail, Livshits (2015) presents

Generally, the process entails using the application details of a prospective borrower to

assign said borrower into a risk band. Following Phillips (2013), the interest rate for risk
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Figure 4: Estimated cause-specific hazard rate for prepayment risk-band comparison.
A plot of ;\QQn (prepayments) by loan age and risk band plus 95% confidence intervals using (6). If
the confidence intervals overlap for two disparate risk bands, we fail to reject the null hypothesis of
equivalence between the cause-specific hazard rate for prepayment between the risk bands stated

in (7).
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band a, r,, can be divided into three components

where r. is the cost of capital, m is the added profit margin, and [, is a factor that varies by
risk band. Typically, [, is used to compensate for the expected loss rate and associated risk

for borrowers in band a. In other words, we can view [, as the all-in credit spread lenders

T =Te+m+lg,
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demand to lend to a prospective borrower in risk band a. To see this, consider the combined
term r.+m in (8) as the rate assigned to a borrower in risk band a, assuming no uncertainty
in the future loan payments. Hence, by the Law of One Price, r. 4+ m is identical for all risk
bands.

Using an actuarial approach, however, we can breakdown (8) further. There is a compo-
nent of [, that is attributable to the expected present value of a loan in risk band a and a
second component attributable to the riskiness (i.e., randomness) of the loan payment cash
flows. Let e, denote the component of [, representing the expected present value of future
payments of a loan in risk band a, and 7, denote the component of [, to compensate for the

uncertainty of future loan payments. Then,
Teg =Te+m+ e, + 7. (9>

If we consider the initial loan balance as the price of the loan payment cash flows, then
we may interpret (9) as follows. The quantity r. + m + e, represents the “fair” expected or
actuarial return of the future loan payments in that the expected future payments discounted
at the rate r. + m + e, equals the initial loan balance. In other words, an investor that is
indifferent to cash flow uncertainty would accept the rate r. +m + ¢, as a fair price. Most
investors are not indifferent to cash flow uncertainty, however, and so any remaining positive
difference between r, and r. 4+ m + e, is m,, which may be interpreted as the market-implied
credit spread demanded by lenders for borrowers in risk band a. Thus, if r. + m + ¢, is a
small portion of r,, then borrowers in risk band a are expected to produce limited future cash
flows and the market-implied credit spread is large to reflect this high default probability.
On the other hand, if r. + m + e, is a large component of r,, then borrowers in risk band «a
are expected to produce sizable future cash flows, and so the market-implied credit spread
is low to reflect this lower default probability. Our next objective, therefore, is to estimate

e +m—+ e,

III.A.  FEstimating the Conditional Fxpected Rate of Return

Define the expected rate of return for a loan in risk band a as

Pa :T0+m+6a7 (10)
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and so (9) becomes r, = p,+7,. Given reliable estimates of borrower default and prepayment
probabilities, we may estimate (10) for a given loan in risk band a. In particular, we may
estimate p, for each month a loan is still active and paying to find a conditional expected
rate of return. We remark here there is a pleasing property of p, in the event the future
loan payments will proceed as scheduled with no uncertainty, which we state formally in

Proposition 2. For proof, see Appendix B.

PROPOSITION 2 (The Conditional Expected Rate of Return with No Payment Uncertainty).
Suppose a loan is originated with an initial balance, B, a monthly rate of interest, ro, and a
term of & months. Let p,). denote the expected rate of return given the loan has survived to
month x. If the probability that all payments will follow the amortization schedule exactly is

unity (i.e., no payment uncertainty), then pq, = o for all x € {1,...,&}.

We now formalize the estimation of p,,. For convenience of notation, we will drop a
to denote the arbitrary risk band and assume the proceeding calculations will be performed
entirely within one risk band. Using our loan schedule notation from Section I1.A, the first
possible month of an event is A 4+ 1, and the last possible month of an event is £. Denote
the current age of a loan by x, A+ 1 < x < &£. Let the cause-specific hazard rate for default
at time z be denoted by A\°'(z) and the cause-specific hazard rate for repayment at time x
be denoted by A\%?(z). Assuming no other causes for a loan termination, the all-cause hazard
rate is then A(z) = A" (z) + A%(z). Further, recall (2) and observe for i = 1,2, z < j <&,

Pr(X = j, Z, = i)
Pr(X > z)
=Pr(X=452,=i| X >2)Pr(X >2)

Pr(X=j,2,=1i)= Pr(X > x)

- G) T - AR,

again with the convention [[{_L{1 — A(k)} = 1. For convenience, denote Py = Pr(X =
gy Ze=1) fori=1,2, x < j <& By definition,

>y

Jj=x 1=1
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Again, it may be of help to review the numeric example of Table 5 in Appendix C.

We may derive p, as follows. Let the scheduled amortization loan balance of a consumer
auto loan at month x, A +1 < z < £ be denoted by B,, where B = 0. Denote the
scheduled monthly payment by P. If we denote the recovery of a defaulted consumer auto
loan at month z, A +1 <z < ¢ by R,, then the default matrix at loan age x < ¢ — 1 for
the possible future default paths is

R, 0 0

P RCC+1 0

P P Ry, 0
Dzriyx(e—as1) = : :

p P P Rer 0

P P P P Re

Note that row 1 of D would be the cash flows assuming a default at loan age x, which occurs

with probability p2'. Similarly, row 2 of D would be the cash flows assuming a default at

0

loan age = + 1, which occurs with estimated probability p,

L1, and so on and so forth. In the

same way, we can define the repayment matrix at loan age + < & — 1 as

(B, + P 0 0 0
P  Boa+P 0 0
P P Byio+ P 0
Rieatnxary = | | : .
P P P Bey+P 0
P P P P P]

As with defaults, row 1 of R would be the cash flows assuming a prepayment at loan age x,
which occurs with estimated probability p?. Similarly, row 2 of R would be the cash flows
assuming a prepayment at loan age z + 1, which occurs with estimated probability p22 ),
and so on and so forth. Therefore, if we denote the discount vector assuming the unknown
monthly rate of p, as

(#)eri = ((1 +pa)" (14 p2)7 (1 +pz)—<é—x+1))T,
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and the cause-specific probability vector as

0iy T — (0 00 0i !
(P")eper = (P2 PEH - D)
then the expected present value (EPV) of a loan at age © < £ — 1 is

T T

EPV, = (pOI)ﬁ—x+1 [D(f—ﬂﬁ-l)x(g—x-‘,—l)(U)f—z—&-l} + (pOQ)g_xH [R(é—x+1)><(€—fﬁ+1) (V)g—z—l—l}'

Therefore, p, is the interest rate such that B, = EPV,; that is,
{ps : B, = EPV,}. (11)

In words, p, represents the expected return realized by lending B, and taking into account
the original monthly payments P and default and prepayment risk over the remaining lifetime
of the loan. Note that p, < r for a given contract, with equality only in the circumstances
of Proposition 2.

