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Abstract

Estimation and testing of factor models in asset pricing requires choosing a set of test assets. The

choice of test assets determines how well different factor risk premia can be identified: if only few assets

are exposed to a factor, that factor is weak, which makes standard estimation and inference incorrect.

In other words, the strength of a factor is not an inherent property of the factor: it is a property of the

cross-section used in the analysis. We propose a novel way to select assets from a universe of test assets

and estimate the risk premium of a factor of interest, as well as the entire stochastic discount factor, that

explicitly accounts for weak factors and test assets with highly correlated risk exposures. We refer to our

methodology as supervised principal component analysis (SPCA), because it iterates an asset selection

step and a principal-component estimation step. We provide the asymptotic properties of our estimator,

and compare its limiting behavior with that of alternative estimators proposed in the recent literature,

which rely on PCA, Ridge, Lasso, and Partial Least Squares (PLS). We find that the SPCA is superior

in the presence of weak factors, both in theory and in finite samples. We illustrate the use of SPCA by

using it to estimate the risk premia of several tradable and nontradable factors.
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1 Introduction

Inference on factor risk premia is an indispensable component of the empirical work in asset pricing. In this

exercise, an essential role is played by the cross-section of assets, namely, test assets, used in the estimation.

Yet, little work has been dedicated to investigating rigorously and systematically how test assets should be

chosen, and what the pros and cons are of different choices.

The literature has mainly followed one of three approaches. The vast majority of the literature has

adopted a “standard” set of portfolios sorted by a few characteristics, such as size and value, following the

seminal work by Fama and French (1993). Another approach, taken more recently, has been to expand this

cross-section to include portfolios sorted by a much larger set of characteristics, following the expansion of

empirical work in recent decades documenting that many additional characteristics seem to associate with

risk premia. Finally, a third approach has been more “targeted” around the specific factor of interest: first

sorting assets into portfolios by their exposure to the factor, and then estimating risk premia using only

these sorted portfolios, that is, only a small cross-section expected to be particularly informative about that

factor.

We argue in this paper that all of these methods to choose test assets have important shortcomings,

and propose a new methodology to select test assets and use them to estimate risk premia that addresses

them. We refer to our estimator as a supervised-PCA (SPCA in short) estimator of risk premia, and prove its

consistency and asymptotic properties. Central to understanding the shortcomings of existing methodologies

– and the contribution of our procedure – is the concept of weak factor. Weak factors – factors that are

not well captured in the panel of test assets – have been discussed at length in the literature. Not only

identifying the risk premia of weak factors themselves is difficult; the presence of weak factors in a model

biases the estimation and inference of the other factors as well, including strong ones.

In this paper, we start from an alternative perspective to think about weak factors. Rather than thinking

about weakness of a factor as a property of the factor, we should think about it as a property of the set of

test assets chosen for the estimation. Any factor could be weak or strong depending on which test assets we

look at. As a simple but illustrative example, a liquidity factor may be weak in a cross-section of portfolios

sorted by, say, size and value, but may be strong in a cross-section of assets sorted by characteristics that

capture well exposure to liquidity. Importantly, the choice of test assets determines the strength not only of

the factor of interest (e.g., liquidity), but also of all other factors that drive the stochastic discount factor.

As discussed in the literature (e.g., Jagannathan and Wang (1998) and Giglio and Xiu (2020)), estimating

and testing the risk premia of some factors requires properly controlling for the test assets exposure to all

the other relevant factors, in order to avoid an omitted variable bias problem. The choice of test assets

therefore has both a direct effect on the factor of interest, and on all the other factors in the model (whether

they are observed or latent).

The SPCA methodology we propose addresses directly the issue of weak factors, both observable and la-

tent, by combining principal component estimation methods with systematic asset selection; it also addresses

the potential for omitted factor bias, whether it is due to strong or weak omitted factors.

