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Abstract
This paper represents the economy as a network of conglomerate firms that transmit idiosyn-
cratic shocks from one industry to another. The strength of inter-industry connections in the
network is determined by two factors: conglomerates’ market shares and the distributions
of conglomerates’ total sales across industries. These two factors generate a network-based
measure of cross-industry concentration that nests the widely-used Herfindahl index as a spe-
cial case. Using establishment-level micro-data on public and private firms and controlling
for alternative connections, we show that industry growth rates comove more strongly within

industry pairs that have higher cross-industry concentration in the conglomerate network.
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A long literature on conglomerate firms studies how economic shocks transmit within
firms’ internal markets. Though prior research differs on whether internal markets improve
efficiency (Stein, 1997; Maksimovic and Phillips, 2002; Giroud and Mueller, 2015) or create
distortions (Scharfstein and Stein, 2000; Rajan, Servaes, and Zingales, 2000), a common
assumption is that the effects of internal markets remain inside the firm.

However, empirical observation suggests that the internal activities of conglomerates might
influence external markets, too. For example, in 2019, among the 100 largest public firms in
the US, 78 were multi-divisional conglomerates. Out of the $25.8 trillion in sales reported
in Compustat segment data in 2019, 66% of sales were generated by conglomerates. Given
conglomerates’ outsized role in aggregate economic activity, it is reasonable to consider
whether their internal activities spill over to external markets.

In this paper, we show that the transmission of idiosyncratic shocks within conglomer-
ates’ internal networks generates significant comovement across industries. To formalize our
intuition, we model the economy as a bipartite network of firms and industries. In this
network, firms are only connected to industries, and industries are only connected to firms.
The strength of the connections between firms and industries is based on shares of total
outputs. Specifically, we assume that a growth shock transmits from a firm to an industry
with a strength proportional to the firm’s share of total industry sales. This follows the
intuition that a shock to a firm with a larger market share has a greater influence on the
industry’s total fluctuations. In the opposite direction, we assume that a shock transmits
from an industry to a firm with a strength proportional to the industry’s share of the firm’s
total sales. This follows the intuition that a firm will be more affected by an industry-level
shock if a larger fraction of its sales comes from the industry.

To create direct connections, we collapse the bipartite network into two separate unipar-
tite networks, one with industry-to-industry links and the other with firm-to-firm links. In
the firm-to-firm network, firms are connected to other firms through common industry affili-

ations. In this network, shocks transmit between firms through intra-industry market forces.
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In the dual perspective, industries are connected to other industries through conglomerate
firms that operate in both industries. In this network, shocks transmit between industries
through conglomerate firms’ internal forces. The duality of firms and industries in our frame-
work is in the spirit of Alchian and Demsetz (1972), who argue that in a frictionless setting,
contracts within a firm are identical to contracts across a market.

Focusing on the industry-to-industry network, we derive two types of connections between
industries. First, we calculate the transmission between two industries as the strength of
the connection from an industry to its affiliated firms and then from these firms to the other
industry. We assume that when an industry shock transmits from one industry to another
through a conglomerate firm, the firm internally reallocates the shock across segments ac-
cording to the segments’ relative sizes. As we discuss later, this reallocation policy most
closely matches the theory of Williamson (1975) in which firms optimally allocate resources
to segments according to their marginal revenue products.

Second, we calculate a projection from firms onto industries that reflects inter-industry
connections through shared exposure to firms. The shared in-links of an industry-pair is the
strength of industry connections based on the commonality of market shares of the firms
that operate in both industries. In contrast to the transmission network, this projection
does not depend on internal reallocations. If the same firms command the same market
shares in each industry, then the two industries will have the same level of exposure to the
same firm-specific idiosyncratic shocks. If we calculate the shared in-links of an industry
with itself, we generate the widely-used Herfindahl-Hirschman Index (HHI). Just as variance
is the special case of covariance for one random variable, our network approach shows that
HHI is a special case of a more general concept of cross-industry concentration. For this
reason, the shared in-links of two industries is a measure of co-concentration that we call
CoHHI.

Though this network framework is based on just a few simple assumptions, it provides

new insights to guide our empirical analysis. In particular, we can decompose total variance
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and covariance of growth rates into fundamental shocks scaled by concentration. First, we
show that the total variance of an industry’s growth rate is the sum of the variance of an
industry-specific shock and the variance of firm-specific shocks scaled by the HHI of the
industry. More concentrated industries are more volatile because they have greater exposure
to idiosyncratic firm-level growth shocks. Second, the total covariance of two industries’
growth rates equals to the variance of firm-specific shocks scaled by the CoHHI of the two
industries. Intuitively, industries that share the same conglomerate firms will face common
firm-level shocks and comove more closely.

In our empirical analysis, we use two complementary datasets: 1) establishment-level data
on sales and employment from the National Establishment Time Series (NETS) for the near
universe of public and private firms in the US for the years 1991 to 2018, and 2) segment-level
data on sales and assets from Compustat for all public firms in the US for the years 1997
to 2018. By running all of our tests in two different samples, we mitigate concerns that our
results could be driven by biases in the data.

We first show that the conglomerate network is empirically distinct from other forms of
industry connections. In particular, the conglomerate network is only weakly correlated with
the input-output network, consistent with the notion that conglomerate firms diversify for
reasons beyond vertical integration, such as economies of scope (Teece, 1980), co-insurance
(Lewellen, 1971), or agency conflicts (Jensen, 1986). Additionally, the conglomerate network
is not driven by product similarity, as measured by Hoberg and Phillips (2016).

To test the relationship between the conglomerate network and the covariance of industry
growth, we first run cross-sectional tests, guided by our decomposition. Consistent with
our framework, we find that more concentrated industries have higher variance and that
industries with higher CoHHI have stronger covariance in growth rates. The results hold for
growth in sales, assets, and employment. The economic magnitudes of the results are mean-

ingful. After partialling out single-segment firms, about 10-12% of industry-comovement of
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sales growth across all industry pairs can be attributed to conglomerate firms that span in-
dustries. Restricting to industry pairs that share at least one conglomerate firm, the fraction
is about 30%.

We next estimate panel regressions with industry-pair and year fixed effects. The industry-
pair fixed effects capture time-invariant characteristics at the industry and industry-pair level
that could influence the comovement of industry growth rates, such as persistent asset simi-
larity, average volatility, the labor share in production, and geographic proximity. The year
fixed effects control for general macroeconomic trends that could influence the comovement
of industry growth rates. We also control for time-varying input-output linkages and prod-
uct market similarity. Thus, our empirical model isolates the correlation between abnormal
time-series variation in the conglomerate network and the comovement of industry growth.

The panel regressions show that when two industries have stronger connections in the
conglomerate network, their growth rates comove more closely, consistent with our predic-
tions. The results hold for employment growth, asset growth, and sales growth using both
shared in-links and transmission connections in both NETS and Compustat data. These re-
sults are also economically meaningful. A one-standard deviation increase in the strength of
the conglomerate connection between two industries corresponds to a 0.24 to 0.32-standard
deviation increase in the comovement of industry employment growth and a 0.68-standard
deviation increase in asset growth.

We next address the concern that our results are driven by the endogenous choice of
firms to operate in industries that would have comoved with each other anyway. First, we
note that the conglomerate network is based on market shares, which are not endogenously
chosen by firms, but are determined by market forces. Second, the industry-pair fixed effects
in our tests control for all time-invariant factors that cause industries to comove, while the
time-varying variables control for the most common economic determinants of comovement.
Though we cannot rule out all alternative explanations, our research design implies that for

our main results to be spurious, there would need to be an omitted time-varying factor that
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is not only highly correlated with time-varying market shares, but also orthogonal to major
economic determinants of diversification.

To further address endogeneity concerns, we use a quasi-natural experiment to identify
the transmission of economic shocks through the conglomerate network. Following Pierce
and Schott (2016), we exploit cross-sectional variation in industries’ exposure to tariff rate
shocks from the granting of normal trade relations to China in 2000. Using the predetermined
conglomerate network from 1999 to mitigate reverse causation, and controlling for industry
fixed effects, year fixed effects, and customer-supplier links, we find that industries with
stronger connections in the conglomerate network to those industries most affected by the
tariff shock had larger declines in employment following the shock. These results show that
a specific, identifiable industry shock can be traced through the conglomerate network.

Finally, we conduct a battery of robustness tests. First, we find similar results using
employment data from the US Census County Business Patterns data. Second, we find
similar results when we use lagged measures of the conglomerate network, which helps further
mitigate concerns of reverse causation. Third, we increase the minimum size threshold of
public firms in our sample to show that there is little evidence of truncation bias caused by
using Compustat data to construct our conglomerate network. Results are also robust to
excluding small firms in the NETS data. Fourth, we show that our results persist when we
construct our network using coarser industry definitions. We also provide evidence of the
transmission of shocks within conglomerates, as shown in prior research, and an alternative

[43

transmission network based on a “winner-take-all” model.

This paper makes two central contributions. First, we present empirical evidence of inter-
industry transmission of economic shocks through conglomerate firms. This finding extends
the large literature on the internal workings of conglomerate firms to show that they also
produce external effects. Prior research studies the causes and effects of within-firm real-

location of resources (Lamont, 1997; Shin and Stulz, 1998; Matsusaka and Nanda, 2002;

Giroud and Mueller, 2015) and the motivations for diversification (Lewellen, 1971; Aggarwal
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and Samwick, 2003; Villalonga, 2004). In contrast, we provide a macro-level, industry-to-
industry perspective of reallocations, taking as given the reasons for diversification and the
various micro-level mechanisms of internal reallocations documented in the prior literature.

Our results also contribute to the literature on the spillover from firms to industries
(Gabaix, 2011) and from industries to industries (Acemoglu, Carvalho, Ozdaglar, and Tahbaz-
Salehi, 2012). More recently, Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2020) find
that firm size is related to aggregate fluctuations in a firm-level customer-supplier network.
Additional empirical evidence of the spread of idiosyncratic shocks through production net-
works is found in Ahern and Harford (2014) and Barrot and Sauvagnat (2016). In contrast
to these papers, we show that industry-specific shocks transmit across the economy through
the internal redistribution of conglomerate firms.

Our approach is also related to the notion that local shocks spread to wider geographic
regions through multi-regional firms (di Giovanni, Levchenko, and Mejean, 2014; Kleinert,
Martin, and Toubal, 2015; Giroud and Mueller, 2019; Loualiche, Vickers, and Ziebarth, 2019;
Giroud, Lenzu, Maingi, and Mueller, 2022). In contrast to shocks that are spread within
firms across geographic space, we show multi-segment firms facilitate the external spread of
economic shocks across industry space. Our results also relate to recent literature on the
importance of common ownership (Azar, Schmalz, and Tecu, 2018; Antén, Ederer, Giné, and
Schmalz, 2018; Ederer and Pellegrino, 2021). While this line of research focuses on partial
ownership by institutional investors, we study controlling ownership by conglomerate firms.

The second contribution of this paper is to provide a network interpretation of HHI. HHI
is the leading metric of industry concentration among academics, practitioners, and policy-
makers, including the DOJ, FTC, FCC, FDIC, and the Federal Reserve. Our network
interpretation of HHI offers an alternative perspective on the meaning of concentration.
Moreover, this is the first paper to show that HHI is a special case of a more general measure

of cross-industry concentration, CoHHI.
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I. THE THEORETICAL CONGLOMERATE NETWORK

To construct the conglomerate network of industries, we start with a bipartite graph, also
known as a two-mode network or an affiliation network, in which there are two types of
nodes that are disjoint, independent sets and each type of node is connected only to nodes of
the other type. Typical examples of affiliation networks include football players and football
clubs, co-authors and publications, and corporate directors and corporate boards. Much of
the research on networks in economics studies one-node networks with an implicit assump-
tion of an underlying two-mode network. For instance, corporate boards typically do not
have direct connections with other corporate boards, but instead, have indirect connections
through shared directors in an affiliation network.

In our network, the two types of nodes are firms and industries. Firms are affiliated with
industries, and industries are affiliated with firms. Because two-mode networks have two
distinct types of nodes, they allow for dual perspectives of the network’s structure. In our
setting, one representation of the network is from the perspective of firms: firms are connected
to each other through shared industry affiliations. This perspective is the commonplace view
of the relationship between firms and industries. The dual representation of the network from
the perspective of industries is less commonplace: industries are connected to other industries
by conglomerate firms that operate in multiple industries. Though the firm perspective is
the basis for the common assumption that firms in the same industry face the same economic
shocks, the industry perspective is an equally valid representation of the same underlying
two-mode network of economic affiliations. Because of the importance of conglomerates in
the dual industry representation, throughout the paper, we call this affiliation network the
conglomerate network.

We use the conglomerate network to study how shocks transmit through the economy.
In the more typical firm perspective, shocks transmit through firms’ shared exposure to

industry conditions. In the dual industry perspective, shocks transmit through industries’
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shared exposures to firm conditions. Thus, our framework assumes that conglomerates
internally reallocate shocks from one sector to another and that industries reallocate shocks
from one firm to another. Because we study shared exposures, rather than direct linkages,
this approach contrasts with research on input-output networks, where firms buy and sell
directly from other firms.

Our approach is agnostic about the nature of the economic shock and can accommodate
any shock that influences growth rates, such as demand shocks, supply shocks, or credit
shocks. Similarly, our framework allows for different redistribution policies. As discussed
below, we focus our analysis on a particular redistribution policy within firms, but we con-
sider other policies as well.

The underlying assumption that redistributions occur through both conglomerates and
markets is supported by a large literature. In particular, prior theoretical research ar-
gues that within-firm redistribution could be caused by corporate socialism (Scharfstein
and Stein, 2000), optimal reallocation to equate marginal revenue products of capital or
labor (Williamson, 1975), or the trade-off between the benefit of flexible investments versus
the costs of agency-driven over-investment (Matsusaka and Nanda, 2002). A large body of
empirical evidence also supports these assumptions (Maksimovic and Phillips, 2002; Seru,
2014; Tate and Yang, 2015; Giroud and Mueller, 2019). Similarly, the assumption that mar-
ket forces within an industry redistribute firm-level idiosyncratic shocks from one firm to
another is also supported by a large literature. As summarized in Shea (2002), these forces
could be consumption complementarities, external economies of scale, or aggregate demand
spillovers, among other mechanisms. The generality of these assumptions reflects our focus
not on the transmission of shocks within firms or within industries but on the firm-to-firm
and industry-to-industry transmission of shocks.

Finally, we limit the scope of our analysis by assuming the network is given, as is common
in network models. For example, research on production networks does not typically model

why a customer chooses one set of suppliers over another set (Acemoglu, Carvalho, Ozdaglar,
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and Tahbaz-Salehi, 2012; Herskovic, Kelly, Lustig, and Van Nieuwerburgh, 2020). Similarly,
though prior research on the diversification discount recognizes that the decision to diversify
is endogenous (Campa and Kedia, 2002), it rarely attempts to identify the specific industries
in which a firm will choose to operate. Though our theoretical analysis does not consider

the formation of the network, we address endogeneity concerns in our empirical tests.

L A. Formal Definitions

To formalize these assumptions, we assume the economy has ¢ = 1,...,n firms and j =
1,...,m industries. Let S be the n x m bi-adjacency matrix in which entry s; ; denotes firm
i’s sales in industry j. Thus, the total sales for firm ¢ is 3"s; ;. The total sales for industry
J is Xi's; ;. Below, we use capital letters to denote matrices, lower case letters to denote
matrix elements, and I to represent vectors.

We normalize S in two ways. First, we generate the matrix of market shares, H, by
normalizing S by its column sums. Thus, the market share of firm ¢ in industry j is h; ; =

Si,g

S Similarly, we generate the matrix of industries’ firm shares, F', by normalizing S by

Si,j

S Thus, each entry of F represents the fraction of firm ¢’s total
7 ot

its row sums: f;; =
sales that are attributed to industry j. By normalizing industries and firms by their total
sales, we focus on the relative importance of the connections between industries and firms,
rather than the size of each node.