Finally, we of course do note know the true distribution of X. We do have the estimators
in (5), however, and Proposition 1. Thus, we may estimate p, by replacing the cause-specific

hazard rates A% with the estimate in (5). We close this section with the following lemma.

LEMMA 2 (p,. Asymptotic Properties). Replace the cause-specific hazard rates in (11) with
the estimators from (5). Define the estimated expected rate of return given a loan has survived
to month x as pn . Then,

R P
Pnaz — Pz, @S M — OO.

III.B. Interpreting the Market-Implied Credit Spread Over Time

Recall again (9). In light of the estimator from Lemma 2 and the constant r, for a given risk
band, we can assess the portion of r, that is attributable to the actuarial “fair” discounted
expected cash flows (i.e., pnq.) and the portion attributable to the market-implied credit
spread (i.e., 7, 4/¢), as a function of loan age, x. Further, in an efficient market, 7. will be
shared by all lenders and borrowers alike, and it may be approximated by the prevailing
duration-matched market rate cost of capital at the time the loan was underwritten. More

succinctly, 7. is also locked-in at contract pricing, as the lender could in theory borrow-to-

30



lend. Therefore, the growth or withering of p, 4, in = gives a useful approximation of the
expected total margin at time x, Mg, = [M + €4)q, by (10) for a given risk band. In other
words, we can directly estimate the changing profitability dynamics of a consumer loan over
time.

We close by considering three cases for illustrative purposes. Suppose first that the
portions of r,, as represented by pp 4, and 7, 4, are relatively stable for x € {1,...,6—1}.
In this case, the risk dynamics are stable throughout the lifetime of a loan, which implies
a consistent m,, for a loan in risk band a. That is, a lender would be largely indifferent
between lending in the early or later portion of the loan, on a relative risk-adjusted return
basis. On the other hand, if 7, 4, declines over the life of the loan, this would imply that
Mg, 18 increasing in loan age, x. In this case, such a loan would become relatively more
profitable to the lender over time. Hence, a borrower should seek to refinance the loan, as
the static rate in risk band a does not actively reflect the declining cash flow uncertainty. In
the last case we illustrate, suppose 7, 4|, increases over the life of the loan. This would imply
that m,, is decreasing in loan age, z. In this case, such a loan would become relatively less
profitable to the lender over time, as the static rate in risk band a does not actively reflect

the increasing uncertainty.

II1.C.  An Empirical Estimate of Market Inefficiency

We apply the methods of Sections III.A to the data of Section I. Figure 5 plots the esti-
mated market-implied credit spread, 7,,, for a given risk band comparison and the 95%
empirical confidence intervals. That is, a would represent one of the risk bands deep sub-
prime, subprime, near-prime, prime, or super-prime. We also remark here that for loan ages
beyond the estimable window (i.e., loan ages beyond month 54), we were required to make
an assumption for the cause-specific hazard rates for default and prepayment because of the
censoring described in Section II. It is standard practice in survival analysis to assume a
constant hazard rate (i.e., an exponential tail in the continuous case or a geometric tail in
the discrete case) for the remaining lifetime ages beyond the the final estimable hazard rate
that equals the final estimable rate (Klugman et al., 2012, Section 12.1). Given the consumer
credit risk convergence results observed in Figure 3 and Table 2, we assumed that the hazard

rate of the two risk bands extended beyond loan age 54 would be equal to a simple average
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Figure 5: Estimated market-implied credit spread given survival. A plot of Tp,alz Dy loan
age and risk band plus 95% empirical confidence intervals. If credit risk is (increasing) constant
((decreasing)) conditional on survival over the life of the loan for risk band a, 7, 4, Will (increase)
remain flat ((decrease)) over loan age, x.

of ;\gfn(a)(54) and ;\an(a,)(54), where a represents the higher risk band and a’ represents the
lower risk band, for ¢ = 1,2. We also assume that all ongoing loans end in repayment at
month 72. We applied the same process for loan ages prior to the beginning of the estimable
window (i.e., loan ages prior to month 4).

As expected, we can see that 7, 4|, increases as the credit risk of the risk band a increases.
As of pricing (z = 1), in order of increasing credit risk (i.e., deep subprime to super-prime),
the market-implied credit spreads are approximately 250, 500, 750, 1,000, and 1,500 basis
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points, respectively. Further, the narrowness of the confidence intervals demonstrates the
competitiveness of the consumer auto lending market, especially for borrowers in higher
credit quality risk bands.

The respective shape of 7, ,, over time by risk band is of particular interest. Consider
first the deep subprime risk band (dashed line, row one of Figure 5). The market-implied
credit spread initially declines before peaking just before loan age 40 and then dropping
precipitously. As discussed in Section III.B, this implies a rapid gain in relative profitability
for these loans as they remain active and paying. We also observe a similar shape for the
subprime risk band. The near-prime risk band slowly increases to a peak around loan age
40 months and then also declines. Thus, for the three lowest quality credit risk bands,
the relative profitability increases as the loans remain active and paying. Given the lowest
credit quality risk bands typically have the highest interest rates and the observed credit
risk convergence observed in Section III.C, this is not surprising.

Loans in the prime risk band have a declining market-implied credit spread until about
loan age ten months, before increasing to a peak by loan age 40 and remaining approximately
level. This suggests that relatively profitability for prime loans generally decreased as the
loans remained active and paying. Finally, the overall pattern for super-prime loans mirrors
that of prime loans, but the absolute change is relatively minimal. In other words, the
profitability dynamics of super-prime consumer auto loans was fairly stable for the life of
the loan. Again, see Section I11.B as needed.