In a nutshell, the procedure works recursively in the following way. We start from a large cross-section

of assets that is as large as possible. In a first step of the procedure, we compute the univariate correlation
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of each asset with the factor of interest. We select a relatively small portion of assets, only keeping those

with sufficiently high correlation (in absolute value): these are assets that are particularly informative about

the factor of interest. We then compute the first principal component of these portfolios, which will be our

first estimated factor. Then, we remove (from both the factor and the returns) the part explained by this

first factor, and compute the univariate correlation of the residuals of the factor and the residuals of the

assets. Again, we select among the universe of test assets those for which this correlations is especially high,

and compute the principal component of these assets. This will be our second estimated factor. We then

further remove (from the factor and the test assets) the part explained by this factor as well, and iterate

again on the residuals. We repeat this procedure p times, where p can be either a prior estimate of the

number of factors (strong and weak) in the data or regarded as a tuning parameter to be determined by

some validation step. This procedure recovers from the data p latent factors that are informative about the

factor of interest. Importantly, the fact that at each step only test assets that are sufficiently correlated

with the factor are selected ensures that not only strong, but also weak factors (relative to the entire cross

section) are captured by the procedure – contrary to standard PCA that uses all assets at all steps. As

a consequence, our methodology is able to consistently estimate the risk premium of any factor whether

strong or weak in the cross-section of assets, and even in the presence of latent weak factors.

It is useful to contrast the procedure to select test assets with the three standard approaches to select test

assets summarized above. Using a standard, small cross-sections (like the size- and value-sorted portfolios)

to estimate risk premia has the problem that except for size and value, which are strong factors in this

cross-section, many other factors are weak: the test assets do not contain sufficient information to identify

their risk premium. Using a large cross-section of test assets (the second approach) may appear, on the

surface, to address this issue: a large cross-section contains returns that are exposed to a large number of

underlying factors. However, and importantly, if only a few assets are exposed to some factor, while most

others are not, that factor will be weak in this large cross-section, again yielding biased estimation and

inference. Finally, the third approach – building targeted portfolios of assets sorted by the exposure to the

factor of interest – is affected by the omitted factor problem, since it considers univariate exposures only;

so it will generally yield biased estimates (intuitively, exposures with the factor of interest may capture

correlated exposures to other risks in the economy).

In fact, one way to interpret the SPCA methodology is that it combines several important strengths of

these three choices of testing cross-sections. The selection step, that focuses on assets that covary sufficiently

with the factor of interest, inherits the main idea of the “targeted” approach: to learn the most information

from a few assets that are particularly informative about the factor, discarding assets that do not contain or

contain less information about it. At the same time, SPCA also starts from a large cross-section, exploiting

the fact that large cross-sections will contain (somewhere among the many assets) risk exposure to many

latent factors, sometimes in strong form, sometimes in weak form. Finally, our method combines these

insights with the results of Giglio and Xiu (2020) – that extracting latent factors from the panel of returns

and controlling for them can solve the issue of omitted factor bias when estimating risk premia. The main

difference between the two papers is that SPCA integrates the selection step at each stage of the estimation

of the latent factors to solve the weak factor problem.

A closely related (and essentially the same) problem of weak factors is that of highly correlated factor
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exposures. In a multi-factor model, if two factors share similar risk exposures, for instance, two different

versions of the liquidity factor are both included in the model, the Fama-MacBeth procedure suffers from

the identification failure due to multicolinearity, which results in unstable risk premia estimates. The PCA

procedure by Giglio and Xiu (2020) helps resolve this issue because their risk premia estimates for observable

factors are constructed separately one at a time. Their assumption, though, requires strong identification of

all latent factors. In this paper, we further discuss the case in which latent factors might also have highly

correlated exposures to a given set of test assets. Even if all latent factors are strong in the sense that their

corresponding betas show considerable variation individually, these betas could be highly correlated, which

leads to the same symptoms as that due to weak factors. We show that our SPCA procedure provides a

cure in this case as well because an equivalent rotated representation of this model exactly translates this

correlated exposures problem to the same problem of weak factors.