We allow the connections between firms and industries in the conglomerate network to
be directional and weighted. In particular, the key economic assumption in our framework
is that growth shocks that transmit from a firm node to an industry node are weighted by
the firm’s market share in the industry, as recorded in H. In a purely graph-theoretical
perspective, the connections between nodes are abstract. Using market shares to define
the connections gives economic meaning to the network. Intuitively, a firm-level shock will

affect an industry’s growth in proportion to the firm’s fraction of the industry’s total sales.

Analogously, we assume that shocks that transmit from an industry to a firm are weighted by
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the size of the industry segment in the firm’s overall operation, as recorded in F'. We denote
this fraction as an industry’s firm share, analogous to a firm’s market share. Intuitively,
an industry-wide growth shock will affect a firm’s growth in proportion to the industry’s
importance in the firm’s total sales.

Defining connections between firms and industries based on market shares and segment
shares is intuitive. However, it is a non-trivial assumption. Our particular definitions of F
and H imply a specific form of internal redistribution within firms. Defining F' and H differ-
ently implies different redistribution policies. After describing the transmission mechanism
between industries and firms below, we discuss the interpretation of these assumptions.

We combine F' and H into an (m +n) x (m + n) adjacency matrix A that represents the

complete, weighted and directed bipartite graph, as follows,

0 F
H 0

(1) A=

The first m rows and columns of A refer to industries, and the last n rows and columns refer
to firms. Matrix A represents the effect of a shock in the row entry on the column entry.
F' represents the effect of a shock transmitting from an industry to a firm. H represents
the effect of a shock transmitting from a firm to an industry. The zero matrices on the
diagonals, which indicate that firms and industries do not have direct connections in the
bipartite graph, reflect our emphasis to abstract the conglomerate network from other types
of connections. Also note that A is not symmetric, which reflects the directional nature of
the bipartite network.

To illustrate our network setting, consider a simple example with three firms (x, y, and

z) that operate in two industries (p and ¢). Their segment sales are given in matrix S, and
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we normalize S by row sums and column sums to generate ' and H, as follows:

P q P q P q
z[3 3 2| 0.50 0.50 2] 0.75 0.30
(2) S= ylo 3], F= y|000 1.00], H= y|0.00 030
21 4 2 0.20 0.80 21025 0.40

Figure I provides a graphical representation of this network, where blue arrows refer to
the effect of firms on industries (H) and red arrows refer to effects of industries on firms (F'),
where the weights of the connections are determined by a firm’s market share (blue arrows)

or an industry’s firm share (red arrows).

®
@/ N E=s

0.5
0.2
@

~

N
o

0.4

FIiGURE I
A Network with Two Industries and Three Firms
This figure presents a graphical representation of an example network. The firms are x, ,
and z, and the industries are p and ¢. Blue arrows reflect matrix H, the effect of firms on
industries. Red arrows reflect matrix F, the effect of industries on firms.

This example illustrates our definition of the strengths of connections in the conglomerate
network. Because firm z receives half of its sales from industry p, a growth shock in industry
p will affect half of firm x’s sales. In contrast, the same industry shock in p only affects
firm 2 by 0.2, because firm z only receives 20% of its sales from industry p. An identical

interpretation exists for the dual of the network. A growth shock in firm = has a larger effect
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in industry p than ¢ because firm z has a market share of 75% in industry p, but only 30%

in industry q.

1.B. Network Transformations

To study the inter-industry and inter-firm connections, we transform the bipartite graph
in matrix A into a unipartite graph in three ways. The first transformation represents the
strength of transmissions between nodes of the same type based on the compound effect of
shocks from one industry to another through affiliated firms, or from one firm to another
through industry affiliations. The second and third transformations are projections from one
set of nodes onto the other. The projections reflect the strength of shared in-links or shared

out-links between nodes of the same type.

B.1. Network Paths

The first transformation of the network generates the strength of the paths that lead from
one node to another of the same type. In particular, we denote
F'H 0

(3) Transmission Matrix = A? =
0 HF'

In a bipartite network, it takes two links to connect nodes of the same type (e.g., one link
from an industry node to firm nodes, and a second link from firm nodes to industry nodes).
If A was an unweighted adjacency matrix consisting of zeros and ones, A% would count the
number of unique paths with a length of two that connect two industry nodes. If more paths
connect two industries, they would have a stronger connection. In our case, using weighted
links, the entry in the j’th row and k’th column of F'H reflects the compound effect of a
transition from industry j to industry £ through conglomerate firms that operate in both

industries. Likewise, in the bottom-right quadrant of A%, HF’ represents the compound
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effect of inter-firm transitions through industries. Note also that A% is a left stochastic
matrix, where each column sums to one.

In our numerical example, the effect of moving from p to ¢ is the effect of moving from p
to z, then z to ¢ (0.50 - 0.30) plus the effect of moving from p to z then z to ¢ (0.20 - 0.40),
which equals 0.230. Panel A of Figure II presents a visual representation of the transition
matrix. Notice that this matrix is not symmetric. The effect of moving from p to ¢ is 0.230
compared to the effect of moving from ¢ to p, which is 0.575. The asymmetry is caused by
asymmetry in the strength of the nodes’ in-links relative to their out-links. In Figure I, note
that the strength of links that lead out of industry p is weaker than the links that lead into
industry p. In contrast, the strength of the links that lead out of industry ¢ is stronger than
the links that lead into it.

Second, the diagonal entries in A? represent the transmission from a node back to itself
after two links in the network. For example, the first entry in F’H represents the effect of
a shock transitioning from industry p back to industry p. In particular, this is the effect of
moving from p to z, then z to p (0.50 - 0.75) plus the effect of moving from p to z then z
to p (0.20 - 0.25), which equals 0.425. In a network setting, the diagonals of A? represent a
feedback loop, or an ‘echo,” as denoted in Sharifkhani and Simutin (2021). In the sense of
the redistribution of a shock, we can also think of the diagonal of A% as the residual fraction
of the shock that is not transmitted to other nodes.

Panel B of Figure II presents the firm-to-firm transition of our numerical example. A
shock in firm z has the greatest effect back on firm z and the least effect on firm y. As in

industries, the transition matrix for firms is asymmetric.

Internal Redistribution Policies
As mentioned above, the choice to define F' and H based on segment shares and market
shares leads to a specific internal redistribution policy. In growth rates, this assumption

implies that a firm that receives an industry growth shock of g in a segment with proportion
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f of total firm sales will internally reallocate the shock so that each of its segments receives
an equal growth shock of f-g. Thus, each segment will grow at the same rate. Equivalently,
in dollar values, an industry growth shock to one segment will be reallocated to all segments
in proportion to the relative size of the segment within the firm.

To illustrate, consider a firm with three segments, A, B, and C with sales of $5, $3, and
$2, for total firm sales of $10. A 10% positive shock to segment A causes an increase in
sales of $0.50 to the firm. Through investments, the firm reallocates the $0.50 across the
three segments in proportion to their relative sizes, so A receives $0.25, B receives $0.15, and
C receives $0.10. Thus, after internal reallocation, each segment experiences an equivalent
shock of 5%.

This form of reallocation is most closely matched to Williamson’s (1975) theory that firms
optimally reallocate shocks based on their segments’ marginal revenue products. When one
segment receives a shock, corporate headquarters optimally reallocates resources such that
all segments have equal marginal revenue products. This is similar to the neoclassical theory
of Maksimovic and Phillips (2002), in which a conglomerate optimally expands the sizes of
its segments until their marginal returns are equal across all segments, though their relative
sizes may vary because of differences in organizational ability. Our framework is consistent
with a steady-state equilibrium of Williamson (1975) and Maksimovic and Phillips (2002),
in which all segments have equal marginal revenue products and headquarters redistributes
resources pro rata based on a segment’s relative size.!

Beyond the theoretical interpretation, empirical evidence also supports pro rata internal
reallocations. For example, Giroud and Mueller (2019) find that multi-region firms reallo-
cate employment levels across establishments to equalize marginal revenue products, as in
Williamson (1975). More generally, empirical evidence shows that the scale of segment-level
IThough our framework does generate transfers from larger to smaller divisions, it is different than the
reallocation in models of corporate socialism or influence (Scharfstein and Stein, 2000; Rajan, Servaes, and

Zingales, 2000). In these models, the reallocations from large to small segments are larger than pro rata
because the goal of the headquarters is to make divisions more equal in size.
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investment is positively correlated with the size of the segment (Duchin and Sosyura, 2013;
Bardolet, Brown, and Lovallo, 2017).

Though our main analysis focuses on pro rata reallocations, our framework is flexible
enough to accommodate other assumptions about reallocations. First, an assumption that
conglomerates operate segments as if they were stand-alone firms is equivalent to an iden-
tity transmission matrix. Because firms do not reallocate shocks internally, shocks do not
transmit from one industry to another through conglomerates. In our empirical tests, this
is the null hypothesis. Second, we test an alternative “winner-take-all” reallocation policy
by defining H and F' matrices to reallocate all shocks to the largest segment.

Finally, we note that to the degree that the assumption of pro rata reallocations is overly
simplistic, our transmission network should have less explanatory power in the data. Thus,

the validity of the assumptions in our framework will be tested in our empirical analysis.

B.2. Network Projections

The second type of transformation is a projection from firms onto industries and vice
versa. In contrast to the transmission network, these projection networks do not rely on any
assumptions about internal reallocations of firms. Instead, they simply measure the shared
exposure of industries to firm-level shocks and the shared exposure of firms to industry-level
shocks.

The first projection reflects the strength of shared in-links:

HH 0
0 FF

(4) Shared in-links = A’A =

A’ A reflects the strength of the in-links that two nodes share and the diagonal of the matrix
is the sum of the squared weights of the in-links for each node. This reflects how similar two

nodes are to each other based on the strength of their common exposures. If two industries
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receive shocks from the same firms, in the same proportions, then they will be more closely
related in this projection. Because the projection is based on shared in-links, it is a symmetric
matrix.

Panels C and D of Figure II present a visual representation of the strength of shared
in-links for our numerical example. At the firm-level, firm z has a smaller connection to z
than it does to y. This is because firms z and y share strong common in-links from industry
¢, whereas firms x and z share weak common in-links from industry p. Thus firm z has a
more similar exposure to firm y from industry shocks than it does to firm x.

The second projection reflects the strength of shared out-links:

F'F 0

(5) Shared out-links = AA’ =
0 HH

If A was an unweighted, binary matrix, AA” would reflect the number of out-links with the
same destination that two nodes share in common. Using weighted connections, as in our
case, AA’ reflects the strength of the out-links that two nodes share and the diagonal of the
matrix is the sum of the squared weights of the out-links for each node. This reflects how
similar two nodes are to each other based on the strength of the commonality of destinations
for shocks. If two industries tend to have similar effects on the same firms, then the industries

have higher connections in this projection.

I.C. Concentration Measures in the Conglomerate Network

The network projection matrix H'H embeds measures of industry concentration. First,
note that the columns of H are n-dimensional vectors representing the market shares of
the n firms in each industry. Denote an arbitrary column j in H as ﬁj. As defined above,
the entries of the matrix of shared in-links, H'H, are equivalent to the dot products of the

columns of H. Therefore, for two industries, j and k, the row j and column k entry of H'H is
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Three Transformations of the Conglomerate Network
Panels A and B present transition matrices for industries (A) and firms (B). Panels C and
D present projection matrices of shared in-links for industries (C) and firms (D). Panels E
and F present projection matrices of shared out-links for industries (E) and firms (F).
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sz . ﬁk = hy jhy g+ hojhog + -+ hy il k. The diagonal entries of H'H are the dot products
of an industry’s market share vector with itself. For industry j, this is hij + h%y]- + - hi,j'
Thus, the diagonal entries of H'H are the Herfindahl-Hirschman Indices (HHI) of industry
concentration.

Using the conglomerate network, we generalize HHI to derive a measure of cross-industry

concentration. For two industries, j and k, we define,
(6)  Industry CoHHL , = (H'H);x = by - hyy = hajhig + hajhoy + - + Byl g

Industry CoHHI is the commonality in the pattern of firms’ market shares across two indus-
tries. If the same firms have similar market shares in both industries and receive the same
shocks from the same set of firms, then the two industries have high co-concentration, and
Industry CoHHI is larger.

Just like variance is a special case of covariance where both random variables are identical,
HHI is a special case of CoHHI. CoHHI reflects the similarity of concentration of sales across
firms in different industries. Industry HHI reflects the CoHHI of an industry with itself.?

We can apply a similar idea to the projection of out-links, AA’. At the industry level, F'F
reflects the commonality of out-links from industries to firms. If two industries tend to affect
the same set of firms, then the two industries have higher co-concentration of destinations.
This would happen when firms have the same fraction of sales from the same industries.
Industries with focused firms will tend to have higher out-link concentration. Thus, this
projection represents a new measure of industry concentration that is complementary to

standard HHI.

2Tt is beyond the scope of this paper to identify relevant thresholds of CoHHI, similar to the HHI thresholds
used by regulators. In our defense, we note that HHI was first developed in Hirschman (1945), but it wasn’t
until Stigler (1964) that HHI was connected to profitability in Cournot models, and until 1982 that the DOJ
and FTC first published HHI thresholds in their guidelines for horizontal mergers (Scheffman, Coate, and
Silvia, 2002).
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Because of the duality of the bipartite graph, we can also provide similar measures of
concentration at the firm level. In particular, F'F’ represents the Firm CoHHI matrix in
which the diagonals are the Firm HHIs of concentration, and the off-diagonal elements are
the Co-HHI between firms. Firm HHI measures the concentration of a firm’s sales across
industries. A firm with equal sales in two industries has a lower Firm HHI than a firm with
the majority of its sales in one industry. The Firm Co-HHI reflects the commonality of two
firm’s distribution of sales across industries. Two firms that tend to sell the same fractions

of their total sales in each industry will have a higher Co-HHI.

I.D. The Variance of Growth Shocks in the Conglomerate Network

Our network transformations in Section I.A and I.B are based on standard techniques in
the network literature. In this section, we show that these transformations are not arbitrary
from an economic point of view. Specifically, we show that, with some simplifying assump-
tions, these transformations are directly related to important economic constructs such as
variances and covariances of industry and firm growth. We assume at time 7 = 0, firm ¢
receives a shock ¢; and industry j receives a shock 7;. Both shocks are random variables
with mean 0 and standard deviations o, and o,, such that cov(ey, ;) = 0 for all (k, ) when
k # 1; cov(nk,m) = 0 for all (k,1) when k # [; and cov(eg,n;) = 0 for all (k,1). Thus, €
represents firm-level growth shocks after removing industry-level growth shocks, 7, and vice
versa. For simplicity, we assume homoskedasticity, such that o. is the same across firms and
oy is the same across industries. In vector form, 7 is the m x 1 vector of industry shocks
and £'is the n x 1 vector of firm shocks.

We assume shocks transmit from one node to another over time. In a bipartite graph, one
step in the network, enacted by an application of the A matrix, represents an aggregation
of a node’s own shock plus the weighted average of the shocks of connected nodes. Two
applications of the adjacency matrix (A?) to a shock vector represents a complete transition

of shocks back to their original node type. Therefore, to study the transition of shocks



20 THE CONGLOMERATE NETWORK

through the network, we take snapshots of the network after every complete transition of
shocks, where the initial shock is a node’s own shock plus the aggregation of its connected
nodes’ shocks. During every complete transition, we assume the shocks decay with rate .3

In particular, the snapshot of the growth rate of industry j at 7 = 0 can be written as
the industry-specific growth shock plus the weighted average of the growth rates of the firms
operating in industry j. This is g;0 = n; + .., hijei. Therefore, the vector of industry
growth rates is ginao = 7+ H'E. The growth rate of firms follows the same pattern: the
firm’s specific growth rate plus the industry-specific growth rates weighted by the industry’s
firm share. This is, Ggirmo = €+ F7j. In matrix notation, the initial growth rates at 7 = 0

are

I H
(7) o= I+ A = =
F oI

7+ H'E

=

My

£+ Fij
The variance-covariance matrix of growth rates at 7 = 0 is
2 21y/ 2 1 21y/
o:l+0:HH o:F' +0-H
(8) Cov(go)= | " ° ! :
olF +02H o2+ 0.FF
The upper-left entry of this matrix represents the variance-covariance matrix of industry
growth rates. The diagonal elements reflect the variances of industry growth rates which
equal the variance of industry-specific shocks plus the variance of firm-specific shocks scaled

by the industry’s HHI. For industry 7, the variance is

(9) Var(g;o) = 0127 +o02HHI;.