Finally, we attempt to estimate how much a borrower that fails to refinance a loan is
overpaying by risk band after the point of credit risk convergence to a higher credit quality
risk band by using an assumption of an efficient market. That is, the difference in interest
rates between two contracts with an equivalent level of credit risk is a useful estimate of
the amount one borrower is overpaying. Following this approach, the estimated merit-based
interest rate reductions, based on the average interest rate of each risk band, may be found
on the left-hand side of Table 3. We may compare Table 3 with Figure 5 and Table 2. As
an example, consider the case of a deep subprime borrower. After making approximately
three years of on-time payments, we estimate this borrower becomes a near-prime credit
risk. By not refinancing, however, such a borrower is effectively overpaying by an average
annual percentage rate (APR) of 5.61%. The same deep subprime borrower becomes a prime

credit risk after making 46 months of on-time payments. By not refinancing, however, such
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Table 3: Estimated Overpayment by APR. The average difference in rates for borrowers
in disparate risk bands, which suggests the amount borrowers in the lower credit risk band are
overpaying versus the higher credit risk band in light of the going risk-adjusted market rate after
the point of credit risk convergence between risk bands. The same comparison is given for loans
that survived at least 40 months (right) as a robustness check that the average rate differences are
stable (i.e., lenders are not identifying these strong borrowers at onset).

Avg. APR Diff. Avg. APR Diff. (X > 40)

near-prime prime super-prime near-prime prime super-prime
deep subprime 561 905 1,391 601 956 1,366
subprime 285 630 1,115 316 670 1,080
near-prime 344 830 354 765

a borrower is effectively overpaying by an APR of 9.05%. The level a subprime borrower
might be overcharged may be even higher. We estimate subprime borrowers become prime
credit risks after 42 months, and they become super-prime credit risks after 49 months. This
suggests that subprime borrowers who do not refinance after 42 months are overpaying by
an average APY of 6.30%. This becomes a much higher 11.15% APR over-payment after 49
months. We may repeat such estimates for near-prime borrowers to find an average APR
overcharge of 3.44% after 28 months of on-time payments and an average APR overcharge
of 8.30% after 42 months of on-time payments.

The figures on the left-hand side of Table 3 represent average APRs for all borrowers
within each risk band regardless of the time the loan ended. It is possible that our risk band
definitions are less accurate than the risk-based pricing of the lenders, and a concern is that
a borrower in a lower credit quality risk band that survives was originally assigned a lower
interest rate (i.e., the lender “got it right”). Figure 6 shows a density plot of the distribution
of interest rates within each risk band by survival time. It is interesting to observe little
change in the interest rate distribution for the deep subprime and subprime risk bands as
loan age increases. On the other hand, the prime risk band appears bimodal for loans that
default early but then peaks just under a 10% APR for loans that survive at least until
month 40. Thus, we repeat the analysis of the left-hand side of Table 3 but this time only
consider loans that have survived until at least month 40 on the right-hand side of Table
3. In general, the results are comparable across both sides of Table 3. Further robustness

checks may be found in Section IV.
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Figure 6: Interest rate distribution by survival. A distribution plot of the interest rates
within credit risk band by length of survival. The consistency of the distributions within each risk
band by survival time suggests that the lenders are not assigning loans that remain current a lower
rate than loans that default early. This serves as a robustness check that comparing the average
rate in each risk band is a reasonable proxy for the overpayment estimations in Table 3.

IV. Sensitivity Analysis

The results in Sections I1.C and II1.C may have some potential limitations that would prevent
widespread generalizations. In this section, we will discuss four potential limitations related
to the possible influence of the Coronavirus pandemic, our definition of the risk bands,

assumptions made for the cause-specific hazard rates beyond the estimable window, and our



focus on consumer automobile loans. We also provide additional analysis and arguments
to support why our larger conclusion of credit risk convergence is robust to these possible

limitations.

IV.A. Influence of COVID-19

As alluded to in Section II.C, we have attributed the large spike around loan age 40 for
the default cause-specific hazard rate estimate observable in Figure 3 to the Spring 2020
economic shutdown in response to initial rapid spread of the Coronavirus disease. Since the
point of credit risk convergence occurs after month 40 for some pairs of risk bands in Table
2 (e.g., deep subprime and prime risk convergence occurs by loan age 46), this may suggest
that the observable phenomenon of default risk converging for disparate risk bands is due to
the filtering effect of the shock of the economic shutdown rather than some inherent property
of consumer risk behavior. In other words, only the strongest credits could survive such a
shock, and consumer loan risk convergence would not occur otherwise.

While we feel the economic shutdown has played some role, we believe it is not adequate
on its own to explain the credit risk convergence we observed in our sample. We argue as
follows. First, if we return again to Table 2, we can see that pairs of risk bands converge
earlier than loan age 40 (e.g., deep subprime and subprime, deep subprime and near-prime, or
subprime and near prime). Thus, we have examples of risk bands that converge in conditional
monthly default risk prior to the onset of the Spring 2020 economic shutdown.

Second, we obtained loan level data from the same four consumer auto loan ABS issuers
but from bonds issued closer to Spring 2020: SDART 2019-3 (Santander, 2019b), DRIVE
2019-4 (Santander, 2019a), CARMX 2019-4 (CarMax, 2019), and AART 2019-3 (Ally, 2019).
These bonds began paying in late Summer 2019, whereas the bonds introduced in Section
I began paying in Spring 2017. Thus, if the phenomenon of credit risk convergence is
completely driven by the Spring 2020 economic shutdown, we would expect to see it occur
much earlier in the 2019 sample of bonds when subject to the same loan selection process
and risk band definitions of Section I.A (the final 2019 sample consists of 56,683 loans).
Figure 7 presents the estimated cause-specific hazard rates for default rates plus confidence
intervals for the 2019 sample. As expected, we see the large spike in the cause-specific hazard

rate for defaults around loan age 10, which, when adjusted for left-truncation, corresponds
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to the Spring 2020 economic shutdown. We also repeat the credit risk convergence matrix
of Table 2 in the top portion of Table 4. First, we see evidence of earlier convergence, and
so the shock of the economic shutdown of Spring 2020 has played some role. It is not the
whole story, however. For example, the subprime risk band in the 2019 issuance has not yet
converged with the super-prime risk by loan age 35, which was the last observable age in
the 2019 sample as of May 2022. In the 2017 issuance, the subprime risk band converged
with the super-prime risk band by loan age 49. This suggests that loan age also plays a
role. Similarly, while the convergence between risk bands occurs earlier for the 2019 sample,
it takes more months after the shutdown shock for most disparate risk bands to converge
than after the same shock in the 2017 sample. For example, the deep subprime and prime
risk bands converge by loan 25 in the 2019 sample, which is 15 months after the economic
shutdown shock. For the 2019 sample, however, the deep subprime risk band converges with
the prime risk band by loan age 46, which is only 6 months after the economic shutdown.
This again suggests that loan age, in addition to the economic shutdown of Spring 2020,
plays a role.