In the paper, we formally derive the SPCA approach to estimating factor risk premia and constructing

the stochastic discount factor, allowing for weak factors and test assets with highly correlated risk exposures.

To justify our approach, we provide asymptotic properties of SPCA as well as alternative estimators in the

recent literature, which rely on PCA, Ridge, Lasso, and Partial Least Squares (PLS). We show that the

PCA (and some other variations of it), Ridge, and PLS are inconsistent in the presence of weak factors,

that the Lasso approach is consistent for SDF estimation (and hence risk premia estimation) but is not

as efficient as our SPCA in general. Only when the true factors are part of the test assets can the Lasso

estimator achieve a comparable efficiency as our SPCA.

After deriving the theory of SPCA and simulations, we present empirical evidence on the performance

of the SPCA estimator for a variety of tradable and nontradable factors studied in the literature. We start

from the large cross-section of test portfolios produced by Chen and Zimmermann (2020), covering more

than 700 portfolios for the period 1976-2019. We then apply SPCA to estimate the factor risk premia, and

compare it with the alternative methodologies, such as PCA of Giglio and Xiu (2020), rpPCA motivated by

an SDF estimator of Lettau and Pelger (2020), and a PLS version of Giglio and Xiu (2020) (see Kelly and

Pruitt (2013) for introducing PLS in a different asset pricing context). As we discuss further in the paper,

each of these methods is effectively building a regularized mimicking portfolio for the factor that exploits

the assumptions of the factor structure of the SDF; therefore, a relevant criterion to evaluate the different

methodologies is the R2 of the projection of the factor onto the extracted latent factors. When we compare

different models fully out of sample (both based on the risk premia estimates and on the time-series R2) a

few interesting patterns emerge. For the case of strong factors, all methodologies find similar results and

perform similarly; the same happens in the case of completely spurious factors. More interestingly, however,

different methodologies give different answers for the intermediate case of weak factors. In that case, SPCA

shows more robust results, achieving consistently higher out of sample R2, and in a way that is much more

robust to the number of factors p used in the estimation. The robustness with respect to the number of

factors used is closely related to the selection step of the methodology: because it selects assets that are

highly correlated with the factor of interest, the methodology zooms in quickly on latent factors that are

especially informative about the factor. For example, a standard cross-section might have 5 strong factors

unrelated to the factor of interest; the 6th principal component is the one that captures the exposure to

that factor. Standard PCA will then require 6 factors to properly uncover and estimate the risk premium.
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SPCA, on the contrary, might need much fewer factors to do so, because from the very beginning it selects

assets that are informative about the factor of interest, discarding assets that do not have exposure to the

factor.

This paper builds on a large literature on risk premia and factor model estimation and their limits in the

presence of weak and omitted factors. The pioneer contribution of Kan and Zhang (1999) shows that the

inference on risk premia estimates from Fama-MacBath regression becomes invalid when a useless “factor”

— a factor to which test assets have zero exposures — is included in the model. Kleibergen (2009) further

points out the failure of the standard inference if betas are relatively small. This issue is quite relevant in

practice because many test assets are not very sensitive to macroeconomic variables. Moreover, the same

problem arises when betas are collinear, that is, some factors are redundant in terms of explaining the

variation of expected returns. This is again a relevant issue in practice due to the existence of hundreds of

factors discovered in the literature, see, e.g., Harvey et al. (2016), many of which are close cousins and do

not add any explanatory power (Feng et al. (2020)).

To estimate the risk premia of these factors, Giglio and Xiu (2020) suggest an alternative approach to

Fama-MacBeth regression, which helps solve the issue of omitted factor bias. The key assumption behind

is that the true DGP of returns is driven by latent but strong factors, so that these factors, and in turn

the SDF, can be recovered by the principal component analysis (PCA). Therefore, the covariance between

any factor and the estimated SDF yields the factor’s risk premium. In this paper, we focus on the more

challenging (and general) case in which the latent factors are not strong, but can be arbitrarily weak. This

is not a minor issue: given the large number of factors and test assets in the literature, it is in fact natural

that in any cross-section of test assets, at least some factors will be weak, rather than strong. The weak

factor problem is in fact quite pervasive in the data.