3The decay reflects the fraction of the initial shock that is passed from one industry to another, with the
remainder absorbed either within the firm or industry. For example, a cash flow shock to a segment that
accounts for 10% of a firm’s sales may absorb more than 10% of the shock.
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Thus, assuming all firm-level shocks are equally distributed, more concentrated industries
have higher variance of growth rates. This is driven by concentrated industries’ greater
exposure to relatively few idiosyncratic firm-specific shocks.

The off-diagonal elements of the industry-level variance-covariance matrix equal the vari-
ance of firm-specific shocks scaled by the CoHHI between two industries. Thus, the covari-

ance in growth rates at 7 =0 is
(10) Cov(gj0, gro) = 02CoHHI .

This derivation shows that CoHHI is directly proportional to the covariance of growth rates,
just as HHI is directly proportional to the variance of growth rates.

The variance-covariance matrix of firm-level growth rates is o2l + U?,F F’. This is the
dual interpretation of the industry-level matrix. On the diagonal, firm growth rates have
a variance equal to the firm-level variance plus industry-level variance scaled by the firm’s
HHI across segments. Diversified conglomerate firms with operations in multiple sectors face
lower industry-specific variance, compared to focused, single-segment firms. The off-diagonal
elements in the firm-level variance-covariance matrix are equal to industry-specific variance
scaled by firm-level CoHHI. Firms that operate in the same industries have greater shared
in-links and thus, have higher covariance in their growth rates.

The off-diagonal n x m matrix, o7 F' + o2H’, in Cov(gp) reflects the covariance in growth
rates between firms and industries. This covariance is equal to the sum of the firm-specific
variance o2 scaled by the strength of the link from the firm to the industry plus the industry-
specific variance scaled by the strength of the link from the industry to the firm. Intuitively,
the covariance of growth rates between firms and industries is the sum of the firm and
industry specific variance scaled by the strength of the connection between the firm and

industry.
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Moving shocks forward one cycle in the network, the variance-covariance matrix of growth

ratesat =1 1s

o’H'FF'H + o?H'FH'HF'H o?H'FF'HF + o?H'FH'HF'

(11)  Cov(g))=06*|" : K :
agFH’FF’H +0*!FH'HF'H o?FH'HF' + UTQIFH’FF’HF’

This variance-covariance matrix represents that as shocks pass through the network over

time, they repeatedly transmit from firms to industries and back to firms. In the limit, this

process derives the eigenvector centrality of industries in the conglomerate network. We

discuss network centrality in more detail in the Online Appendix.

To help interpret the covariance matrix, we again focus on the industry-to-industry portion
of the covariance matrix. At 7 = 1, shocks have made a full cycle in the network, represented
by the transmission network A?. For brevity of notation, we denote the entry in row j and
column %k of F'H as t;;, which records the strength of transmission from industry j to
industry k. Using this notation, the variance of the growth rate for industry j at 7 = 1,

after a full cycle in the network, is as follows:

m m m r—1
(12) Var(gia) =0° (o3> 7, + 02> i HHI, +202Y > t,;t, ;,CoHHI,,
r=1 r=1 r=2 s=1

This equation shows that after one cycle in the network, the variance of industry j’s growth
rate has three components. The first component is the variance of industry-level shocks
scaled by the sum of the square of transmission links from all other industries into industry
j. This reflects industry j’s exposure to all other industry shocks through the conglomerate
network. The second component is the firm-level variance scaled by the sum of the trans-
mission strength into industry j from all other industries weighted by the other industries’
HHI measures. Thus, if industry j has stronger connections to concentrated industries, its
variance is higher because of higher exposure to firm-level shocks in connected industries.
Finally, the last component is the sum of all combinations of industries’” CoHHI measure

multiplied by their transmission strengths and the variance of firm-level shocks.
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The covariance of the growth rate of industry 5 and industry k at 7 = 1, is as follows:
(13)
r—1

COU(gj,lgk,l) = 52 0'72] Z tT,jthk + O'g Z tr,jtr,kHHIr + O'g Z (t57jtr,k + tr,jts,k) COHHISW

r=1 r=1 r=2 s=1
This equation shows that the covariance in the growth rates of industries 7 and k is de-
termined by the similarity of their exposure to industry shocks through the transmission
network plus the similarity of their exposure to firm-level shocks through within-industry

concentration and common in-links (CoHHI).

II. THE EMPIRICAL CONGLOMERATE NETWORK

II.A. Data Sources

To provide robust empirical analyses, we test all of our predictions using two alternative
data sources. First, we collect segment level information of publicly-traded conglomerate
firms from the Compustat Historical Segment data. For corporate segments that represent
at least 10 percent or more of consolidated sales in a different industry, SFAS No. 14 requires
that firms report accounting information on a segment-level basis for fiscal years ending after
December 15, 1977. To rectify the inadequacies of SFAS No. 14, the Financial Accounting
Standards Board (FASB) issued SFAS No. 131 in June 1997, which requires that, for fiscal
periods beginning after December 15, 1997, firms identify industry segments for external
reporting purposes in the manner that management views operating segments for internal
decision-making purposes. To ensure the time-series comparability of our conglomerate
network, we use the Compustat Historical Segment data from 1997 to 2018 to construct
our conglomerate network. Specifically, for each segment, we collect the following three

variables: net sales, identifiable total assets, and the primary NAICS code of the segment.
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Second, to address Compustat’s lack of private firms, we test all of our predictions using
establishment-level data provided in the National Establishment Time Series (NETS) data-
base provided by Walls & Associates. In contrast to Compustat’s limited scope, the NETS
data cover the near universe of business establishments in the United States, both public
and private, where an establishment is a business or plant at a single physical location.
The data cover over 71 million establishments from 1990 to 2019. For each establishment,
NETS provides the location, industry code, ultimate owner, employment level, and sales. As
an alternative to Compustat’s reported segments, we use these granular establishment-level
observations to construct each firm’s sales by industry segment from the ground up. This
has the advantage that we need not rely on Compustat segments to be strictly organized
by industry. To our knowledge, NETS data are the most comprehensive establishment-level
data available other than confidential Census micro-data. Its unique level of coverage has
led the NETS database to become widely used in recent research.*

Compustat and NETS are complementary datasets, each with their own advantages and
disadvantages. In particular, an advantage of Compustat data is that they are sourced from
audited, financial statements reported to the Securities and Exchange Commission, but a
disadvantage is that they are limited to publicly-traded firms. In contrast, NETS data
include all firms, public and private, but they are sourced from Dun & Bradstreet (D&B),
a private, for-profit firm that provides credit scoring services. However, this disadvantage is
mitigated by the fact that D&B has a profit-driven incentive to maintain its reputation of
accurate and comprehensive data. An advantage of Compustat is that it has data on assets
at the segment-level, whereas NETS does not. In contrast, NETS has complete coverage of
employment at the establishment-level, whereas Compustat only provides employment data
at the consolidated level for a subset of firms.
4Gee Rossi-Hansberg, Sarte, and Trachter (2020), Bernstein, McQuade, and Townsend (2021), Faccio and Hsu
(2017), Farre-Mensa, Hegde, and Ljungqvist (2020), Crouzet and Mehrotra (2020), and Borisov, Ellul, and

Sevilir (2021). For a detailed description of the NETS database, see Kolko, Neumark, and Lefebvre-Hoang
(2007) and Barnatchez, Crane, and Decker (2017).
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For our study, we exploit the advantages of each dataset. In particular, we construct the
conglomerate network separately using the sales data in Compustat and the sales data in
NETS. To measure industry growth rates, we use asset growth from Compustat and employ-
ment growth from NETS. We also measure sales growth using data from both Compustat
and NETS. Though our framework provides both firm-level and industry-level predictions,
we focus on the industry-level network to reduce selection bias in publicly-traded company
data and computational complexity for the millions of firms in the NETS database.

Using both Compustat and NETS data reduces the chances that our results are driven
by data limitations. However, in Section V, we go a step further and provide additional
assurances by running robustness tests for both Compustat and NETS. In particular, we
show that our results using Compustat data are not driven by omitting small firms and that

our results using NETS data are not driven by over-sampling small firms.

A.1. Industry Definitions

One complication of the long-time horizon considered in this paper is that the scheme of
industry classifications changes over time, such as the change from the SIC to the NAICS
in 1997 and subsequent versions of NAICS from 2002 to 2017. For Compustat data, to
obtain the time-consistent industry definitions, we follow Pierce and Schott (2016) and create
“families” of industry codes that group related NAICS categories together across different
industry classification schemes. For example, if an industry code splits into several codes from
1997 to 2002, the industry code in 1997 and its subsequent “children” would be grouped into
the same family. Therefore, unless otherwise noted, industries in our Compustat analyses
refer to these families. This adjustment allows us to control for time-invariant industry
properties using fixed effects. The NETS data provides time-invariant industry definitions
at the four-digit SIC code level, which do not need to be converted to families.

A related concern with our framework is that firm boundaries are definite, but industry

boundaries are subjective. We address this concern in a few ways. First, we note that
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NAICS codes were developed in the 1990s by a consortium of federal economic and statistical
agencies, including the Bureau of Economic Analysis, US Department of Commerce, Bureau
of the Census, and the Bureau of Labor Statistics. These agencies designed the classification
system on the principle that industry definitions should be based on a single economic concept
of the similarity of production processes. The boundaries of industries are limited by the
degree of homogeneity of the production process among the establishments in the industry,
subject to a minimum threshold of economic significance. Thus, though industry definitions
are not as clearly delineated as corporate ownership, they are not arbitrary.’

Empirical evidence on the role of sectoral shocks for aggregate outcomes also supports
the validity of industry codes. In particular, Carvalho and Gabaix (2013) shows that both
the sectoral-level sales vector of the economy (as in Acemoglu, Carvalho, Ozdaglar, and
Tahbaz-Salehi (2012)) as well as the firm-level sales vector (as in Gabaix (2011)) help explain
aggregate volatility. Because their formulation uses only the changing weights of sectors and
firms in total output, their results suggest that the boundaries of industries are defined in an
economically meaningful way and are not arbitrarily redefined to maintain equality in the
size of sectors.

The second way we address this potential concern is to control for industry links based on
the alternative industry definitions provided by Hoberg and Phillips (2016) (HP). HP use the
text of the product definitions provided in firms’ 10-K filings to identify the similarity of two
firms’ outputs. Thus, HP’s definitions are likely to be closer to a classification scheme based
on the demand-side, compared to NAICS’s scheme based on the supply-side. The third way
we address this concern is to use a different level of industry aggregation in robustness tests,

described below.

®More information on the development and principles guiding NAICS is available on the US Census Bureau’s
website: https://www.census.gov/naics/7008967
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I1.B. The Structure of the Conglomerate Network

Networks exist across a continuum of types. On one extreme, random graphs contain nodes
that are connected to each other with an equal probability (Erd6s and Rényi, 1959). Thus,
random graphs do not have central hubs. In addition, the number of connections to a node
(degree) in a random graph exhibits relatively little variation around the average degree.
Second, random graphs are not clustered, in which a nodes’ neighbors are also connected
with each other. At the other extreme of network types are ultra small world networks.
These networks have very large hubs, with undefined degree variance. This means that the
degree of an arbitrary network varies widely around the mean. The presence of prominent
hubs in these networks reduces the average distance between all nodes and creates clusters
of nodes. See Barabdsi (2016) for a detailed discussion of network types.

One way to measure the structure of a network is by its degree distribution. Random
graphs have symmetric binomial degree distributions. Ultra small world networks have fat
tailed degree distributions with long right tails indicating that a small number of nodes
have many connections and a large number of nodes have few connections. A particular fat
tailed distribution is the power law distribution, also known as the scale free distribution,
p(X > z) ~ Cx~® where o > 2 is the scaling parameter. The lower is the «, the longer is

the right tail. When « increases above 3, the network begins to resemble a random network.

B.1. The Structure of the Conglomerate Network in the Cross-Section

Figure III represents the complementary cumulative degree distributions of the conglom-
erate networks in 2007 in log scale using NETS and Compustat data. A linear relationship
indicates a fat tailed, power law distribution. The dashed line in Panel A of the figure cor-
responds to an « of 2.8 for NETS data, estimated following Clauset, Shalizi, and Newman
(2009). For the Compustat data in Panel B, the « is 3.3. These estimates of a are compa-

rable to 3.1 for the input-output network of industries, as estimated in Ahern and Harford
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(2014). For both NETS and Compustat, over our sample period, « is estimated to be about
2.85 in an average year. In 67% of yearly observations from Compustat we cannot reject
the hypothesis that the network is power law distributed. For NETS data, the fraction is
50%. Thus, these statistics show that the degree distributions of the conglomerate networks
have substantially fat tails, and in the median years, they follow a power law distribution.
This means that the NETS and Compustat-based networks are characterized by relatively
few hub industries with many connections to other industries and relatively large numbers
of industries with few inter-industry connections.

Additional network statistics confirm that the conglomerate network has a fat tail. In
an average year, the average industry in the Compustat network is connected to 6.8 other
industries (degree centrality), though the median industry is connected to 3.3 other indus-
tries, consistent with a skewed degree distribution. In the NETS data, the average is 4.8
and the median is 1.2. The clustering coefficient of the average industry in the Compustat
network is 39%; for the median industry it is 32%, which is large relative to clustering in
social networks. In the NETS data, clustering is even larger at 46%, on average. Finally,
in an average year, the maximum path length between any two industries in the Compustat
network in the largest component is 7.5 links (7 at the median). Given that the largest com-
ponent has 573 industries in an average year, this reflects that the conglomerate network
exhibits small-world network features. Similarly, for the NETS data, the average maximum
path is 12.2 out of 551 industries in an average year. Online Appendix Figures I and II

provide visual representations of the network.°

B.2. Time-Series Evolution of the Conglomerate Network

6We discuss the statistics for the binary network for ease of exposition, but the interpretation of the weighted
networks is similar. We report statistics for the giant component of the network, which is the largest set
of interconnected nodes in a network. In an average year, 75% of industries are in the largest connected
component. The remaining industries are typically in very small components of one or two industries. We
also exclude self-loops from the statistics, where an industry is connected to itself.
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Figure IV plots the time series of network statistics normalized to 1997 values. For the
most part, the NETS and Compustat-based networks exhibit similar trends. First, the power
law scaling parameter a has decreased over this period, while the variation in degree across
nodes and clustering has increased. These trends indicate that the conglomerate network
has evolved towards an ultra small world network with more prominent hubs. Second, the
eigenvector centrality of the average node has decreased which indicates that the average
industry reduced the number of connections to more peripheral industries. The only trend
that differs between NETS and Compustat is that the average degree has increased in NETS
data, but decreased in Compustat data. This implies that industries have become more
connected through conglomerates of smaller, private firms, rather than through larger public,
public firms. These results are consistent with Hoberg and Phillips (2021) who use text of
product descriptions to show that conglomerate firms have become more focused in related

industries over our sample period.