Finally, we also remark that in the last twenty years it is difficult to find a span of 72
consecutive months in which there was not a large scale economic shock (e.g., September 11,
2001; 2007-2009 global financial crisis; 2009-2014 European sovereign debt crisis, COVID-19,
etc.). Hence, in an economic environment in which one-in-a-hundred year events occur every
decade or so, credit risk convergence may be perpetually present, even if it may be partially

explained by the filtering effects of an economic crisis.

IV.B. Influence of Risk Band Definition

In Section I.A and for the subsequent analysis of Sections I1.C and III.C, we assigned bor-
rowers to a risk band based on credit score, as we did not have access to each lender’s credit
scoring model. This is at best an approximation because, while credit score is a major
component of a prospective borrower’s loan application, it is typically not the only factor.
For example, a borrower’s payment-to-income ratio is likely also an important component.
Indeed, a close examination of the third row of Figure 2 reveals a wide range of interest rates
within each risk band. Therefore, it is possible that the observed credit risk convergence

between risk bands is just a product of crudely defined risk bands.
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Figure 7: Estimated cause-specific hazard rate for default risk-band comparison (2019
issuance). A repeat of Figure 3 for the same set of four bonds and loan filtering of Section I but for
the 2019 issuance as a sensitivity check that the economic shock of COVID-19 is not the sole reason
for credit risk convergence between consumers in disparate risk bands. The earlier convergence for
the 2019 issuance versus the 2017 issuance suggests COVID-19 has played a role, but convergence
does not occur immediately following COVID-19. This suggests that loan age also plays a role.

We believe this is not the case, however. As justification, we redefined the risk bands by
assigned interest rate, as the offered rate is another indicative representation of the lender’s
perception of a borrower’s risk profile. Specifically, we assigned borrower’s with an APR of
0-5% to the super-prime risk band, 5-10% to the prime risk band, 10-15% to the near-prime
risk band, 15-20% to the subprime risk band, and 20%+ to the deep subprime risk band. A

plot of the cause-specific hazard rates for default plus 95% asymptotic confidence intervals
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Table 4: Estimated Month of Credit Risk Convergence Sensitivity Analysis. A summary
matrix of the first month after ten months that the asymptotic confidence intervals in Figure 7
overlap for three consecutive months by risk band (top). Estimates are only available for loan ages
2 < X < 35. This matrix can be compared with Table 2 as a sensitivity analysis for the impact of
COVID-19. A summary matrix of the first month after ten months that the asymptotic confidence
intervals in Figure 8 overlap for three consecutive months by risk band (bottom). This matrix can
be compared with Table 2 as a sensitivity analysis for the definition of risk bands by credit score.

COVID-19 Sensitivity Analysis

deep subprime subprime near-prime prime super-prime

deep subprime 10 18 20 25 NA
subprime 10 14 15 NA
near-prime 10 13 26
prime 10 10
super-prime 10

Risk Band Definition Sensitivity Analysis

deep subprime subprime near-prime prime super-prime

deep subprime 11 36 50 50 o1
subprime 11 41 48 48
near-prime 11 13 43
prime 11 11
super-prime 11

for risk bands defined by APR rather than credit score for the 2017 issuance may be found in
Figure 8. A comparison with Figure 3 reveals a very similar trend of loan risk convergence.

In addition, the lower portion of Table 4 also compares favorably with Table 2.

IV.C. Influence of Assumplions

The market-implied credit spread analysis of Section III.C relied on two important assump-
tions because the ABS data was right-censored (i.e., the oldest estimable loan age probability
was for 54 months). The first assumption was that the cause-specific hazard rates were con-
stant (geometric) for all loan ages beyond the estimable window. While this assumption

is common in survival analysis (Klugman et al., 2012, Section 12.1) and seems reasonable

39



deep_subprime subprime near_prime prime super_prime
. -1 . . » » » )
0.04 &
n n n n n
0.03 n (] n " " I'U
- ”n (B (A i
0.02 4 RS R s PR S NG SRS R I Z
. ’ v vy W A v ol A LR R Y B g Y B S
[} [} W [} 2.
a N M POSSIA M} 8
o
~
=
=
g
ko,
@
a i A ; ; £
)} n n n n S
o " 0 " " =
A} 1\ ” " =
=1 " gen L uon nuen
ccz Pk aatc 2 1" ReYasat ) Y Re¥asar ey )" | Rt " | %
i Il \\ M’N“" } SARARAL M-"
=
<
3
s =]
a
2 5
=
=
Q (A L] 2 ') 2.
. (N ) \
2 0.01 4 1S VA ‘e paE v s v o (Ve A § %
Q. pamestanht RIS Jam et Nt Yy W RPN
W O OO J7 . ’ A ’ . ¥ MK A
| .
2
g 0.04+4
© 0.03 1 ]
B 0.024 g
<
£ 0017 - Rk ’ e é
= OOO_,,—\.\”“" WES | | suetvaroniney® ¥ EPN R s st Y ~ARMK
7 0.
2]
0.04 4 z
02’ /\/"‘J\q‘ :
I
0.02 4 g
0.01+ g
° o
.
000_.-“..-_\'\'-1«!‘ R m&ffx mx«"-\'k‘c‘ R

T T T T T T T T T T T T T T T T T T T T T T T T T
1020304050 1020304050 1020304050 1020304050 1020304050
Loan Age (Months)

— column ---- row

Figure 8: Estimated cause-specific hazard rate for default risk-band comparison (risk
bands defined by interest rate). A repeat of Figure 3 but redefining the risk bands by interest
rate rather than credit score as a sensitivity analysis against the idea that lenders’ pricing models
are materially more precise than a categorization by credit score. The consistency between this
figure and Figure 3 suggests the conclusions of this paper are robust to an alternative definition of
consumer credit risk band by assigned interest rate.