Recently, Lettau and Pelger (2020) propose an estimator of the SDF in the presence of weak factors by

generalizing the PCA with a penalty term that accounts for pricing errors in expected returns; they refer to

the estimator as risk premium PCA, or rpPCA. Their paper is among the very first to directly tackle the

presence of weak latent factors in the SDF. The SDF estimated using this procedure can then be used to

estimate risk premia (since risk premia are covariances with the SDF). While they have shown their estimator

of SDF can lead to higher Sharpe ratios empirically, the very assumptions under which rpPCA is derived

are so restrictive that they preclude any possibility of consistent estimation of risk premia or the SDF itself.

On the contrary, we produce an estimator that we prove is consistent for risk premia in a less restrictive

environment, and even when weak factors are present (and in addition, we derive asymptotic inference on

risk premia as well). More specifically, we do not require N and T to diverge at the same rate; we do not

require the factor loadings to be orthogonal; we do not require the idiosyncratic errors to be multivariate

Gaussian; we do not require all factors to be strong or all to be weak. Our key identifying assumption is

that the minimum eigenvalues of the factor component in the covariance matrix of returns diverges whereas

the largest eigenvalue due to the idiosyncratic errors is bounded. This assumption is sufficiently weak to

the extent that it allows for weak factors that the standard PCA fails to recover, yet this assumption is just

strong enough to ensure identifiability (i.e., separation of factors and idiosyncratic errors), so that consistent

estimators exist.

Also related is Pesaran and Smith (2019), who investigate the effect of factor strength and pricing error in

5



risk premium estimation. They point out that the conventional two-pass risk premium estimator converges

at a lower rate as the factors become weaker. However, even if all factors are strong, some factors could be

highly correlated, so that the weak factor problem also arises. We propose a new approach that addresses

both issues with the classic approach. Anatolyev and Mikusheva (2018) propose a sample-splitting approach

to address the issues of weak factors and missing factors. Our assumptions on weak factors are more general,

and we also allow for priced missing factors.

We argue the selection of test assets should account for the issues of weak factors and highly correlated

risk exposures. We provide asymptotic analysis to justify our approach as well as develop valid statistical

inference for our procedure. From a different perspective, Ahn et al. (2009) suggest forming portfolios as

test assets by clustering individual securities based on their correlations so that securities within clusters are

similar but different across cluster. There is, however, not a clear theoretical rationale behind this proposal.

We suggest using correlations between test assets and individual factors, whereas their approach requires

correlations among all test assets, which could be computationally expensive, if the number of test assets is

large. Moreover, their proposal does not help resolve the aforementioned issues, which is the main focus of

our paper.

Bryzgalova et al. (2020) suggest constructing test assets by sequentially sorting characteristics and then

select test assets by maximizing the Sharpe ratio of a portfolio comprised of these sorted portfolios. They

show that forming test assets this way creates better investment opportunities than the conventional sorting

methods, which leads to an estimated SDF with higher Sharpe ratios. Our proposal is agnostic about how

one should build a large cross-section of test assets. Our analysis sheds light on the inherent connection

between test assets selection and the strength of factors, and provides the missing theoretical rationale on

how test assets should be selected to alleviate the problem of weak factors.

There is a growing strand of econometrics literature on weak factor models. Bai and Ng (2008) argue

that the properties of idiosyncratic errors should be considered when constructing principal components.

Dropping some data, if they are noisy, may improve the forecasting. They compare the performance of

hard thresholding, Lasso, the elastic net and Least angle regressions for the selection of subsets for factor

estimation. Our SPCA approach shares the spirit of theirs, but is more involved because we allow for multiple

selection steps. Our focus is on risk premia estimation instead of forecasting, for which we also provide

inference. Similar to our paper, Bailey et al. (2020) also assume a sparse structure on the loading matrix of

factor exposure. Under this assumption, they propose a measure of factor strength. Freyaldenhoven (2019)

proposes an estimator of the number of factors in the presence of weak factors, though the notion of “weak”

factors is somewhat strong because the principal component analysis in his setting can still recover these

“weak” factors consistently.