B.3. Central Industries in the Conglomerate Network

Table I presents the most central industries in the conglomerate network for NETS and
Compustat. Within the transmission networks, motor vehicle parts is central in both NETS
and Compustat. In addition, motor vehicles, engineering services, and management services
are also central in the NET'S transmission network, while petroleum refining, electric services,
and general industrial machinery are central in the Compustat transmission network. High
centrality in this network indicates that these industries are at the center of economic activity
that is transmitting through conglomerate firms. The most central industries in the CoHHI
network of shared in-links are clothing mills, household vacuums and cooking equipment in
the NETS network, compared to food-related industries of coffee, cheese, and frozen foods
in the Compustat network. High centrality in this industry reflects that these industries
have high shared in-links with many other industries. In particular, clothing mills and food

producers are dominated by firms that operate in multiple industries with similar market
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shares in each. Finally, the most central industries in the NETS shared out-link network
are real estate-related industries, while in the Compustat network, energy-related industries
are most central. These are industries that are highly connected to other industries through
conglomerates with similar levels of exposure to common industry shocks.

The differences between the central industries in the NETS and Compustat data highlight
the key distinctions between the data sources. In particular, Compustat omits a large number
of industries dominated by private firms, such as apartment building operators, real estate
developers, engineering services, and commercial research. In contrast, Compustat empha-
sizes large energy firms and financial intermediaries. Using both data sources provides a

robust approach to understanding sectoral variation in outcomes.

III. COMOVEMENT OF INDUSTRY GROWTH RATES: EMPIRICAL EVIDENCE

In this section of the paper, we test whether the empirical evidence matches the key
predictions of the theoretical framework. In particular, we test whether industries co-move
more closely when they are more closely connected in the conglomerate network. Because
we make simplifying assumptions in our theoretical framework, our goal is not to calibrate

the framework to the data, but to use it to help guide the tests and rationalize the results.

II1.A. Cross-Sectional Tests

First, we test the relationship between industry growth covariance and the conglomerate
network as presented in Equation 8. In particular, we regress the time-series covariance
of industry growth rates on the time-series average strength of industry connections in the
CoHHI network, plus a dummy variable that indicates the diagonal entries in the matrix

(i.e., an industry paired with itself).”

7Equation 8 relates instantaneous growth rates with industry network at ¢ = 0. Because we do not observe
instantaneous growth rates at each period, we proxy for these relationships using growth rates observed over
the time series.
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The results presented in Table II show that there is a positive cross-sectional correlation
between CoHHI and the covariance of employment growth, asset growth, and sales growth.
This implies that industries with higher CoHHI connections also have higher comovement of
fundamental economic growth rates. The comovement of industry growth rates is driven by
conglomerate firms with large market shares in multiple industries.® Because the covariance
of an industry with itself is also included in the regression, this result is consistent with the
intuition that concentrated industries have greater exposure to firm-specific shocks. These
results show that industry volatility is driven, in part, by large firms as in Gabaix (2011),
but only if the firms have large market shares within the industry.

In the Online Appendix, we extend this analysis by relaxing the homoskedasticity as-
sumption on the orthogonalized shocks, n and €. In particular, we assume that the shocks
are drawn from industry and firm-specific distributions, such that n; ~ N(0, CJZ) and g; ~
N(0, 5?) This assumption generates a system of m-+n equations that express the observable
variances of m industries and n firms as the sums of m+n unknown industry and firm-specific
shock variances weighted by market shares (H) and firm shares (F'). Using a subset of the
firms in NETS to reduce measurement error, we first solve for the m + n unknown industry
and firm-specific shock variances, (]2 and £2. Using these values of shock variances and the
conglomerate network, we estimate model-implied pair-wise industry growth covariances.

We find that the model-implied estimates of industry covariance are highly statistically
correlated with industry covariances directly observed in the data. These results show that
even without any assumptions on the nature of industry covariance and ignoring all other
factors that could influence cross-industry comovement, such as input-output relations or
geographic proximity, we are able to predict the heterogeneity of industry covariances using
only the conglomerate network and estimates of industry and firm-specific shock variances.”
See the Online Appendix for details.

8[n unreported tests, we verify that our results hold when we estimate the network correlations using expo-

nential random graph models, following Ahern and Harford (2014).
9We thank Bruno Pellegrino for suggesting this analysis.
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A.1. Economic Magnitudes

To better understand the magnitude of the cross-sectional results, we decompose industry
comovement into a component based on single-segment firms and a component based on
conglomerate firms. For each industry in an industry pair, we calculate its sales growth
excluding the sales of any conglomerate firm that operates in both industries. Using these
hypothetical growth rates based on single-segment firms, we calculate the covariances and
correlations of the growth rates for all industry pairs.!® This procedure yields two sets of
cross-sectional measures of industry comovement for all industry-pairs: 1) total comovement
based on all firms, and 2) comovement based on single-segment firms, excluding the influence
of conglomerate firms. To estimate the portion of comovement explained by the prevalence of
conglomerates in the industry pair, we calculate the R? in a regression of the single-segment
comovement on the total comovement. Thus, 1 — R? provides a measure of the fraction of
industry comovement explained by conglomerate firms.

We find that about 10% of total correlation can be attributed to conglomerates. Restricted
to industry pairs that share any conglomerate firms, the portion explained is about 30%. For
covariances, about 12% of the cross-sectional variation across industry pairs is attributed to
conglomerates. These tests implicitly control for all factors common to an industry pair,
such as input-output connections, common investors, and geographic proximity, because
the only change we made was to artificially exclude conglomerate firms. These results are
economically meaningful, especially given that during this time period, the common view is
that conglomerates have become less relevant, compared to the 1960s-1980s. We would also
expect that in other countries, like Korea and Japan, where conglomerates are more common,

the portion of total industry comovement explained by conglomerates will be higher.

OWe randomly sample 350 industries out of the more than 900 industries to reduce computation time of
identifying and removing all spanning firms in each industry pairs out of the tens of millions of firms in the
NETS data.
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II1.B. Panel Tests

Next, we estimate panel regressions with fixed effects to isolate the effect of changes in the
conglomerate network on within-industry-pair changes in comovement. To estimate a panel
model with yearly observations, we cannot use the time-series covariance as our dependent
variable. Instead, to motivate our empirical model, note that the squared difference of two

industries’ growth rates at 7 = 0, is as follows:

(14)
n n n n 2
(gj - gk>2 = (77j - 77k>2 +2 (77j - 77k> (Z hz‘,jgi - Z hi,k5i> + (Z hz’,jgz’ - Z hz‘,k&) .
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In expectation, the squared difference of growth rates is:

E [(9j1 — 911)°] = E(g:1) + E(g71) — 2E(g,19x,1)

(15) = 20. 4+ 02 (HHI; + HHI},) — 202CoH H1I ;.

The signs of the coefficients imply that, all else equal, two concentrated industries are likely
to have less similar time series of growth rates, while two co-concentrated industries are likely
to have more similar growth rates. This reflects that concentrated industries have greater
idiosyncratic firm-specific risk, but co-concentrated industries share common firm-level risk.
The alternative hypothesis is that if all divisions within conglomerates operate independently
from each other, such that there is no within-firm transmission of shocks, we would expect
to find no statistical relationship between industry comovement and industry concentration
and co-concentration.

Because we impose strong assumptions in deriving Equation 15, to test the relationship
empirically, we estimate a more generalized and flexible version of the prediction in the

following regression:
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(16) (g+ — gr.r)? = mShared In-Links (Co-HHI)
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where g; ; represents industry ¢’s growth rate at time 7, Shared In-Links (Co-HHI);; . and
Shared Out-Links;;, represent network connections at time 7, p, is a time fixed effect,
0;; is an industry pair fixed effect, and Controls include time-varying industry-pair control
variables, discussed below. This regression is estimated using undirected industry-pairs
because the explanatory variables represent undirected links. We include Shared Out-Links
in our regression tests, even though they do not appear in the theoretical formulation, because
shocks might transfer in the opposite direction than we have assumed. Our goal is not to
calibrate a model, but to use it as a guide for understanding the patterns in the data.

The regression above does not include the transmission network because it is derived from
the covariance of growth rates at the initial period. If we allow for higher order connections
in the network, we need to include the transmission network. As shown in Equation 13, the
covariance of growth rates after one cycle in the network is a function of HHI, CoHHI, and

the transmission network. We estimate a more general empirical model, as follows:

(17) (9j.r — grr)® =P Transmission i » + ¢(HHI; . + HHIy, ;) + p;

+ 01, + 1 Controlsy, » + € 7,

where the Transmission variable is the (4, j) entry for industries ¢ and j of F"H + H'F. This

is a symmetric matrix that allows for transmissions to go from industry ¢ to j or vice versa.
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We do not control for CoHHI because it is highly correlated with the transmission network,

though the results are qualitatively similar if we include CoHHI as a dummy variable.

II1.C. Controls for Alternative Explanations

In both regressions, the industry pair fixed effects, d;;, account for time-invariant cross-
sectional variation in industry pairs. This controls for any cross-industry trait that remains
stable over time, such as the nature of the product (e.g., goods vs. services), the level of
government regulation, access to capital, the geographic location of industries, and the impor-
tance of intangible assets. We also include time fixed effects, p,, to control for economy-wide
fluctuations and to isolate within-industry pair fluctuations. Finally, we also run specifica-
tions that use a dummy variable that represents the presence of a connection in the network.
In Compustat, the dummy is defined based on the presence of a connection. Because NETS
is built from establishment level data, without any reporting thresholds, as in Compustat,
almost all industry-pairs have positive, though small, connections. Therefore, we define the
dummy variable in NETS based on the 90th percentile.*!

The regressions also include variables to control for vertical customer-supplier relationships
and product-market similarities. First, we measure the customer-supplier connections be-
tween industry pairs using data from the industry-by-industry total requirement table from
the Benchmark Input-Output (IO) Accounts released by the Bureau of Economic Analysis
(BEA). These data measure the dollar amount of intermediary industry output required per
dollar of final demand. We use the most recent data until the next release becomes avail-
able. For example, from year 1997 to 2001, we use the 1997 total requirement table. In a
few cases, our industry pairs cannot be matched to the IO industries; however our results

are qualitative unchanged if we drop these industry pairs from the sample instead.

HWe cluster standard errors at the industry-pair level, but our results persist if we double cluster standard
errors by each industry of the pair.
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Second, we control for time-varying asset similarities between industry pairs based on the
text-based product similarity measure of Hoberg and Phillips (2016) (HP). To convert their
similarity measures to our industry pairs, we identify stand-alone firm-pairs with positive
HP similarity in each industry pair. We then calculate the average similarities between these
firm pairs in our industry-pairs to proxy for asset similarity. Specifically, for industry pair
(2, 7), with m stand-alone firm-pairs (k, 1) with positive HP similarity, where k denotes firms
in industry ¢ and [ denotes firms in industry 7, the asset similarity of industry pair (4, 7) is
W, where H Py is the text-based product similarity of the firm pair (k,[). We assign
a zero to industry pairs with missing similarity scores because this implies the HP measure
is below a minimum threshold.

In sum, these regressions isolate time-series variation in the connection strength between
industries in the conglomerate network, while controlling for the most likely alternative
explanations. Our goal is not to argue that industry comovement is explained only by the
conglomerate network, but to show that the conglomerate network is a reliable source of
comovement. For an alternative variable to subsume the effect of the conglomerate network,
it would need to be uncorrelated with both vertical input-output relations and the HP
relatedness measure, but also to vary through time at the industry-pair level in accordance
with the time variation of the industry-pair strength in the conglomerate network. Though
these main tests rule out the large majority of alternative explanations, we consider sampling

bias and endogeneity concerns in robustness tests.

III.D. Summary Statistics

Table III provides summary statistics for all of variables used in the panel regressions for
NETS and Compustat data. Sales growth in the median industry-year for the large, public
Compustat firms is 2.67% versus 1.35% for the small, private NETS firms. Employment
growth in NETS is negative at the mean and median, while asset growth in Compustat is

positive in the median but negative in the mean. Squared differences in these rates vary
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considerably, with larger variation in Compustat compared to NETS. All of the network
measures are skewed because the network is sparse, with most industry pairs having no

connection.

II1.E. Correlations of Alternative Industry Connections

A potential concern with the conglomerate network is that it could be highly correlated
with input-output (IO) or HP links. In Online Appendix Table I, we present the average
yearly correlation between our conglomerate network measures and the 10, HP, and HHI
measures. In an average year, CoHHI has a correlation of 2.1% with HP in the NETS data
and 1.2% in the Compustat data. The correlation between CoHHI and IO connections is
3% to 4% in the two data sets. Similarly, the correlations between the transmission matrix
and 10 and HP are less than 10%, on average. Online Appendix Figure III shows that the
time-series of cross-sectional correlation between the measures of the conglomerate network,
IO, and HP are persistently low every year. In sum, these results show that the conglomerate
network is not just a proxy for existing measures of industry connectedness. Instead, the
conglomerate network represents a unique form of inter-industry connections. Nevertheless,

we include these variables in our tests as alternative explanations of industry comovement.

III.F. Baseline Results

Table IV presents estimates of Equation 16, the relationship between shared in-links and
out-links on the comovement of industry growth rates.'* For both NETS and Compustat,
and for employment growth, sales growth, and asset growth, an increase in the strength of
shared links is negatively correlated with the squared differences in growth rates. Thus, con-
sistent with our prediction, as industries become more closely connected in the conglomerate

network, their growth rates comove more closely. Because we control for industry-pair and

2For brevity, we subsume the coefficients on our control variables in Tables IV and V. We present the
complete results in Online Appendix Tables 11T to VI.
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year fixed effects, these results are not driven by cross-sectional differences in the nature of
industries, nor are they explained by economy-wide fluctuations in the time-series of growth
rate levels or correlations. In addition, the results are not driven by customer-supplier rela-
tionships or asset similarities.

Also consistent with the theoretical network, in every specification, the sum of HHI is
positively correlated with squared differences in growth rates with a high degree of sta-
tistical significance. This reflects that industries with greater internal concentration have
weaker connections to other industries. Thus, an increase in an industry’s HHI reduces the
comovement of its growth rate with other industries.

The relationship between industry comovement and the conglomerate network is econom-
ically meaningful. In particular, in the NETS data, a one-standard deviation increase in
CoHHI is related to a 0.24 standard deviation reduction in the squared difference of growth
rates of employment. For sales growth, the effect is a 0.32 standard deviation reduction. In
the Compustat data, a one-standard deviation increase in CoHHI is related to a 0.68 stan-
dard deviation reduction in the squared difference of growth rates of assets and sales. The
larger magnitude of the effect in Compustat data is likely explained by its focus on larger
firms than NETS.

Next, Table V presents estimates of Equation 17, the transmission network on the co-
movement of industry growth rates. The estimates show that the transmission network is
negatively and significantly related to difference in industry growth rates for sales and asset
growth. The relationship is not significant for employment growth. This means that when
two industries become connected through the transmission network, their sales and asset
growth rates comove more closely. As before, the sum of industry HHIs has the opposite
relationship to the transmission network, consistent with our prediction. The economic mag-
nitudes are largest for Compustat, with a decline of 0.79 standard deviations in the squared
difference of asset growth for a one-standard deviation increase in transmission, and a decline

of 0.36 standard deviations in sales growth.



THE CONGLOMERATE NETWORK 39

II1.G. Industry-Level Tests

In addition to the industry-pair tests, we also estimate industry-level tests of the effect
of distance in the conglomerate network on the comovement of industry growth rates. In
particular, we estimate each industry’s exposure to the growth rates of other industries
through the conglomerate network at different distances. Because the Compustat data is
relatively sparse, we weight the growth rates of all other industries by whether they are one
or two links away in the conglomerate network. Because NETS data are more dense, and
more industry pairs are connected, even if only slightly, we use the continuous measure of
the squared transmission network (A?) instead of the discrete distance in Compustat.

Table VI shows that industries growth rates are higher when the growth rates of con-
nected industries’ growth rates are higher. This result holds in NETS and Compustat for
employment, sales, and asset growth. The effect is equally strong in the NETS data when
weighting by squared transmission. In Compustat, the effect is smaller for the relationship
of firms that are two links away.

To provide additional evidence that the results are driven by the conglomerate network,
we calculate a placebo variable in which industries are randomly assigned a transmission
strength using the empirical distribution of linkages in the data. If the results were driven
by macroeconomic factors, rather than connections in the conglomerate network, the results
would persist in the placebo test. However, Table VI shows that the placebo variable is
unrelated to an industry’s growth rate in NETS and Compustat, for employment, sales, and
asset growth.