based on the hazard rate estimates of the very right tail of the estimable window in Figure
3, it is a strong assumption about the shape of the cause-specific hazard rates that may
prove to be inaccurate with additional data. The second assumption was that the constant
hazard rate beyond the estimable window was the same for two risk bands after the credit
risk convergence point of those two risk bands. While this assumption is reasonable once

the confidence intervals of two cause-specific hazard rate estimators began overlapping, it
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Figure 9: Hypothetical risky fixed-income asset and path probabilities. This hypothetical

risky asset pays either (1) the outstanding balance at loan age x + 1, Byj,11, plus the next month’s

payment due, P,, with probability 1 — AB}( a) () or (2) the recovery amount at time z + 1, Rojeq1;

based on the estimates in Figure 1, with probability )\21( a)(a:), where a denotes one of the five

standard risk bands (deep subprime, subprime, near-prime, prime, or super-prime).

is possible the behavior may be different outside the estimable window. Concisely, the as-
sumption beyond month 54 of ceteris paribus simply may not hold; we just do not have the
data to know for sure.

As a robustness check, we propose another point of analysis that does not require re-
assessing the remaining full life of the loan. Specifically, we will examine a rolling monthly
expected annualized rate of return assuming an investor purchased a risky fixed-income asset
at a price of the outstanding balance of the consumer loan at age x, B,,, with a one-month
term. This hypothetical risky asset pays either (1) the outstanding balance at loan age x+1,
Bajz41, plus the next month’s payment due, F,, with probability 1 — )\271(&) (x) or (2) the re-
covery amount at time x + 1, R,;4+1, based on the estimates in Figure 1, with probability
)01

7,(a

asset in Figure 9.

)(x), where a denotes one of the five standard risk bands. We illustrate this hypothetical

Formally, if we let x be in the estimable window, = € {4,5,...,54}, and define the
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expected value of a $B loan to a borrower in risk band a for month z as

EPVL, = A (&) (Rujsn) + (1= A2 (2) (Bujess + Po). (12)

alz

then expected monthly rate of return is the rate 7, such that EPV}M = B,. Note that we
assume the remaining payments are certain (i.e., the risky asset may be traded at time z + 1
for Bg;). It’s clear that the behavior of the loan outside of the estimable window does not
play into the calculation of (12) or 7,),. For ease of interpretation, we elected to consider a
single loan of $100 for 72 months with a payment determined by the average interest rate of
each risk band. The results for both the 2017 and 2019 issuance may be found in Figure 10,
where we replace the cause-specific hazard rate in (12) with its estimate from (5). We can see
that, as the loans mature, the rolling monthly return for the lower credit quality risk bands
— deep subprime, subprime, near-prime — outpaces the higher credit quality risk bands —
prime, super-prime. This output is consistent with the results of Section III.C. Namely, as
the default risk declines with loan age, the bonds in lower credit risk bands become much

more profitable.

IV.D. Influence of Loan Type

Our analysis has only focused on consumer automobile loans. We elected to use consumer
auto loans because they generally represent a high priority of payment to the consumer and
conveniences of data availability and familiarity with the ABS auto loan asset-class (see
additional discussion in Section I). Thus, it is possible credit risk convergence may not occur
in other types of consumer loans, particularly those not secured by collateral. Along the
same lines, a borrower is slowly building an equity position as the loan matures, and so the
declining default risk for lower credit risk bands may also reflect a borrower’s desire not to
lose an asset they are gradually getting closer to owning outright. While this bodes well for
observing credit risk convergence in residential mortgage loans, it does raise the question if it
will still occur for unsecured forms of consumer lending, such as credit cards, peer-to-peer, or
unsecured consumer loans. Thus, we suggest caution before attempting to generalize these

results outside of consumer auto loans, and we leave this open as an area of further study.
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Figure 10: The expected monthly rate of return given survival. A plot of Tq|z Dy loan age,
risk band, and issuance as calculated using the formulations in (12) and Figure 9. This calculation
is a rolling one-month expected return, which serves as a sensitivity test against the assumptions
made beyond the estimable window for the calculations in Figure 5. We can see that the one-month
expected rate of return is roughly equal prior to the point of credit risk convergence, at which point
the borrowers in the lowest credit quality risk bands that remain current gradually become more
and more profitable.

V. Conclusion

In a consumer lending market driven by risk-based pricing, lower credit borrowers incur a
higher cost of borrowing at contract signing to compensate for a higher risk of default. Using
survival analysis techniques on data from securitization pools of 72-73 month consumer au-
tomobile loans spanning the full spectrum of consumer credit quality, we find that borrowers
originally categorized in high-risk credit bands (deep subprime, subprime, near-prime) who
remain active and paying converge in conditional monthly default risk to borrowers originally

categorized in low-risk credit bands (near-prime, prime, super prime) after approximately
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28 to 49 months. This is a statistical demonstration of credit risk convergence. Credit risk
convergence is an intuitive result that may be rephrased in simple terms: regardless of a
borrower’s credit profile at contract signing, the longer a borrower remains active and pay-
ing, the lower the risk of default. Our first major contribution is thus an empirical study of
when the borrower’s risk profile changes over the lifetime of the loan. We further find credit
risk convergence cannot be fully explained by the economic shock of the Coronavirus and is
robust to definitions of risk bands by credit score or interest rate.

The consumer automobile lending space is not dynamically priced based on a borrower’s
changing credit profile, however, and so these high risk borrowers that eventually become low
risk borrowers slowly become more and more profitable from the perspective of the lender
on a conditional expected rate of return basis. Because we identify other borrowers with
equivalent credit risk that are paying lower interest rates, we conjecture that such borrowers
unjustifiably overpay by APRs ranging from 285 to 1,391 basis points. We find our estimates
are robust to assumptions made outside the estimable window and for changing borrower
demographics based on loan survival. All of our results are also adjusted for prepayments.