The concept of supervised-PCA originated from a cancer diagnosis technique applied to DNA microarray

data by Bair and Tibshirani (2004), and was later formalized by Bair et al. (2006) in a prediction framework,

in which some predictors are not correlated with the latent factors that drive the outcome of interest. Bair

et al. (2006) suggest a screening step using marginal correlations between predictors and the outcome variable

to select the subset of useful predictors, before applying the standard PCA to this subset. They prove the

consistency of this so-called SPCA procedure, but relying on a restrictive identification assumption that

any important predictor must also have a substantial marginal correlation with the outcome. The screening
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step of our SPCA procedure shares the spirit with theirs (in the sense that their outcome variable is our

factor of interest, and their predictors are our test assets), but our projection step is new, which is precisely

introduced to eliminate the strong identification assumption used before. Also, our focus is not on prediction

per se (which resembles the step of building mimicking portfolios in our setting), but instead on inference on

parameters (i.e., risk premia) that involves an additional step and more intricate analysis for the asymptotic

theory.

The paper is organized as follows. Section 2 first sets up the notation and model (Sections 2.1 and 2.2),

then discusses the inconsistency of existing estimators in the presence of weak factors (Section 2.3), provides

our methodology (Sections 2.4 and 2.5) and finally the inference theory (Section 2.6). Section 3 provides

simulation evidence, followed by an empirical study in Section 4. The appendix provides technical details.

2 Methodology

2.1 Notation

Throughout the paper, we use (A,B) to denote the concatenation (by columns) of two matrices A and B.

ei is a vector with 1 in the ith entry and 0 elsewhere, whose dimension depends on the context. ιk denotes a

k-dimensional vector with all entries being 1, and Id denotes the d×d identity matrix. For any time series of

vectors {at}Tt=1, we denote ā = 1
T

∑T
t=1 at. In addition, we write āt = at − ā. We use the capital letter A to

denote the matrix (a1, a2, · · · , aT ), and write Ā = A− āιᵀT correspondingly. We denote PA = A(AᵀA)−1Aᵀ

and MA = Id − PA, for some d× T matrix A. We use a ∨ b to denote the max of a and b, and a ∧ b as their

min for any scalars a and b. We also use the notation a . b to denote a ≤ Kb for some constant K > 0 and

a .p b to denote a = Op(b). If a . b and b . a, we write a � b for short. Similarly, we use a �p b if a .p b

and b .p a.

We use λmin(A) and λmax(A) to denote the minimum and maximum eigenvalues of A, and use λi(A) to

denote the i-th largest eigenvalue of A. Similarly, we use σi(A) to denote the ith singular value of A. We use

‖A‖1, ‖A‖∞, ‖A‖, and ‖A‖F to denote the L1 norm, the L∞ norm, the operator norm (or L2 norm), and the

Frobenius norm of a matrix A = (aij), that is, maxj
∑

i |aij |, maxi
∑

j |aij |,
√
λmax(AᵀA), and

√
Tr(AᵀA),

respectively. We also use ‖A‖MAX = maxi,j |aij | to denote the L∞ norm of A on the vector space. When

a is a vector, both ‖a‖ and ‖a‖F are equal to its Euclidean norm. We use ‖a‖0 to denote
∑

i 1{ai 6=0}. We

also denote Supp(a) = {i : ai 6= 0}. Finally, we use [N ] to denote the set of integers: {1, 2, . . . , N}. For an

index set I ⊂ [N ], we use |I| to denote its cardinality. We use A[I] to denote a submatrix of A whose rows

are indexed in I.