Overall, these results show that industries comove with other industries in the network,
even if they are not directly connected. Because these results control for [O-weighted growth
rates of other industries, year fixed effects, and industry fixed effects, the results are not
driven by customer-supplier links, macroeconomic fluctuations, or cross-sectional hetero-

geneity in industry traits.
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IV. ENDOGENEITY CONCERNS: A QUASI-NATURAL EXPERIMENT

Conglomerate firms do not randomly choose the industries in which they operate. Instead,
it is reasonable to believe that firms choose to diversify into industries that tend to comove
with each other, which could produce correlations similar to the results we have shown.
Thus, in contrast to our hypothesis that conglomerates transmit shocks from one industry
to another, it is possible that the entirety of the shocks would have been transmitted even
without the conglomerate network. In this section, we address this concern.

First, it is important to recognize that the conglomerate network is not formed through
endogenous choice. In our approach, the strength of the ties between industries is based on
both the firms’ industry shares and firms’ market shares. While firms endogenously choose
the industries in which they operate, they do not endogenously choose their market shares
in each industry. In particular, CoHHI is a measure of the commonality of market shares
held by the same firm in two different industries, not just the choice to operate in both
industries. In addition, our framework generates predictions about the relationship between
HHI and comovement, which are also supported in the empirical results. Because firms do
not endogenously choose HHI, these results cannot be caused by the endogenous choice of
firms.

Second, to the degree that the conglomerate network is endogenously determined, it is
important to note that all of our results persist after controlling for industry-pair fixed effects.
Thus, any time-invariant factor that leads industries to comove is absorbed by these fixed
effects. In addition, we control for remaining time-series variation that is driven by major
economic determinants of conglomeration, including vertical customer-supplier relationships
and complimentary assets of Hoberg and Phillips. As mentioned above, for our results to
be spurious, there would need to be an underlying time-varying factor explaining all of

the remaining time-series correlation that is both orthogonal to vertical relations and asset
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complementarity and also causes both comovement among industry growth rates and firms
to increase their market shares within these industries at the same time.

Though the above arguments help to limit the magnitude of endogeneity concerns, as an
additional analysis we study the effect of the United States granting Permanent Normal
Trade Relations (PNTR) to China. PNTR was granted by Congress in October 2000 and
became effective when China joined the World Trade Organization (WTO) at the end of
2001. Before the conferral of PNTR, the tariff rates of US imports from China required
annual renewals, which had imposed a great amount of uncertainty on the trade relations
between China and US. Although PNTR did not change the import tariff rates that the
United States actually applied to Chinese goods, it removed the uncertainty associated with
these annual renewals. Without the yearly renewal of favorable rates, US import tariffs
would have increased substantially.

Pierce and Schott (2016) show that granting PNTR to China caused declines in employ-
ment within US industries that were most at risk of higher tariffs without PNTR (exposed
industries). We exploit the same shock to test whether employment growth declined for
industries that were not directly affected by PNTR, but were connected to the exposed
industries through the conglomerate network. Though this setting does not provide an ex-
ogenous change to the network, it does identify a specific exogenous shock that we can
observe transmitting through the network.

Following Pierce and Schott (2016), we measure the NTR gap as the difference between
the non-NTR rates to which tariffs would have risen in the industry if annual renewal had
failed and the NTR tariff rates that were locked in by PNTR. This shock is time-invariant
for each industry and therefore absorbed by industry fixed effects. However, as in Pierce
and Schott, we can identify the effect of the NTR gap through its interaction with a dummy
variable, Post, which is equal to one from 2001 onward to indicate years after the passage

of PNTR.
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To identify industries that could potentially receive the NTR shock from the exposed
industries through the conglomerate network, we use the transmission network, F'H. To
help address reverse causation, we use the 1999 network to ensure it is exogenous to the
NTR shock in 2000. Thus, the results are not driven by conglomerates forming new industry
linkages in response to the tariff shock.

For each industry £ in the transmission network, we weight the NTR gap by the entries
in the Ath column of F"H. These entries represent the shocks from row industries that
transmit to industry k. Thus, our weighting scheme provides for variation in an industry’s
exposure to the NTR gap based on the magnitude of the gap and the magnitude of the

connection to the affected industry. We also normalize the measure by the sum of the column,

Zk# Transmissiony ; x NTR. gapy, A
. S

excluding industry ¢. Therefore, Transmission NTR gap, = S Transmissiony,
above, this variable is identified through the interaction with the post dummy variable.
If the employment shock transmits through the conglomerate network, we expect to find a
negative coefficient on the interaction between the strength of the conglomerate network and
the NTR gap. This reflects the change in employment for more exposed industries relative
to less exposed industries.

Table VII presents the results of these tests. Following Pierce and Schott (2016), we use
employment growth from the Census County Business Patterns database and construct the
network using NETS data. We calculate the strength of network linkages using data for all
industries, but estimate regression coefficients using a sample of manufacturing industries,
following Pierce and Schott. Column 1 replicates the findings in Pierce and Schott (2016). US
industries directly exposed to the NTR shock experience a significant decline in employment.
Column 2 shows that this shock transmits through the conglomerate network. Industries
with greater network connections to the industries directly exposed to the NTR shock also

experience declines in employment. These results provide further evidence that economic

shocks transmit across industries through conglomerate firms.
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In columns 3 and 4 of Table VII, we provide two more robustness checks. In column 3
we create a placebo variable identical to the interaction between the transmission network
and the NTR gap by randomly assigning industries to the actual network weights in the
transmission network, as above. We find that there is no correlation between this placebo
network and employment growth. This implies that our main results are not caused by
a general network-wide trend. Finally, in column 4, we include the strength of network
connections from the 1997 input-output network. We still find that the transmission network
is significantly related to employment in connected industries.

These tests are important because they allow us to exploit the cross-sectional variation in
the exposure to an identifiable shock. We also use the predetermined conglomerate network
prior to the NTR shock to rule out reverse causality and include input-output relations
to control for alternative explanations. In addition, our dependent variable is not based on
public firm filings in Compustat. Even after these controls, we still find that the conglomerate

network serves as a conduit to spread economic shocks.

V. ROBUSTNESS TESTS

In this section, we address potential concerns related to sampling bias, endogeneity, in-
dustry definitions, and mechanisms. First, to address concerns about data limitations of
NETS and Compustat, in Online Appendix Table VII, we estimate the main regressions us-
ing industry level employment data from the US Census Bureau’s County Business Patterns
(CBP) files from 1997 to 2018. These data offer the most detailed view of the United States’
industrial structure available to the public. They provide annual data on employment at a
detailed industry level, which covers nearly all establishments with paid employees in the
private sector of the United States. Therefore, unlike the Compustat Segment data, the

industry employment data in CBP files covers the universe of firms, both publicly listed
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and private. Consistent with the baseline results, we find that a stronger CoHHI link (con-
structed from Compustat data) between industries is associated with strong comovement in
their growth rates of employment.

Second, Barnatchez, Crane, and Decker (2017) shows that the though NETS employ-
ment data are highly correlated with Census data across counties and industries, small
establishments with less than 10 employees tend to be over-represented and biased because
of imputation. As noted above, because measures of industrial concentration give greater
weight to larger firms, the small-firm bias in NETS is less likely to affect our results. In
addition, to the extent that NETS data relies on imputation, the variability of growth rates
across industries will shrink, making it more difficult for us to find statistically significant
determinants of comovement (Neumark, Wall, and Zhang, 2011). To further address these
concerns, we re-estimate our main tests using only the 1000 largest firms in NETS and find
qualitatively similar results. The results are presented in Online Appendix Tables XII, XIII,
XIV, and XV.

Third, because Compustat data is more widely available than NETS, it is important to
test its reliability for future research on conglomerate networks. We have already shown that
the Compustat results for sales growth are replicated in NETS. To further alleviate concerns
that using large publicly traded firms to construct our network creates truncation bias in
our results, we run a series of robustness tests. To test how changing the size threshold of
the available Compustat data affects our results, we estimate the main tests using a sample
that excludes observations of firms that are below the 25th percentile of sales in a given year
in Compustat. Online Appendix Table XVI shows that our results are nearly identical as in
the main tests that use the full Compustat sample. In Online Appendix Table XVII, we use
a more extreme threshold of the 50th percentile of sales. The magnitude of the results are
smaller, but they are still statistically significant. Likewise, Online Appendix Table XVIII

shows that the results are nearly identical when we exclude foreign firms.
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Fourth, we compare Compustat data to the Economic Census data published by the US
Census Bureau. For each industry, we calculate the ratio of Compustat sales to Census sales.
We then divide industries into those that have above-median representation by Compustat
firms and those with below-median representation. We find that the total Census-level sales
of the average industry with above-median representation is statistically identical to the
Census-level sales of the average industry with below-median representation. This means
that large and small industries, as measured by Census data, are equally represented by
Compustat data. This helps alleviate any concerns that Compustat data is biased towards
large industries because it is biased towards large firms. These results suggest that future
research can construct reliable conglomerate networks using Compustat data and give cred-
ibility to prior research using Compustat to construct product market networks (Atalay,
Hortagsu, Roberts, and Syverson, 2011; Herskovic, Kelly, Lustig, and Van Nieuwerburgh,
2020).

Fifth, we reconstruct our network measures using SIC 3-digit industry definitions, which
are considerably more coarse than the NAICS codes we use in our main tests: the number of
industry-pairs in the network based on 3-digit SIC codes is only about 25% of the number of
industry-pairs in the main specifications. Online Appendix Table XIX shows that our main
results are robust to constructing the network using these more coarse industry definitions.

Sixth, to help address reverse causality concerns, we note that we used lagged variables
in the tariff shock tests in Table VII. To provide additional robustness, in Online Appendix
Tables VIII, IX, X, and XI, we also re-estimate our main equations using lagged explanatory
variables with industry-pair fixed effects. These tests control for any time-invariant determi-
nant of industry comovement (industry-pair fixed effects) as well as reverse causation in the
time-series, in which firms tend to diversify into industries that have recently experienced
greater comovement (lagged explanatory variables). The results are qualitatively similar as

the main results.
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Seventh, we use the tariff shock to provide direct evidence that shocks transmit from one
segment to another within the same conglomerate firm, as predicted in theories of internal
capital markets. We create a variable that measures a firm-segment’s exposure to the tariff
shock from other segments within the same conglomerate, similar to our industry-level mea-
sure in Table VII. We find that a segment’s sales growth is lower when other segments within
the same firm have greater exposure to the tariff shock, consistent with prior literature on
internal reallocation. The results and further details are in the Online Appendix.

Finally, we define the transmission network using an alternative internal reallocation policy
in which all shocks are directed to the largest segment, by sales. Under the assumption that,
on average, shocks are more likely to be positive than negative, this approximates a “winner-
takes-all” reallocation policy. We find that this reallocation policy has little explanatory
power to explain comovement of industries. This provide a placebo test that the significant
results based on the pro rata transmission network in our main tests are not spurious. We

provide more details in the Online Appendix.

VI. CONCLUSION

At its most granular level, economic activity is random and disorganized. At any given
time, there are innumerable transactions of countless goods and services between atomistic
individuals. To organize an analysis of the economy, researchers typically partition economic
activity into a set of isolated industries, grouped together by common suppliers, production
processes, technology, or customers. At the same time, economic activity is grouped together
by common control derived from ownership, typically organized as firms. These two group-
ings create overlapping boundaries of economic activity, in which industries are groupings of
firms, but at the same time, some firms are groupings of industries. In this paper, we orga-
nize these overlapping groupings into a unified network of industries and firms. Using this
network perspective, we show that economic activity transmits across the economy through

conglomerate firms that span multiple industries.
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The core of our framework is an affiliation network in which industries are affiliated with
firms and firms are affiliated with industries, but firms have no direct connections with other
firms and industries have no direct connections with other industries. From the affiliation
network, we create three unique inter-industry networks that represent 1) the strength of
the links from an industry through conglomerate firms, back to other industries, 2) two
industries” commonality of shared in-links from overlapping conglomerate firms, and 3) the
strength of shared out-links from industries to common firms.

The network perspective provides a new interpretation for the widely-used Herfindahl-
Hirschman Index (HHI). We show that HHI is a special case of a more general measure we
call CoHHI which represents the shared in-links of an industry. If the same firms command
more similar market shares in two industries, then the industries have a higher CoHHI. This
reflects a measure of cross-industry sales concentration through overlapping firms. Just as
variance is a special case of covariance, HHI is a special case of CoHHI.

The framework decomposes the empirical volatility of an industry’s growth rate into two
parts: 1) an industry-specific volatility of industry growth rates and 2) firm-level volatility
weighted by the HHI of the industry. The covariance of industry growth rates is equal
to firm-level volatility weighted by the CoHHI between the two industries. Thus CoHHI
describes the comovement of growth rates across the economy.

We test the predictions of our framework using panel data from two distinct datasets,
which cover the near universe of firms in the US, both public and private. We show that the
stronger is the connection between two industries in the conglomerate network, the stronger
is their comovement of growth rates of sales, assets, and employment. These results persist
after controlling for industry-pair fixed effects, year fixed effects, changes in industry HHIs,
customer-supplier links, and asset similarity measures. To help identify a causal relationship,
we exploit the cross-sectional variation in industries’ exposure to tariff rate shocks following

the granting of normal trade relations to China. We find that employment falls more in
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industries that have stronger connections in the conglomerate network to the industries
directly affected by the tariff rate shock.

We believe our results have far-reaching implications. First, they help explain how idiosyn-
cratic shocks aggregate to macroeconomic fluctuations and influence sectoral comovement.
Second, they provide a new perspective on the incidence of diversified conglomerates across
industries and time. Third, the conglomerate network generates a new measure of cross-
industry concentration, CoHHI, and gives a network-based interpretation to HHI. Given the
prevalence of HHI in academic research and among policy-makers, we believe this measure
will be useful for understanding the organizational structure of economic activity within and

across industries.
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Degree Distribution of Binary Conglomerate Network
These figures represent the distribution of degree centrality in log-log scale in the 2007 binary
conglomerate networks created from NETS data (Panel A) and Compustat data (Panel B).
Circles represent the degree centrality of industries, indicating how many direct connections

an industry has to other industries. The dashed line is the from the estimate of « in the
power distribution P(k) = ck™.



THE CONGLOMERATE NETWORK

v 16
3 Z*e Mean degree
0 o,
s 1.4 R
3 N
[9p)] J
- S.D. Degree/Mean Degree

3 1.2 - Clustering coefficient
N
=< 10
£ «*« e Eigenvector centrality
S 0.8
=

0.6 Power law «

1995 2000 2005 2010 2015

(A) NETS Data

S.D. Degree/Mean Degree
Clustering coefficient

Normalized Statistics

2000 2005 2010 2015
(B) Compustat Data

Fi1GURE IV

Time Series of the Binary Conglomerate Network
Five summary statistics are calculated yearly on the binary conglomerate network for NET'S
data (Panel A) and Compustat data (Panel B). Mean degree is the number of inter-industry
links into an average industry. Eigenvector centrality is the Katz-Bonacich centrality score
with an alpha of 90% of the network for an average industry. Clustering coefficient is the
fraction of industries that are connected to nodes that are also connected to each other for
the average industry. Power law « is the estimate of the scaling parameter of the power law
distribution P(x) = Cx~®. S.D. Degree/Mean Degree is the standard deviation of industry
degree divided by the average degree. All statistics are normalized by dividing by the values
in 1997.
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TABLE 11
Industry Covariance and Shared Network Links in the Cross-Section
Coefficients and industry-pair clustered standard errors (in parentheses) are in percentages.
Statistical significance indicated by ***, ** and * for significance at 0.01, 0.05, and 0.10.