Given our focus on secured automobile loans from within a core economic lending space,
such large market inefficiencies are troubling. Though the typical consumer generally has a
poor reputation in making financial decisions (e.g. Gross and Souleles, 2002; Stango and Zin-
man, 2011; Lusardi and de Bassa Scheresberg, 2013; Campbell, 2016; Heidhues and Koszegi,
2016; Dobbie et al., 2021), we are encouraged that prepayments accelerate as the auto loans
mature. This suggests that on some level borrowers self-correct for the market’s inability to
account for a changing risk profile. On the other hand, prepayments accelerate for borrowers
in all risk bands, and so the decision to refinance a loan may instead by driven by a desire
to upgrade the underlying automobile rather than financially motivated. So, what can be
done?

Aside from encouraging borrowers to refinance these overpriced loans, which may prove
less effective in practice than in theory (e.g., Keys et al., 2016; Agarwal et al., 2017), we
see three potential solutions from market participants other than the individual consumer.
The first is that we see a market ripe for financial innovation. Specifically, we propose
that lenders offer a loan structure with a reducing payment based on good performance,
an adjustable payment loan. Certainly, lenders have the data to provide pricing structures

capable of adjusting for a borrower’s updated risk profile. We postulate that a lower future
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payment may act as an incentive for a borrower to remain active and paying, which could
work to offset potential profit losses from lowering rates to these high-interest rate loans
that perform well. We caution lenders from making opposite adjustments, however, as in-
creasing payments in response to poor performance (i.e., sudden delinquencies) may further
discourage a likely overwhelmed borrower or lead to adverse selection (though late payment
penalties are common). Second, we suggest that competing lenders seek out these mature
auto loans for refinancing. If a deep subprime borrower eventually performs like a prime
borrower but is paying an APR north of 20%, then there is a lower rate that would both
lower this borrower’s financing cost and be profitable to a second lender. Third, there is the
regulatory angle, which has been successful in other consumer lending spaces (e.g., Stango
and Zinman, 2011; Agarwal et al., 2014). For example, we see minimal additional cost to
lenders to require ongoing loans to be underwritten again after a set period of good perfor-
mance, say 36 months, especially given the lender will already have most of the borrower’s
information. Ideally, this update would not count as a formal inquiry against the borrower’s
credit report.

We conclude this article by suggesting similar research be explored in consumer lending
for residential mortgages and other consumer finance products. If the point of credit risk
convergence remains sometime between 28 to 49 months, as we found in 72-73 month au-
tomobile loan contracts, for 30-year residential mortgages, for example, then the potential

savings to consumers could be even more substantial than the findings herein.

Appendix

A.  Proofs: Section II

Proof of Proposition 1. Statement (i) follows from (%i), so it is enough to show (7). Let
A+ 1<k <& and observe

AR = X7 (k)

_ =D D 1x;<0;1zx,=ilmin(x;,05)=k % (k)

B C’T,n(k) CT(k>
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o {Z?:l 1Xj§Cj1ZX]~:’ilmin(Xj,Cj):k}CT(k) - *Oﬁr(k) T,T‘L(k)

Crn(k)CH(K)
_ [ ! }1 i{l Ly il CL(k) — £ (B) 1y <pcmincx. o}
C’T’n(l{;)CT(k;) n = X; <05 Zijz min(X;,C;)=k“7 *,T Y; <k<min(X;,C;) J -

Define

HT k() — 1X <Cj 1Zx _Zlmln(Xj kC ( ) E,i'(k)lyj'ﬁkﬁmin(Xj,Cj)u

for 1 < j <mnand

~

Ary = diag([Crn(A + 1DCH(A+ D] [Cra()C- ()],

Then,
0i
1 n HT,A+1(j)
T,n T Tynn Z .

Jj=1 0i
H et

or, letting HY ;) = (H}"

A1) HS% j)) denote independent and identically distributed

random vectors, we have compactly

. . 1 <& .
0z 0: __ 0z
A, —AY = Ar, > HY .

j=1

It is noteworthy the components of Hgf( ;) are uncorrelated. More specifically,

C (k) 2 (R)[Cy (k) — fOL(R)), k=K (13)

Cov[HY ), HYw ) =
k(@) K (5) 0, "

To see this, first notice the indicator functions 1x,<¢, 1ZX__Z-1min(X )=k and 1y, <p<min(x;.c;)
are Bernoulli random variables with probability parameters f (k) and C-(k), respectively.

Hence,

EHY, ;) = Elx,<c, 1z, —ilmin(x;,c;)=kCr(k) — [ (k) Ely, <p<min(x,.c))
@) j
= fon(k)Cr(k) — [0 (k) Cr ()

*,T *,T
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Therefore,

02 01 o 01 02
CovlH vy, Hrlo (] = BH 5y Ho o)

T,

= E{lxjgcj1ZXj:z'1min(Xj,Cj)=kCT<k) - £7i(k)1n§kgmin(xj,cj)}

x {1x;<c; ]-ZXj:i]-min(Xj,Cj)Zk’CT(k/) — f(K) Ly, <p<min(x,.0 )
= C-(k)C;(K)Elx, <, Lzx,=ilmin(x;,05)=k1x;<0; 1 25 =ilmin(x;.05)=k
— Cr(k) S,i(k/)Elxjgcj1ZXj:z‘lmin(xj,Cj)zklngkfgmin(xj,cj)
— C7(K) S,ir(k>E1Xj§Cj1ZXj=i1min(Xj’Cj)=k’lyjékﬁmin(xjvcj)
+ £ (B) £ (K By, <pcmin(x,,05) 1y; <b/<min(X;,0)-
We proceed by cases.
Case 1: kK =F'.
Working through each expectation in Cov[HY ), H).;], we have

T

Elx;<c;1zy =ilmin(x;.05)=k1x,<0; 12y =ilmin(x;.00)=0 = Elx;<0; 12y =ilmin(x;.05)=k

= F2 (k)

*,T

Elx; <012y =ilmin(x;.0)=k 1y, <k <min(x;.0) = Blx;<c;1zy =ilmin(x;.0)=k 1y, <k<min(x;.0))
- ElXjSCj1ZXj=i1min(Xj,Cj)=k1Yj§kSmin(Xj70j)
= Elx;<c;1zx,=ilmin(x;.0p)=k