2.2 Model Setup

Suppose that an N × 1 vector of test asset excess returns, rt, follows:

rt = βγ + βvt + ut, E(vt) = E(ut) = 0 and Cov(vt, ut) = 0, (1)
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where β is an N × p matrix of factor exposures, vt is a p× 1 vector of factor innovations, and ut is an N × 1

vector of idiosyncratic errors.1 The vt vector is unobservable, even though it may include factor innovations

of observable factors, ft, i.e., vt = ft − µf , since µf is an unknown parameter. Also, vt can include latent

factors, if any.

Prior to the discussion of factor strength, we need a well-defined asymptotic scheme. We will assume

that both N and T go to∞, whereas p is fixed. The p×p factor covariance matrix Σv is asymptotically non-

singular in the sense that 1 .p λmin(Σv) .p λmax(Σv) .p 1. This assumption is rather weak as it only rules

out factors whose risks are (asymptotically) negligible. We also maintain the assumption that ‖Σu‖ .p 1, so

that there exists no factor structure in the residuals ut. This condition is needed for identification purpose,

which ensures that all factors, regardless of their strength, must be distinguishable from the idiosyncratic

errors.

In this setting, a factor’s strength is entirely determined by test assets’ exposures to it, since all factors

have non-negligible risks. In light of this, the strength of a factor is context specific — the selection of test

assets dictates its strength. For instance, a momentum factor could be a strong factor for momentum-sorted

portfolios, but this factor may be weak with portfolios sorted by size or value as test assets, because the

latter portfolios might diversify the exposure of the momentum factor.

The concern on factor strength has come to light since Kan and Zhang (1999), who discussed the failure

of two-pass cross-sectional regressions in an extreme case where some factors are purely useless, to which test

assets have zero-exposures. At the other extreme, the most prevalent assumption adopted by the literature

on factor models, e.g., Bai and Ng (2002), is that all factors are strong or pervasive, that is, ‖β‖ �
√
N ,

which dominates the strength of the idiosyncratic component, as measured by ‖Σu‖. In contrast, our focus

is on the regime of weak factors, in which the norm of columns of β is allowed to diverge at different and

slower rates, which will be made more precisely later. The fact that weak factors are relevant in practice

can be illustrated from the scree plot of eigenvalues of returns. The eigen gap between weak factors and

the idiosyncratic components may not appear as clear-cut as the gap between the pervasive factors and

idiosyncratic components.

We anchor our discussion on weak factors in two intriguing asset pricing exercises: the estimation of risk

premia and the recovery of pricing kernel.

In this model, the stochastic discount factor (SDF) can be represented as

mt = 1− γᵀΣ−1
v vt, (2)

where Σv is the covariance matrix of factor innovations. It also makes sense to consider an SDF in terms of

the tradable test asset returns:

m̃t = 1− bᵀ(rt − E(rt)), (3)

where b is an N × 1 vector of SDF loadings which satisfies E(rt) = Σb, where Σ is the covariance matrix

of rt. As will be shown later, these two forms of the SDF are asymptotically equivalent in the asymptotic

1Our model is set up for portfolios as test assets. To generalize this model for individual stocks, more structures should be
imposed to address time-varying risk exposures, see, e.g., Gagliardini et al. (2016), Kelly et al. (2019), and Kim et al. (2020).
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scheme we consider, so that there is no ambiguity with respect to which estimand we consider.

We are also interested in risk premia of some observable factor proxies, summarized in a d × 1 vector,

gt. Following Giglio and Xiu (2020), we do not assume that gt is part of or is identical to vt; instead, we

assume gt and vt are (potentially) correlated:

gt = ξ + ηvt + zt, (4)

where ξ = E(gt), η is a d × p matrix, and zt is “measurement” error orthogonal to vt. The risk premia of

gt is ηγ, which is our parameter of interest. This model clearly nests the classic linear asset pricing model

with observable factors only, in which case we can set η = Ip and zt = 0.

Since the true factors in vt are potentially weak, these observable proxies in gt may therefore be weak.

That said, their risk exposures (to vt), η, and risk premia, γ, are not necessarily diminishing (asymptotically).

Specifically, ηγ could be a fixed parameter that does not vary with the sample size.