Data source: NETS Compustat
Covariance of  Covariance of  Covariance of  Covariance of
Dependent variable: Employment Sales Asset Sales
growth growth growth growth
Shared in-links (CoHHI) 4.136*** 8.201*** 3.028*** 5.171***
(0.604) (0.684) (1.069) (1.094)
Same industry dummy 0.253** 0.429** 10.354** 8.864™*
(0.022) (0.028) (0.659) (0.573)
Constant 0.041* 0.089*** 0.293*** 0.406***
(< 0.001) (< 0.001) (0.010) (0.010)
Adjusted R? 0.054 0.063 0.014 0.016

Observations 475,800 475,800 250,096 249,856
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TABLE V
Comovement of Industry Growth and the Transmission Network

This table presents coefficient estimates from panel regressions where the dependent variable
is (gx — gj)Z, where g; is the growth rate of industry ¢ for employment, assets, or sales using
NETS (13,263,940 observations) or Compustat data (3,474,363 observations). All regressions
include the following controls: input-output links, Hoberg-Phillips similarity, and industry-pair
and year fixed effects. Coefficients and industry-pair clustered standard errors (in parentheses)
are in percentages. Statistical significance indicated by ***, ** and * for significance at 0.01,
0.05, and 0.10.

Panel A: NETS Data

Dependent variable:

Employment growth

Sales growth

Transmission (F'H + H'F)  0.069 —2.423%
(0.559) (0.818)
Transmission dummy —0.027** —0.059***
(0.005) (0.007)
Sum of HHI 1.673** 1.672* 5.572%* 5.570*
(0.024) (0.024) (0.043) (0.043)
Controls Yes Yes Yes Yes
Adjusted R? 0.082 0.082 0.075 0.075

Panel B: Compustat Data

Dependent variable:

Asset growth

Sales growth

Transmission (F'H + H'F) —7.978* —5.440"**
(1.735) (1.805)
Transmission dummy —1.881*** —1.722%
(0.226) (0.215)
Sum of HHI 1.682%** 1.672%* 2.509** 2.499**
(0.116) (0.116) (0.112) (0.112)
Controls Yes Yes Yes Yes
Adjusted R? 0.054 0.054 0.068 0.068
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TABLE VII
Transmission of Tariff Shocks Through the Conglomerate Network

This table presents coefficient estimates from panel regressions where the dependent variable is the
industry growth rate of employment from NETS. NTR Gap is the difference between the non-Normal
Trade Relations tariff rate and the NTR tariff rate. Post x Transmission NTR Gap; is the transmission
gap weighted by the transmission matrix from the conglomerate network. IO Customer and IO
Supplier are inter-industry connections from the input-output network. Coefficients and industry-
clustered standard errors (in parentheses) are in percentages. Statistical significance is indicated by
e % and * for significance at 0.01, 0.05, and 0.10.

Dependent variable: Employment growth

(1) (2) (3) (4)

Post x NTR Gap; —8.809**  —5.838"*  —8.814™*  —2.964
(1.407) (1.912) (1.400) (1.991)
Post x Transmission NTR Gap; —9.873** —7.272*
(3.812) (4.249)
Post x Placebo NTR Gap; —1.441
(2.133)
Post x 10O Customer NTR Gap; —5.021
(3.124)
Post x 10 Supplier NTR Gap; —4.402
(4.708)
Industry and year fixed effects Yes Yes Yes Yes
Adjusted R? 0.161 0.162 0.161 0.162

Observations 6,137 6,137 6,137 6,120
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Online Appendix
“The Conglomerate Network”

Kenneth R. Ahern, Lei Kong, and Xinyan Yan

I. THE CENTRALITY OF THE CONGLOMERATE NETWORK

To understand the long-run outcome of shocks transmitting through the network, we
consider the sum of the growth rates from 7 =0, ..., 00, as follows

Z [1+5 "2 4 (5(A’)2)2+(5(A’)2)3+---](I+A’)ﬁ

(OA.1) = [T—6(A) )" (T + 47,

where the infinite sum converges because A? is a stochastic matrix. The term [I — 6(A4")% " is
the Leontief inverse. Thus, Equation OA.1 represents the transformation of initial shocks into
industry and firm growth rates after passing through the conglomerate network an infinite
number of times. This can be interpreted as the steady state outcome of the transition
matrix A%, In addition, as Carvalho (2014) points out, the Leontief inverse is equivalent to
the Katz-Bonacich eigenvector centrality of a network. Thus, Equation OA.1 also implies
that the long-run industry and firm growth rates equal the product of their Katz-Bonacich
eigenvector centrality in the conglomerate network with their initial shock.

These properties of the conglomerate network are identical to the properties of the industry-
level input-output networks studied in Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi
(2012) and the firm-level input-output network studied in Herskovic, Kelly, Lustig, and Van
Nieuwerburgh (2020). In particular, both papers show that the Leontief inverse describes
how network structure affects aggregate growth rates. Acemoglu et al. include the Leontief
inverse in a measure they call the “influence vector” o of an industry, which is equivalent to

both Katz-Bonacich eigenvector centrality and the “sales vector” of the economy, in which
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each element reflects sector ¢’s sales as a fraction of the total sales in the economy. Ace-
moglu et al. note that the second representation is related to Gabaix’s finding that firm-level
productivity contributes to aggregate productivity in proportion with firm size.

Our conglomerate network has the same representations of the influence vector as the 10
network, except the weights in our measure represent the strength of the bi-partite network
of conglomerates. In particular, the eigenvector centrality of the industries and firms in our
network matrix A? is also the sales vector of the economy, #. Thus, like Acemoglu et al.,
given a vector of idiosyncratic industry shocks 7, the aggregate shock to the economy is
Uina '77. Equivalently, the aggregate shock to the economy from firm-level shocks is ¥y, '€,
as in Herskovic et al.

In sum, our framework generates the same implications for the importance of a single
industry or firm in the conglomerate network as derived in the production network, but
with an important distinction. In our framework, firms are diversified, unlike in Gabaix
(2011), which affects their centrality, and thus, their influence on the aggregate economy.
Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2020) present a similar intuition based on
the concentration of customers in the input-output network. Our work is similar to Herskovic
et al. because they allow for shocks at different levels of aggregation, including firm, industry,
and economy-wide shocks. Our approach is distinct from Herskovic et al. because we focus
on connections through conglomerate ownership, whereas they focus on customer-supplier

connections.

II. NETWORK VISUALIZATIONS

To help visualize the conglomerate network, Online Appendix Figure I presents the CoHHI
network for manufacturing industries in 2015. Each inter-industry connection represents a
CoHHI score above a minimum threshold. Industries listed in boxes are aggregated to more

coarse definitions for brevity. To give further intuition for the structure of the network,
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Online Appendix Figure II provides a detailed representation of the links between the paper,
chemicals, and plastic industries. The firms listed are those firms that operate in at least two
of the three industries. The CoHHI of the paper and chemicals industries is driven by their
common exposure to the same firms, with Procter & Gamble as a key conduit. Likewise, the
chemicals and plastics industries are connected through common exposure to conglomerate

firms, with Bayer as the strongest connection.
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Firms Industries

Grief Inc.

Masco Corp.
Paper, HHI: 7.3%

Newell Brands k
N\ .
rocter amble ‘ .:
p & Gambl ‘\\\‘/ E Co-HHI: 0.43%
Rogers Corp. \:“gé 0:
X .
Sealed Air &AA‘\X& T.;emica|5, HHI: 2.0%
Westrock > "“}‘/

Schweitzer-Mauduit />
& : Co-HHI: 0.15%

Omnova Solutions "\
h Plastics, HHI: 16.4%

Edgewell Personal Care
Berry Global Group

ONLINE APPENDIX FIGURE II
The Affiliation Network of the Paper, Chemicals, and Plastics Industries
This figure represents the affiliation network of three manufacturing industries, defined at
the three-digit NAICS level: Paper, Chemicals, and Plastics. The listed firms are those
that operate in at least two of the three industries. Each industry contains additional firms
not represented in the figure that do not operate segments in at least two of these three
industries. The widths of the lines are scaled by firms’ market shares in each industry.

There is a weak Co-HHI relationship between Plastics and Paper not shown in the figure.
Data are from Compustat for year 2015.
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APPENDIX FIGURE III

Yearly Cross-Sectional Correlation of Industry Relations
Each panel presents the yearly cross-sectional correlation of an industry-pair measure, ex-
cluding own-industry pairs using Compustat data. Panel A presents the correlations of the
conglomerate network measures, Panel B presents the correlations of the conglomerate net-
work measures with Hoberg-Phillips (HP) measures of industry connections, and Panel C
presents the correlations of the conglomerate network with the Input-Output network (10).
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III. OuT OF SAMPLE CROSS-SECTIONAL TESTS

In Table II, we estimate the variance-covariance matrix of industry growth rates as pre-
sented in Equation 8. In this derivation, we assumed that all orthogonalized firm and industry
shocks are drawn from identical distributions such that the variance of all firm shocks is o2
and the variance of all industry shocks is af,. Under this assumption, we then showed that
the conglomerate network can help explain the observed covariances of growth rates across
industries.

In this section, we expand the analysis by 1) relaxing the assumption of homoskedas-
ticity to allow each firm and industry shock to be drawn from unique distributions, and
2) estimating the unobserved shock variances. We still assume that orthogonalized shocks
are independent across time (no auto-correlation) and across industries and firms (no cross-
correlations). Using both the connections in the conglomerate network and the estimates of
the orthogonalized firm-specific and industry-specific variances, we predict the covariances
in industry growth rates. Thus, under the assumptions of heteroskedasticity, no serial cor-
relations, and no cross-correlations, the relationship between our model-implied covariances
and the observed covariances in the data indicates the extent to which the conglomerate
network helps explain industry comovement.'3

From Equation 7, the vector of growth rates is defined as:

H

I
(OA.2) Jo={I+A)W= =
F I

=\

7+ H'E

oy

g+ Fij
The variance-covariance matrix is

(OA3) Couldy) = E n' + H'ee' H nn'F’ + H'ee'
. ov(go) =
ee’H+ Fnn'  ee' + Fngny'F'

I3We thank Bruno Pellegrino for suggesting this approach.
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In contrast to the main paper, we allow each industry and firm to have a unique distribution
such that 1; ~ N(0,¢7) and &; ~ N(0,&7). If we indicate the ith row and jth column of H
as h;j, we can write the observed variances of the m industries recorded on the diagonals of

the upper-left block of Equation OA.3 as a set of m equations:

Industry 1 Variance = (} + h,& + h3, & + h3 & + -+ + h2 &2

Industry 2 Variance = C22 + h%sz + h§2§§ + h§2§§ + -+ hizéi

Industry m Variance = (2 + hi, & + h3,. & + h3,, 65 + -+ h2, &
and the variance of the n firms on the diagonals of the lower-right block as n equations:

Firm 1 Variance = & + (7 + [0 + [5G+ + finCa

Firm 2 Variance = & + f5,(7 + [5G + [5G+ + faCa

Firm n Variance = & + [2(F + [5G + [0 + - + [o.Co

Thus, the variance of the observed growth rate of an industry is decomposed into two
parts: the variance of the orthogonalized industry-specific shock and the weighted sum of
the variances of orthogonalized firm-specific shocks, where weights are based on the firms’
market shares. This implies that industry variance is larger if it faces more volatile industry-
specific shocks or if its firms have larger idiosyncratic volatility, weighted by the market
share of the firms. Likewise, the variance of the observed growth rates of firms is based on
the variance of firm-specific shocks plus the variance of industry-specific shocks, weighted by

the size of the industry sales as a fraction of the firm’s total sales.
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This derivation represents a system of n + m equations with n + m unknowns, where the
unknown variables are the unobservable orthogonalized shock variances of firms and indus-
tries, [Cl . gn]. Therefore, in an ideal setting, we can use observations of the H and F
matrices and the vector of observed industry and firm variances to solve for the vector of un-
observed orthogonalized shock variances. Once we have estimates of the unobservable shock
variances, we can then predict covariances as the off-diagonal elements of Equation OA.3.
Therefore, this procedure uses only the estimated shock variances and the H and F' matri-
ces to predict the covariances. In this sense, the test provides an out-of-sample prediction
because observed covariances are not used as an input into the prediction.

There are a number of challenges to implementing this analysis with real-world data.
First, we only observe growth rates of firms and industries over time, not instantaneous
variances or covariances of the growth rates of firms or industries. Instead, we must estimate
variances of growth rates using time-series data for each firm and industry. However, the H
and F' matrices are not constant over time. Thus, to match the cross-sectional estimates of
variances and covariances, we need to create a purely cross-sectional measure of H and F'.
To do this, we calculate the time-series average sales matrix S using the entire time series,
then compute a time-series average of H and F' from this average sales matrix.

Second, estimating the variance of growth rates at a firm level is noisy. Some firms have
long time series, but many do not. For example, estimating growth rates from a period of
four years of sales only provides three observed growth rates, which provides little statistical
power. In addition, the growth pattern of many small firms is not stable over time. They
tend to have high growth initially then lower growth as they mature. Thus, the volatility of
the growth rates in the time series is not the same as the instantaneous volatility of growth.

Third, the system of n + m equations involves tens of millions of firm-level observations
in the NETS data. Solving this system is computationally intensive and requires iterative
estimations with an arbitrary tolerance level. Using Compustat data means that many

industries are only thinly populated. In addition, because the system is perfectly identified,
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there exists only one solution to the system of equations. Given that our framework ignores
other potential drivers of observed firm and industry variances, for a given set of estimated
variances from the data, the solution to the system of equations could include negative values
for the orthogonalized shock variances. Because it is a perfectly identified linear system, these
negative shock variances are the only solution possible to match the data. Negative estimates
of variance represent an inconsistency with the assumptions of the model.

To address these estimation challenges, we do the following. For each year, we identify the
top 10,000 firms in NETS by total sales. Over the entire sample period, this identifies about
35,000 firms. For these firms, we calculate the variance of their sales growth and identified
those with positive variances that were less than the median variance. This generated a
sample of 16,535 firms operating in 973 industries. We then calculate the variances of the
observed industry and firm growth rates using this sample. To create the H and F' matrices,
we create an S matrix of sales by industry from these observations and take the time-series
average over the entire time period. With the observed variances and H and F matrices,
we solve the system of 17,508 equations to estimate the unobservable industry and firm
shock variances. Using these shock variances we calculate the model-implied cross-industry
covariance matrix as in Equation OA.3. Next, we estimate the cross-industry covariances
directly from the time-series data of growth rates for the 973 industries in our sample to
produce a data-implied cross-industry covariance matrix. We winsorize both the model-
implied and data-implied covariances at the 5% level to exclude outliers.

We regress the covariances taken directly from the data on the model-implied covariances.

The regression results are as follows:

Observed Cov(gsales.is gsates,j) = 0.001 + 6.709 x Model-Implied Cov(gsaies,ir Isates,;)
(14.29)  (8.95)

where industry-clustered t-statistics are reported in parenthesis in a sample of 472,876 ob-

servations.
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These results show that the model-implied covariances are strongly related to the directly
observed covariances. These results demonstrate that ignoring all other factors that could
influence cross-industry comovement, such as common suppliers or customers, regulatory
regimes, geographic proximity, or similarity in labor or assets, we are able to statistically
predict the heterogeneity of cross-industry covariances using only observed within-firm and

industry variances and the conglomerate network.

IV. ALTERNATIVE INTERNAL ALLOCATION POLICIES

Theories of internal capital markets assume a range of different reallocation policies. In
our main tests, we assume that resources are allocated pro rata within the firm, which is
most consistent with a firm with equalized marginal revenue products across its divisions
(Williamson, 1975). This interpretation is based on our intuitive assumption that the ex-
posure level of an industry to a firm-level shock is equal to the firm’s market share in the
industry. Likewise, the exposure level of a firm to an industry-level shock is equal to the
share of the firm’s total sales originating in that industry.