= fu(k),

*,T

and
Ely, <k<min(x;,c;) 1y, <k <min(x;,0;) = BEly, <k<min(x;,c;) = Cr (k).
Thus,
Cov[H2 . Ho) = CoB2(BIC ) — £2,(0)
Case 2: k # K.
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Working through each expectation in Cov[H} i H Efk,( i), we have
Elx;<c;1zy =ilmin(x;.0p)=k1x,<0; 12y =ilmin(x;.0p)=1 = 0,
Elx;<c;1zx,=ilmin(x;.05)=k1y; <k <min(x;,05)

PI'(Xj < Cj,ZX]. = i,min(Xj,Cj) = ]{Z,Y; < ]{7,), k> kK
0, k<K,

Elx;<c;1zx,=ilmin(x;.05)=k 1y, <k<min(x;,05)
0, k> kK
PI'(X]' < CjaZXj = z',min(Xj,Cj) = k‘/,Y} < k’), k < k’l,

and
Ely, <t<min(x;,0,) 1y, <k <min(x;,c;) = Pr(Y; <k <min(Xj;, C)),Y; <K < min(X;, Cj)).
Thus,
CovlHly H2] = 12 Gmin(h )
— Cr(max(k, k")) Pr(X; < C}, Zx, = i,min(X;, C;) = max(k, k"), Y; < min(k, k"))
+ f (max(k, k') Pr(Y; < k < min(X;,C;),Y; < K < min(X], Cj))}.
However, because of the independence between Y and (X, Zx),

Cr(max(k, k")) = Pr(Y; < max(k, k") < min(X;, C}))
= Pr(Y < max(k, k"), X > max(k,k"),C > max(k, k') | Y < X)
= {Pr(Y < max(k, k") < C)Pr(X > max(k,k"))}/a,
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Pr(X; < Cj, Zx, = i,min(Xj, C;) = max(k, k'), Y; < min(k, £'))
= Pr(C > max(k, k"), Zx = i, X = max(k,k"),Y < min(k, k") | Y < X)
= {Pr(X = max(k, k"), Zx = i) Pr(Y < min(k,£"),C > max(k,k"))}/a,

o (max(k, k")) = Pr(X = max(k,k'),C > max(k, k'), Z, =i | Y < X)
= {Pr(X = max(k, k"), Zx = i) Pr(Y < max(k, k') < C)}/a,

and
Pr(Y; < k < min(X;, C)),Y; < K < min(Xj, Cj))
= Pr(Y < min(k, k"), C > max(k, k'), X > max(k, k") | Y < X)
= {Pr(Y < min(k, k'), C > max(k, k') Pr(X > max(k,k"))}/«
Therefore,

Cr(max(k, k') Pr(X; < C}, Zx, = i,min(X;, C;) = max(k, k'), Y; < min(k, £'))
= 9 (max(b, K)) Pr(Y; < b < min(X;,C;), ¥; < ¥ < min(X;, C),

HOz‘

and so Cov[HY, k()

() | =0 when k # £’. This confirms (13). Now define

DY = diag(Cr(A +1)f%(A+D[C A+ 1)~ A+ )], Co OS2 (E)CH () — £ ()],

and
_ 1 <& .
0z __ 02
HY, = > H;)
Jj=1

By the multivariate Central Limit Theorem (Lehmann and Casella, 1998, Theorem 8.21, pg.
61), therefore,
Vn(HY, —0) £y N(0,DY), as n — oo.

Next, define V. = diag(C,(A + 1)7%,...,C.(§)"%). By Lemma 1 (Lautier et al., 2022),
A, LN V., as n — oo. Thus, by multivariate Slutsky’s Theorem (Lehmann and Casella,
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1998, Theorem 5.1.6, pg. 283),
V(A A% ) 55 N0, V,DYV]), asn — oo,

We may complete the proof by observing V, DYV = 3% and A, ,HY =AY —AY [

Proof of Lemma 1. The classical method dictates first finding a (1 —#)% confidence interval
on a log-scale and then converting back to a standard-scale to ensure the estimated confidence
interval for the hazard rate, which is a probability, remains in the interval (0,1). By an
application of the Delta Method (Lehmann and Casella, 1998, Theorem 8.12, pg. 58), we
have for z € {A+1,...,&} and i = 1,2,

e (@{Cr () — £ ()}
Cr(x)? A (x)? )
The result follows from (4), the Continuous Mapping Theorem (Mukhopadhyay, 2000, The-

orem 5.2.5, pg. 249), the pivotal approach (Mukhopadhyay, 2000, §9.2.2), and converting
back to the standard scale. O

(A% (2) — InA%(z)) - N(O,

B.  Proofs: Section III

Proof of Proposition 2. For a loan with initial balance, B, monthly interest rate, r,, and

initial term of &, the monthly payment, P, is

Assume z € {1,...,&}. The balance at month z, B, is

By = B(1+1,)" — P[%}
— B(1+41,)" B{l - <1; m>-T[<1 +r;>x - 1}, (14)
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Thus, pg, is the rate such that the expected present value of the future monthly payments

equals B,. The payment stream is constant, however, and so

P L N

(1 + pa|x) 1 + pa|x>§_z
_ B {1 —(+ m—ﬁ} - [1 ~(+ Mm)‘“‘”}
Ta Palx .
Use (14) and solve for pq|, to complete the proof. O

Proof of Lemma 2. The result follows by Proposition 1, part () and the Continuous Mapping
Theorem (Mukhopadhyay, 2000, Theorem 5.2.5, pg. 249). O

C. Large Sample Simulation Study

We present a simulation study in support of Proposition 1 and Lemma 1. Let the true
distribution for the lifetime random variable X and bivariate distribution of (X, Zx) be as
in Table 5. The column p(z) denotes the probability of event type 1 given an event at time
X. This allows us to populate the joint distribution for Pr(X = z, Zx = i) for : = 1,2. The
cause-specific hazard rates then follow from (3), and we also report the all-cause hazard rate

in the final column. Notice that, for each x,

B )\01 (:L’)
p(w) = A0 (x) + N\02(z)

For the truncation random variable, we assume Y is discrete uniform with sample space
Y €{1,2,3,4,5}. This results in @ = 0.864. For the purposes of the simulation, we further
assume 7 = 5. We use the simulation procedure of Beyersmann et al. (2009) but modified

for random truncation. Specifically,
1. Simulate the truncation time, Y.
2. Set the censoring time to be Y + 7.