An alternative reallocation policy is the corporate socialism model of Rajan, Servaes, and
Zingales (2000). This model assumes that when a conglomerate’s segments are dissimilar
in the sizes of their resources and opportunities, internal reallocations can flow from more
efficient to less efficient divisions. In contrast, when segments are more similar, the opposite
allocation occurs. Thus, the headquarters has the incentive to transfer resources ex ante
from larger to smaller divisions to reduce inefficiency. In contrast, Stein (1997) assumes that
headquarters allocates shocks to the divisions with higher profitability because it allows the
firm managers to expropriate larger private benefits.

These alternative policies do not map as cleanly into our network setting because they rely
on allocations that are conditional on positive versus negative shocks. Instead, because our

model is suited for understanding variance and covariance, it treats positive and negative
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shocks symmetrically. However, to provide an alternative model, we re-define the H matrix
to always transmit segment-level shocks to the firm’s largest segment. In particular, the
largest segments are the only nonzero elements in H, the value of which is defined by firm
size divided by industry size as opposed to segment size divided by industry size in the pro
rata case. This is similar to the winner-picking theory of Stein (1997) under the assumption
that all shocks are positive and that the largest segment generates the greatest profits for
expropriation. In reality, some shocks are negative, which will counteract the winner-picking
policy. Even if this is not a perfect match to the theory, it still provides an alternative
allocation mechanism to the pro rata allocation policy used in the main paper.

Online Appendix Table XXI presents the results of these tests. The transmission matrix
based on largest segments does not significantly explain comovement in employment growth
rates across industries, either in a continuous form or in a dummy variable form. Likewise,
it is not significantly related to comovement in sales growth comovement, either. Instead,
the pro rata reallocation matrix is significantly related to comovement in sales growth and
employment growth.

While these results show that the reallocation policy based on largest segment does not
explain comovement, we acknowledge that this is not an exact match to winner-picking
policies. However, these results do show that the choice of internal reallocation policy does
influence whether the transmission matrix can explain industry comovement. It also provides

evidence that the pro rata transmission matrix is not significant for spurious reasons.
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V. ADDITIONAL TABLES

In this section, we provide expanded results and additional robustness checks.

e Online Appendix Table I provides the correlations between inter-industry measures.

e Online Appendix Table II provides an overview of the main and robustness tests.

e Online Appendix Table III provides the complete results from Panel A of Table IV.

e Online Appendix Table IV provides the complete results from Panel B of Table IV.

e Online Appendix Table V provides the complete results from Panel A of Table V.

e Online Appendix Table VI provides the complete results from Panel B of Table V.

e Online Appendix Table VII provides robustness tests for Panel A of Table IV using
data from the County Business Patterns of the US Census.

e Online Appendix Table VIII provides robustness tests of Panel A of Table IV using
lagged explanatory variables.

e Online Appendix Table IX provides robustness tests of Panel B of Table IV using
lagged explanatory variables.

e Online Appendix Table X provides robustness tests of Panel A of Table V using
lagged explanatory variables.

e Online Appendix Table XI provides robustness tests of Panel B of Table V using
lagged explanatory variables.

e Online Appendix Table XII provides robustness tests of Panel A of Table IV using
the largest 1000 firms in NETS.

e Online Appendix Table XIII provides robustness tests from Panel A of Table V using
the largest 1000 firms in NETS.

e Online Appendix Table XIV provides robustness tests of Panel A of Table IV using
lagged explanatory variables with the largest 1000 firms in NETS.

e Online Appendix Table XV provides robustness tests of Panel A of Table V using
lagged explanatory variables with the largest 1000 firms in NETS.



14

THE CONGLOMERATE NETWORK

e Online Appendix Table XVI provides robustness tests of Panel B of Table IV exclud-
ing firms below the 25th size percentile.
e Online Appendix Table XVII provides robustness tests of Panel B of Table IV ex-

cluding firms below the 50th size percentile.

e Online Appendix Table XVIII provides robustness tests of Panel B of Table IV ex-
cluding foreign firms.

e Online Appendix Table XIX provides robustness tests of Panel B of Table IV using
3-digit industry definitions.

e Online Appendix Table VII provides additional results on the internal reallocation
of shocks following the WTO tariff shock.

e Online Appendix Table XXI provides results using a modified winner-picking internal

reallocation policy.
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ONLINE APPENDIX TABLE I

Correlations of Industry Measures

15

This table presents the average annual cross-sectional correlations between the measures of cross-

industry relations.

Panel A: NETS Data

HP HHI F'H H'H F'F
Input-Output (1O) 0.087 —0.061 0.094 0.034 0.111
Hoberg-Phillips (HP) —0.025 0.085 0.021 0.073
Sum of HHI (HHI) 0.014 0.081 —0.037
Transmission (F'H) 0.387 0.148
CoHHI (H'H) 0.020
Panel B: Compustat Data

HP HHI F'H H'H F'F
Input-Output (10) 0.068 —0.006 0.071 0.039 0.062
Hoberg-Phillips (HP) —0.076 0.050 0.012 0.124
Sum of HHI (HHI) —0.012 0.026 —0.056
Transmission (F'H) 0.436 0.224
CoHHI (H'H) 0.092




THE CONGLOMERATE NETWORK

16

— SN — — — (300U OLM) PasseT
— Aquo Awrwn( — — Sox — JUDIINOUO))
dgp snsua)
SOA — SOA SOA — SOA v
pabbory
_— _— — SOX — SOX SUOIIUYOpP AIISIIPUL 9SIRO0))
- - - SOX — SO d1IseWOp ATU()
— — — Sox — Sox o[nueotad Yy0G day,
- - — SOX — SOX [mueorad 36, doj,
SOA — SOA SOA — SOA v
JUDLINIUO,)
rersnduwo))
Sox Aquo Awrwn( — Sox SOX — 0001 dot,
SOX Apuo Aurwm(J - SOX SOX — v
pabbop
SOA Auo Awrwun( — Auo Awrwun (g SOA — 0007 daf,
Sox Aquo Awrwun( — SOX SOX — v
JUDLINDUO,)
SLUN

IMOI3 [IMOIE)  [[IMOIN) IMOIS  [IMOIY)  [IMOIX)

SRS ooforduryg jossy soeg  eaAordwry jossy

UOISSTWISURIT, SYUIT poIeyq

‘quedyIudIs A[esr)siye)s st paysoy dIysuorje[ol
ot} Ioyjeym pue xipuadde pue 1oded o1} Ul pojonpuod $3s9) O} JO [[B SOJRIIPUL O[qR) SIY T,

I1 419V ], XIANJIddY INI'INQO

ssaujlsnqoy pue sjnsay [eosnduwy jo Arewrwung



17

THE CONGLOMERATE NETWORK

9¥e'ese'e1
GL0°0
SOX

(£2€°0)
el BET

(710°0)

(£30°0)
e0LG°G

(L00°0)

OVC'€ST'eT 9V eST el
cL0°0 GL00
Sox Sox

(€2€0) (£2€0)
sl SET wxG8E°C

(¥10°0) (¥10°0)

(€70°0) (€70°0)
s 18G°C e 18G°G

(£00°0)

(6£6°0) (6€6°0)

076°€9zZ'CT
z80°0
SOX

(66€°0)

(€10°0)

(¥20°0)
e €L0°T

(¥00°0)

0¥6°€92°¢1
Z80°0
SOX

(66€°0)

(€10°0)

(¥20°0)
ce8L°T

(£00°0)

(025°0)

0V6°€9Z°€T SUOTYRAIISG ()
2800 & Posulpy
SoX s109e paxy Ieak pue ared-Arysnpuy
(66£°0)
e 10T T Ayrreqruats sdifiyJ-80qoH
(€10°0)
xx89T°0— surf yndinQ-yndug
(¥20°0)
ws8LO'T THH Jo wmng
Awrunp syUuI[-ut poIeyq
SYUI[-310 .@@Hdﬂm
(025°0)
wxx0CF T (IHH-0D) sy[uIf-ut pareqs

Ypnoab sang

ypmoab Juawifiojdwsy

d[qeLrea yuopuado(]

‘0T°0 PU®R ‘GO°0 ‘TO°(Q e 9ouedyIusis 10 , pue ‘.. ‘... Aq PoOJedIpul s0URIYIUSIS
reorysiyelg  “soejuentod ul ore (sesoyjusred Ul) SI0LID pIepue)s palojsnd Ired-£1psnpul pue SjUSDIPE0)) “ejep SIHN
SUISN So[eS 10 $99sSk 10 ¢ AIISNPUT JO 9)RI [IMOI3 9] ST 0 o1oym “NA.& — A6) st a[qerrea Juepuadep a1} 218U M SUOISSIIZAI
[Pued woIy sejewIse JUSIDYFe0)) “Ioded urewr ay) Ul AT 9[qRT, JO ¥ [PURJ WOIy symsal oja1duwod oy} sepraoid o[qey sIyJ,
eje SIHAN :SYUIT I0MISN pPadeys pue [imolir) AI)snpuy JO JUSUWSAOWIO))

IIT 9719V, XIANIddY INI'INQ



THE CONGLOMERATE NETWORK

18

TLRCOC'e  TLR'E9G'e  TL8'EoGe  €ogTLTe
890°0 890°0 890°0 760°0
SOX SOX SOX SOX

(ggev) (09e7) (29e¥) (6£9°¢)
(19€°0) (19€°0) (19€°0) (L9€°0)
980T w600 T sl TO'T 102°0
(211°0) (211°0) (211°0) (91T°0)
x667°C wx11C°C w818 wxGLO'T
(c12°0) (922°0)
(LFT'T)
(¥6¢°2) (£8¢°7)

COCTLY'ES  €oCTLYC SUOIIRAIIS ()
7S0°0 7S0°0 & passulpy
SOX SOX s109e poxy Ieak pue ared-A1ysnpuy

(¥59°¢) (8¢9°¢)
#5x8L8 60— 465668 Ayrreqruats sdi[iy J-819q0
(L9€°0) (L9€°0)
610 e6T°0 sur mndinO-jnduy
(91T°0) (91T°0)
xG89°T +x889°T [HH jo wng
Awrunp syUuI[-ut poIeyq
(£9¢'T)
V€9 E— SYUI[-IMO0 POIRYS
(£%9°2) (ce92)

wxxBGV TC—  44x8GC €T— (IHH-0D) SYul[-ut paIeys

Ypnoab sang

yimoub 1assy

d[qeLrea yuopuado(]

"0T°0 PR ‘GO0 ‘T0°0 Y& 9OURIYIUSIS I0] , pue ‘., ‘., £q PIYRIIPUL 0UROYIUSIS [@OISTIR)S
"sodejuedied Ul are (seseyjuered UI) SIOLI® PIRPUR)S Pald)sn[d Ired-AIISnpul pue sjusoYeo)) -eiep jejsnduwoy) uisn
sofes pue sjosse 10} 2 AIISPUL Jo oyel YIMO0I3 oYy st b oToym ‘ (‘6 — 46) st o[qerres juopuodop oY) dI0UM SUOISSOIZOI
[pued woI} seyewinyse JuaDIeo)) “1oded urewr o) Ul AT 9[qR], JO { [ouRJ WO} sjmsal aja[duiod o} sopraoid a[qey sIyJ,
eje(] rejsnduio)) :SUIT JIOMIDN PoIeyS pPue Ymoar) AIISNPuUf JO JUSUISAOUWIO))
AT @19V, XIONZddY ENI'INQ



THE CONGLOMERATE NETWORK

ONLINE APPENDIX TABLE V

Comovement of Industry Growth and the Transmission Network: NETS Data
This table provides the complete results from Panel A of Table V in the main paper. This table
presents coefficient estimates from panel regressions where the dependent variable is (g — gj)z,
where g; is the growth rate of industry ¢ for employment or sales using NETS. Coefficients

and industry-pair clustered standard errors (in parentheses) are in percentages.

significance indicated by ***, ** and * for significance at 0.01, 0.05, and 0.10.

Statistical

Dependent variable:

Employment growth

Sales growth

Transmission (F'H + H'F) 0.069
(0.559)
Transmission dummy
Sum of HHI 1.673**
(0.024)
Input-Output link —0.169***
(0.013)
Hoberg-Phillips similarity 1.404**
(0.399)
Industry-pair and year fixed effects Yes
Adjusted R? 0.082
Observations 13,263,940

—0.027**
(0.005)

1.672%
(0.024)

—0.169***
(0.013)

1.409%*
(0.399)

Yes
0.082
13,263,940

2,423
(0.818)

5572
(0.043)

—0.191%*
(0.014)

2,397
(0.373)

Yes
0.075
13,253,246

—0.059***
(0.007)

5570
(0.043)

—0.190"*
(0.014)

2,402
(0.373)

Yes
0.075
13,253,246
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ONLINE APPENDIX TABLE VI
Comovement of Industry Growth and the Transmission Network: Compustat Data
This table provides the complete results from Panel B of Table V in the main paper. This
table presents coefficient estimates from panel regressions where the dependent variable is
(gx — gj)Q, where ¢; is the growth rate of industry i for assets or sales using Compustat
data. Coefficients and industry-pair clustered standard errors (in parentheses) are in per-
centages. Statistical significance indicated by ***, **, and * for significance at 0.01, 0.05, and 0.10.

Dependent variable: Asset growth Sales growth
Transmission (F'H + H'F) —7.978*** —5.440%
(1.735) (1.805)
Transmission dummy —1.881* —1.722%*
(0.226) (0.215)
Sum of HHI 1.682*** 1.672%* 2.509** 2.499***
(0.116) (0.116) (0.112) (0.112)
Input-Output link 0.188 0.201 1.023*** 1.036***
(0.367) (0.367) (0.361) (0.361)
Hoberg-Phillips similarity —30.010"*  —29.656** —20.866™* —20.598"**
(5.661) (5.639) (4.361) (4.355)
Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R? 0.054 0.054 0.068 0.068

Observations 3,474,363 3,474,363 3,563,872 3,563,872
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ONLINE APPENDIX TABLE X
Comovement of Industry Growth and the Lagged Transmission Network:

NETS Data
This table presents regressions identical to Online Appendix Table V except all of the inde-
pendent variables are lagged one year. This table presents coefficient estimates from panel
regressions where the dependent variable is (g — gj)Q, where g; is the growth rate of industry 7
for employment or sales using NETS. Coefficients and industry-pair clustered standard errors

(in parentheses) are in percentages. Statistical significance indicated by ***, ** and * for
significance at 0.01, 0.05, and 0.10.

Dependent variable: Employment growth Sales growth

Transmission (F'H + H'F) 0.398 —4.241%
(0.565) (1.455)
Transmission dummy —0.022%* —0.077**
(0.004) (0.012)
Sum of HHI 3.245** 3.245**  17.558**  17.555"*
(0.035) (0.035) (0.183) (0.183)
Input-Output link —0.188"*  —0.188"*  —0.007 —0.007
(0.009) (0.009) (0.025) (0.025)
Hoberg-Phillips similarity 0.449** 0.454** 1.403*** 1.407
(0.213) (0.213) (0.473) (0.473)
Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R? 0.059 0.059 0.055 0.055
Observations 13,269,776 13,269,776 13,269,776 13,269,776
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ONLINE APPENDIX TABLE XI
Comovement of Industry Growth and the Lagged Transmission Network:

Compustat Data
This table presents regressions identical to Online Appendix Table V except all of the inde-

pendent variables are lagged one year.