3. Simulate the event time, X.
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Table 5: Simulation Study Lifetime of Interest Probabilities. The true probabilities of
the lifetime random variable, X, for the simulation study results of Figure 11. The probabilities
p(z) and Pr(X = z) for z € {1,...,10} are selected at onset, and the remaining probabilities in
this table may be derived from these quantities. Not summarized here is the truncation random
variable, Y, which was assumed to be discrete uniform over the integers {1,...,5}.

plz) X Pr(X=2) PriX=ux2,=1) Pr(X=ux,2,=2) X% z) \%x) )

0.66 1 0.04 0.026 0.014 0.026 0.014 0.04
020 2 0.06 0.012 0.048 0.013  0.050 0.06
045 3 0.10 0.045 0.055 0.050  0.061 0.11
0.87 4 0.14 0.122 0.018 0.152 0.023 0.18
020 5 0.09 0.018 0.072 0.027 0.109 0.14
081 6 0.06 0.049 0.011 0.085 0.020 0.11
005 7 0.14 0.007 0.133 0.014 0.261 0.27
0.78 8 0.18 0.140 0.040 0.379  0.107 0.49
025 9 0.07 0.018 0.053 0.092 0.276 0.37
0.42 10 0.12 0.050 0.070 0.420 0.580 1.00

4. Simulate a Bernoulli event with probability p(z) to determine if the event X was caused

by type 1 with probability p(z) or type 2 with probability 1 — p(x).

We simulated n = 10,000 lifetimes using the above algorithm. We then tossed any
observations that were truncated (i.e., ¥; > X;, for j = 1,...,n). This left a sample
of competing risk events subject to censoring, which would be the same incomplete data
conditions as a trust of securitized loans. We then used the results of Section I1.A to estimate
A,?fm(:c), Cyrn(x), and X?’n(x) for i = 1,2 and = € {1,...,10} over r = 1,000 replicates.

To validate the asymptotic results of Theorem 1, we compare the empirical covariance
matrix against the derived asymptotic covariance matrix, X%, by examining estimates of
the confidence intervals using Lemma 1. Figure 11 presents the results for the cause-specific
hazard rate for cause 01 and 02, respectively. The empirical estimates and 95% confidence
intervals are indistinguishable from the true quantities using Proposition 1 and estimated
quantities using Proposition 1 but replacing all quantities with their respective estimates
from Section II.A.
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Figure 11: Simulation study results. A comparison of true A%(z) and estimated A% (z),
including confidence intervals, for the distribution in Table 5 and ¢ = 1,2. The “true” values are
from Proposition 1 and Lemma 1. The “estimate” values use the formulas from Proposition 1 and
Lemma 1 but replace the true values with the estimates from Section II.A calculated from the
simulated data. The “empirical” values are empirical confidence interval and mean calculations
directly from the simulated data. All three quantities are indistinguishable for n = 10,000 and
1,000 replicates, which indicates the asymptotic properties hold in this instance.
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Internet Appendix

A. Determination of Loan Outcome

The detail of the loan-level data is extensive, but it remains up to the data analyst to use the
provided fields to determine the outcome of an individual loan (see Securities and Exchange
Commission (2016) for detail on available field names). To do so, we have aggregated each
month of active trust data into a single source file. This allows us to review each bond’s
monthly outstanding principal balance, monthly payment received from the borrower, and
the portion of each monthly payment applied to principal. Our algorithm to determine a
loan outcome proceeded as follows. For each remaining bond after the filtering of Section
I.A, we extracted three vectors, each of which was the same length as the number of months
a trust was active and paying. The first vector represented the ordered monthly balance,
the second was the ordered monthly payments, and the third was the ordered monthly
amount of payment applied to principal. We then considered a loan to be repaid if the sum
total principal received was greater than the outstanding loan balance as of the first month
the trust was actively paying. In this case, the timing of a repayment was set to be the
first month with a zero outstanding principal balance. Note that we do not differentiate
between a prepayment or naturally scheduled loan amortization; i.e., all repayments have
been treated as a “non-default”. If the sum total principal received was less than the first
month’s outstanding loan balance, we then considered a loan outcome to be either right-
censored or defaulted. To make this determination, we searched the monthly payments
received vector for three consecutive zeros (i.e., three straight months of missed payments).
If we found three consecutive missed payments, we assumed the loan to be defaulted with
a time-of-default set to be the month in which the first of three zeros was observed. If we
did not find three consecutive months of missed payments, the loan was assumed to be a
right-censored observation and assigned an event time as of the last month the trust was

actively paying. For the pseudo-code of this algorithm, see Figure 12.
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1: B < bond_data > bond_data is a row of the loan performance data

2: bal_vec < each month’s sequential outstanding principal balance

3: pmt_vec <— each month’s sequential actual payment

4: prc_vec < each month’s sequential payment applied to principal

5: init_bal < current balance as of the first trust month

6: paid_princ < sum(prc_vec) > plus $10 pad to avoid odd tie behavior
7. if paid_princ >= init_bal then

8: D=0

9: R=1

10: C=0

11: X < location of first zero in bal_vec > loan repaid
12: else

13: z < starting time of three consecutive zero payments in pmt_vec

14: if z empty then

15: D=0

16: R=0

17: Cc=1

18: X < length of pmt_vec > loan censored
19: else

20: D=1

21: R=0

22: C=0

23: X+ =z > loan defaults
24: end if

25: end if

Figure 12: Determination of loan outcome. We first extracted three vectors, each of which was
the same length as the number of months a trust was active and paying. The first vector (bal_vec)
represented the ordered monthly balance, the second (pmt_vec) was the ordered monthly payments,
and the third (prc_vec) was the ordered monthly amount of payment applied to principal. We then
considered a loan to be repaid if the sum total principal received was greater than the outstanding
loan balance as of the first month the trust was actively paying. In this case, the timing of a
repayment was set to be the first month with a zero outstanding principal balance. If the sum total
principal received was less than the first month’s outstanding loan balance, we then considered a
loan outcome to be either right-censored or defaulted. To make this determination, we searched the
monthly payments received vector for three consecutive zeros (i.e., three straight months of missed
payments). If we found three consecutive missed payments, we assumed the loan to be defaulted
with a time-of-default set to be the month in which the first of three zeros was observed. If we did
not find three consecutive months of missed payments, the loan was assumed to be a right-censored
observation and assigned an event time as of the last month the trust was actively paying.
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