25

This table presents coefficient estimates from panel

regressions where the dependent variable is (g — gj)2, where g; is the growth rate of industry
1 for assets or sales using Compustat data. Coefficients and industry-pair clustered standard

errors (in parentheses) are in percentages. Statistical significance indicated by

significance at 0.01, 0.05, and 0.10.

kkk o kk

, ™, and * for

Dependent variable:

Asset growth

Sales growth

Transmission (F7H + H/F) —8.746***
(1.588)
Transmission dummy
Sum of HHI —1.235"*
(0.119)
Input-Output link 0.006
(0.358)
Hoberg-Phillips similarity —7.562
(5.489)
Industry-pair and year fixed effects Yes
Adjusted R? 0.056
Observations 3,202,103

—0.661"
(0.236)

—1.237*
(0.119)

0.010
(0.358)

—7.283
(5.484)

Yes
0.056
3,202,103

—7.203***
(1.752)

0.131
(0.120)

—0.009
(0.342)

—13.181**
(5.493)

Yes
0.066
3,278,544

—0.620*
(0.225)

0.129
(0.120)

—0.004
(0.342)

—12.951**
(5.483)

Yes
0.066
3,278,544
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ONLINE APPENDIX TABLE XIII

Comovement of Industry Growth and the Transmission Network: NETS Data
Largest 1000 Firms

This table provides the complete results from Panel A of Table V in the main paper using only
the largest 1000 firms in the NETS data. This table presents coefficient estimates from panel
regressions where the dependent variable is (g — gj)Q, where g; is the growth rate of industry 7
for employment or sales using NETS. Coefficients and industry-pair clustered standard errors

(in parentheses) are in percentages.
significance at 0.01, 0.05, and 0.10.

*kk

Statistical significance indicated by ,

*%

27

, and * for

Dependent variable:

Employment growth

Sales growth

Transmission (F7H + H/F) —0.136
(0.108)
Transmission dummy
Sum of HHI 1747
(0.023)
Input-Output link —0.226%**
(0.014)
Hoberg-Phillips similarity 1.099***
(0.399)
Industry-pair and year fixed effects Yes
Adjusted R? 0.094
Observations 13,222,191

—0.018"
(0.004)

1.753%*
(0.023)

—0.226""
(0.014)

1.103**
(0.399)

Yes
0.094
13,222,191

—2.450***
(0.182)

3.106*
(0.059)

—0.180***
(0.016)

1.699**
(0.364)

Yes
0.078
13,206,713

—0.113"
(0.006)

3.126
(0.059)

—0.179**
(0.016)

1.741%%
(0.364)

Yes
0.078
13,206,713
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ONLINE APPENDIX TABLE XV
Comovement of Industry Growth and the Lagged Transmission Network:

NETS Data

Largest 1000 Firms
This table presents regressions identical to Online Appendix Table V except all of the inde-
pendent variables are lagged one year and the data are restricted to the largest 1000 firms in
NETS. This table presents coefficient estimates from panel regressions where the dependent
variable is (gx — gj)z, where g; is the growth rate of industry ¢ for employment or sales using
NETS. Coefficients and industry-pair clustered standard errors (in parentheses) are in per-
centages. Statistical significance indicated by ***, **, and * for significance at 0.01, 0.05, and 0.10.

29

Dependent variable:

Employment growth

Sales growth

Transmission (F7H + H/F) —0.034
(0.104)
Transmission dummy
Sum of HHI 1.125%
(0.023)
Input-Output link —0.268***
(0.013)
Hoberg-Phillips similarity 0.276
(0.248)
Industry-pair and year fixed effects Yes
Adjusted R? 0.102
Observations 12,761,871

—0.015*
(0.003)

1,131
(0.023)

—0.268***
(0.013)

0.278
(0.248)

Yes
0.102
12,761,871

—2.204*+
(0.180)

4,252+
(0.044)

—0.139***
(0.017)

—0.812"
(0.324)

Yes
0.085
12,746,360

—0.116**
(0.006)

4.276%*
(0.044)

—0.139***
(0.017)

—0.772*
(0.324)

Yes
0.085
12,746,360
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ONLINE APPENDIX TABLE XVI

Comovement of Industry Growth and Shared Network Links:
Robustness to Excluding Compustat Firms Below the 25th Percentile of Sales
This table replicates Panel B of Table IV of the main paper, but uses observations from
networks that exclude firms with sales below the 25th percentile of sales per year. The
table presents coefficient estimates from panel regressions where the dependent variable is
(gx — gj)?, where g; is the growth rate of industry i for sales (Panel A) and assets (Panel
B). Variable definitions are provided in the text. All regressions include industry-pair
fixed effects and year fixed effects. Coefficients and industry-pair clustered standard
errors (in parentheses) are in percentages. Statistical significance is indicated by ***, **
and * for significance at 0.01, 0.05, and 0.10.

7

Dependent variable: (gr — g;)*

(1) (2) (3) (4)
Panel A: Sales growth
Shared in-links (Co-HHI) —18.747%* —17.932%**
(2.615) (2.629)
Shared out-links —5.021"*  —3.727*
(1.310) (1.244)
Shared links dummy —1.295%*
(0.221)
Sum of HHI 2511 2.505*** 2.508** 2.498***
(0.111) (0.111) (0.111) (0.111)
Input-Output link 0.465 0.462 0.466 0.470
(0.322) (0.322) (0.322) (0.322)
Hoberg-Phillips similarity —16.455"* —16.170** —16.376"* —16.216"**
(4.279) (4.271) (4.277) (4.273)
Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R? 0.061 0.061 0.061 0.061
Observations 3,252,468 3,252,468 3,252,468 3,252,468

continued on next page
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Dependent variable: (gr — g;)*

(1)

(2)

(3)

Panel B: Asset growth

Shared in-links (Co-HHI) —18.059"**
(2.609)

Shared out-links

Shared links dummy

Sum of HHI 2.657*
(0.114)
Input-Output link —0.150
(0.326)
Hoberg-Phillips similarity —20.197***
(5.538)
Industry-pair and year fixed effects Yes
Adjusted R? 0.052

Observations 3,161,000

—5.062***
(1.474)

2.651***
(0.114)

—0.154
(0.325)

—19.936***
(5.527)

Yes
0.052
3,161,000

—17.229%
(2.617)

—3.812"
(1.410)

2,654
(0.114)

—0.149
(0.326)

—20.124**
(5.534)

Yes
0.052
3,161,000

—1.441***
(0.233)

2.643***
(0.114)

—0.145
(0.325)

—19.975%*
(5.527)

Yes
0.052
3,161,000
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ONLINE APPENDIX TABLE XVII

Comovement of Industry Growth and Shared Network Links

Robustness to Excluding Compustat Firms Below the Median Size
This table replicates Panel B of Table IV of the main paper, but uses observations from
networks that exclude firms with sales below the median sales level per year. The table
presents coefficient estimates from panel regressions where the dependent variable is
(gx — gj)?, where g; is the growth rate of industry i for sales (Panel A) and assets (Panel
B). Variable definitions are provided in the text. All regressions include industry-pair
Coefficients and industry-pair clustered standard

fixed effects and year fixed effects.
errors (in parentheses) are in percentages. Statistical significance is indicated by

and * for significance at 0.01, 0.05, and 0.10.

kskko skok
) 7

Dependent variable: (gr — g;)*

(1)

(2)

(3)

(4)

Panel A: Sales growth

Shared in-links (Co-HHI)
Shared out-links

Shared links dummy
Sum of HHI
Input-Output link
Hoberg-Phillips similarity

Industry-pair and year fixed effects
Adjusted R?
Observations

—9.299*
(2.825)

2.429%*
(0.119)

1.321%%
(0.365)

0.618
(4.989)

Yes
0.063
2,593,920

—6.341**
(1.643)

2.421***
(0.119)

1.327
(0.365)

0.851
(4.983)

Yes
0.063
2,593,920

—8.279"
(2.847)

—5.525%*
(1.592)

2.424%*
(0.119)

1.328*
(0.365)

0.723
(4.986)

Yes
0.063
2,593,920

—0.963***
(0.241)

2417
(0.119)

1.332%
(0.365)

0.785
(4.987)

Yes
0.063
2,593,920

continued on next page



THE CONGLOMERATE NETWORK 33

Dependent variable: (gr — g;)*

(1) (2) (3) (4)

Panel B: Asset growth

Shared in-links (Co-HHI) —10.991** —9.946***
(2.671) (2.686)
Shared out-links —6.566"**  —5.591**
(1.684) (1.624)
Shared links dummy —1.180***
(0.258)
Sum of HHI 3.702%* 3.693* 3.697 3.688**
(0.119) (0.119) (0.119) (0.119)
Input-Output link 0.544 0.549 0.550 0.557
(0.370) (0.370) (0.370) (0.370)
Hoberg-Phillips similarity —15.681*** —15.428** —15.581** —15.498***
(5.282) (5.275) (5.279) (5.276)
Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R? 0.049 0.049 0.049 0.049

Observations 2,509,635 2,509,535 2,509,535 2,509,535
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ONLINE APPENDIX TABLE XVIII

Comovement of Industry Growth and Shared Network Links

Robustness to Excluding Foreign Firms in Compustat Data
This table replicates Panel B ofTable IV of the main paper, but uses observations from
networks that exclude firms incorporated outside of the U.S. The table presents coefficient
estimates from panel regressions where the dependent variable is (g — g;)?, where g; is
the growth rate of industry ¢ for sales (Panel A) and assets (Panel B). Variable definitions
are provided in the text. All regressions include industry-pair fixed effects and year fixed
effects. Coefficients and industry-pair clustered standard errors (in parentheses) are in

ook ok

percentages. Statistical significance is indicated by ***, ** and * for significance at 0.01,
0.05, and 0.10.

Dependent variable: (gr — g;)*

(1) (2) (3) (4)
Panel A: Sales growth
Shared in-links (Co-HHI) —21.811* —20.918**
(2.448) (2.471)
Shared out-links —6.244"*  —4.365"**
(1.362) (1.284)
Shared links dummy —2.050***
(0.236)
Sum of HHI 1.800*** 1.793** 1.797 1.784*
(0.113) (0.113) (0.113) (0.113)
Input-Output link 0.490 0.488 0.494 0.498
(0.329) (0.330) (0.330) (0.330)
Hoberg-Phillips similarity —16.236"* —15.930"* —16.157"* —15.973"**
(4.323) (4.310) (4.320) (4.311)
Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R? 0.070 0.070 0.070 0.070
Observations 3,371,361 3,371,361 3,371,361 3,371,361

continued on next page
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Dependent variable: (gr — g;)*

(1)

(2)

(3)

(4)

Panel B: Asset growth

Shared in-links (Co-HHI) —22.676"*
(2.223)

Shared out-links

Shared links dummy

Sum of HHI 1.588***
(0.112)
Input-Output link —0.817**
(0.340)
Hoberg-Phillips similarity —17.680***
(5.050)
Industry-pair and year fixed effects Yes
Adjusted R? 0.058

Observations 3,289,294

—3.901*
(1.579)

1.583%*
(0.112)

—0.820"
(0.340)

— 17447
(5.036)

Yes
0.058
3,289,294

—22.204"
(2.235)

—1.875
(1.479)

1.586%*
(0.112)

—0.815™
(0.340)

—17.644"
(5.048)

Yes
0.058
3,289,294

—2.084***
(0.237)

1.571%*
(0.112)

—0.808**
(0.340)

—17.428"
(5.036)

Yes
0.058
3,289,294




36

THE CONGLOMERATE NETWORK

ONLINE APPENDIX TABLE XIX

Comovement of Industry Growth and Shared Network Links
Robustness to Coarse Industry Definitions in Compustat
This table replicates Panel B of Table IV of the main paper, but uses observations from
networks based on 3-Digit SIC codes. The table presents coefficient estimates from
panel regressions where the dependent variable is (gx — gj)Q, where ¢; is the growth
rate of industry ¢ for sales (Panel A) and assets (Panel B). Variable definitions are
provided in the text. All regressions include industry-pair fixed effects and year fixed
effects. Coefficients and industry-pair clustered standard errors (in parentheses) are in
ook ok

percentages. Statistical significance is indicated by ***, ** and * for significance at 0.01,
0.05, and 0.10.

Dependent variable: (gr — g;)*

(1) (2) (3) (4)
Panel A: Sales growth
Shared in-links (Co-HHI) —18.393*** —16.487***
(5.047) (4.984)
Shared out-links —4.906"*  —4.582***
(0.919) (0.909)
Shared links dummy —1.041***
(0.207)
Sum of HHI 2570 2.562%* 2.568*** 2.555***
(0.231) (0.231) (0.231) (0.231)
Input-Output link —0.171%*  —0.170**  —0.170"*  —0.169***
(0.053) (0.053) (0.053) (0.053)
Hoberg-Phillips similarity —1.504 —1.309 —1.403 —1.270
(4.592) (4.596) (4.592) (4.574)
Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R? 0.066 0.066 0.066 0.066
Observations 845,868 845,868 845,868 845,868

continued on next page
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Dependent variable: (gr — g;)*

(1)

(2) (3)

(4)

Panel B: Asset growth

Shared in-links (Co-HHI) —13.935"
(4.709)

Shared out-links

Shared links dummy

Sum of HHI 0.019
(0.237)

Input-Output link —0.303***
(0.057)

Hoberg-Phillips similarity —22.009***
(4.361)

Industry-pair and year fixed effects Yes

Adjusted R? 0.053

Observations 821,164

—11.982**
(4.726)

—5.010%*  —4.774***
(0.946) (0.941)
0.013 0.018
(0.237) (0.237)

—0.302***  —0.302***
(0.056) (0.056)

—21.804** —21.876***
(4.354) (4.357)
Yes Yes
0.053 0.053

821,164 821,164

—1.160***
(0.223)

0.006
(0.237)

—0.301***
(0.056)

—21.797**
(4.375)

Yes
0.053
821,164
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ONLINE APPENDIX TABLE XX

Transmission of Tariff Shocks Within Conglomerates
This table presents coefficient estimates from panel regressions where the dependent variable is the
industry growth rate of sales. NTR Gap is the difference between the non-Normal Trade Relations tariff
rate and the NTR tariff rate. Other NTR Gap is based on other segments within the conglomerate
firm. Firm-clustered standard errors are in parentheses. Statistical significance is indicated by ***, **,

and * for significance at 0.01, 0.05, and 0.10.

Dependent variable: Sales growth

1999 Fized Network Placebo Network
(1) (2) (3) (4)

Post x NTR Gap; 0.002 0.002 —0.054 —0.050

(0.063) (0.063) (0.057) (0.057)
NTR Gap; —0.859 0.576*

(0.883) (0.313)
Post x Other NTR Gap; —0.197* —0.194* 0.013 0.018

(0.079) (0.079) (0.062) (0.062)
Other NTR Gap; —1.857* —0.201

(1.122) (0.153)
Segment fixed effects Yes Yes
Segment-industry fixed effects Yes Yes
Year fixed effects Yes Yes Yes Yes
Adjusted R? 0.268 0.270 0.269 0.271

Observations 24,143 24,095 24,143 24,095
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ONLINE APPENDIX TABLE XXI
Comovement of Industry Growth and the Transmission Network: Winner-takes-all
This table provides robust tests for the results of Table V in the main paper where the
transmission network is defined differently. This table presents coefficient estimates from
panel regressions where the dependent variable is (g — gj)Q, where g; is the growth rate of
industry ¢ for employment or sales using NETS. Largest Segment Transmission assumes the
firm reallocates all shocks to the largest division. Pro Rata Transmission assumes shocks are
transmitted pro rata as in the main analysis. Controls include sum of HHI, Input-output
links, and Hoberg-Phillips similarity. Coefficients and industry-pair clustered standard errors

(in parentheses) are in percentages. Statistical significance indicated by ***, ** and * for
significance at 0.01, 0.05, and 0.10.
Panel A: Employment growth
Largest Segment Transmission 0.400 0.413
(0.661) (0.701)
Pro Rata Transmission —0.033
(0.593)
Largest Segment Transmission Dummy 0.000 0.006
(0.005) (0.005)
Pro Rata Transmission Dummy —0.027*
(0.005)
Controls Yes Yes Yes Yes
Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R? 0.082 0.082 0.082 0.082
Observations 13,263,940 13,263,940 13,263,940 13,263,940
Panel B: Sales growth
Largest Segment Transmission —1.144 —0.194
(0.897) (0.917)
Pro Rata Transmission —2.375"*
(0.843)
Largest Segment Transmission Dummy —0.029**  —0.017**
(0.006) (0.006)
Pro Rata Transmission Dummy —0.057**
(0.007)
Controls Yes Yes Yes Yes
Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R? 0.075 0.075 0.075 0.075

Observations 13,253,246 13,253,246 13,253,246 13,253,246