2.3 Inconsistency of Existing Estimators

In what follows, we revisit a number of existing procedures for risk premia estimates, and then demonstrate

their failure using a simple model with a single weak factor.

2.3.1 PCA

Giglio and Xiu (2020) suggest a three-pass procedure to estimate ηγ: 1) apply PCA to the sample covariance

matrix of returns to obtain estimates of the latent factors, v̂t;
2 2) use Fama-MacBeth regression to recover

the risk premia of v̂t, γ̂; 3) use time series regressions of gt on v̂t to estimate η̂. A combination of these

estimates yields η̂γ̂, the estimate of risk premia. We summarize this procedure in the following algorithm:

Algorithm 1 (PCA-based Estimator of Risk Premia). The estimator proceeds as follows:

Inputs: R̄ and Ḡ.

S1. Apply SVD on R̄, and write the largest p left and right singular vectors as ς and ξ and the corresponding

singular values as
√
T λ̂1/2. The estimated factors are given by V̂ =

√
Tξᵀ.

S2. Estimate the risk premia of V̂ by γ̂ = λ̂−1/2ςᵀr̄.

S3. Estimate the factor loading of gt on vt by η̂ = T−1ḠV̂ ᵀ.

Outputs: λ̂, V̂ , η̂, γ̂, and γ̂PCAg = η̂γ̂.

Giglio and Xiu (2020) establish the consistency of this estimator and its asymptotic inference, in the case

that all latent factors are pervasive, whereas gt can be either strong or weak (depending on the magnitude

of η). Unfortunately, this estimator fails when some latent factors are weak, which we will show next.

To explain the intuition behind the failure of PCA, it is sufficient to consider a one-factor model with

p = d = 1 and Σv = 1, in which case the covariance matrix of returns satisfies: Σ = ββᵀ + Σu. This matrix

2Equivalently, we directly apply the singular value decomposition (SVD) on R̄.
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has a noisy low rank structure in that ββᵀ has rank 1 whereas Σu is a full-rank covariance matrix. To make

it simple, we also assume that the factor of interest gt has no measurement error, i.e., zt = 0 and gt = ηvt.

A successful recovery of β via PCA of realized returns requires a favorable signal-to-noise ratio. If

the “signal” as measured by ‖β‖, dominates “noise”, which arises from the idiosyncratic component Σu

and the estimation error in the sample covariance matrix Σ̂ − Σ, the first sample eigenvector of Σ̂ would

(approximately) span the same space spanned by the true β. Thus using the beta as defined by β̂ =

T−1R̄V̂ ᵀ = ς̂ λ̂1/2 in the cross-sectional regression would yield a consistent estimator of risk premium of the

estimated latent factor, which in turn leads to a consistent estimator of the risk premium of g. Otherwise,

there would be a non-vanishing angle between the space spanned by β̂ and that by β, which eventually

results in an inconsistent estimate of the risk premium ηγ. Proposition 1 below shows that the PCA-based

risk premium estimator is consistent only if N/(‖β‖2 T )→ 0.

Proposition 1. Suppose that test asset returns follow a single-factor model in the form of (1) with p = 1,

gt satisfies (4) with d = 1, and ut and vt i.i.d. normally distributed and independent from each other

and zt = 0. In addition, suppose that β satisfies N/(‖β‖2 T ) → B ≥ 0 and ‖β‖ → ∞. Then we have

γ̂PCAg
p−→ (1 +B)−1ηγ.

In the presence of strong factors, ‖β‖ �
√
N , which leads to B = 0 as T → ∞, so there is no bias. In

general, the consistency depends on the relative magnitude of N , T , and ‖β‖. When N are T are of the

same order, ‖β‖ → ∞ is sufficient for the consistency of risk pemia estimation. This makes sense in that the

eigenvalue of returns corresponding to this factor is proportional to ‖β‖2, whereas the eigenvalues for the

idiosyncratic errors are bounded, so that ‖β‖ → ∞ guarantees the separation between factors and errors

and hence the identification of factors.

2.3.2 PLS

Giglio and Xiu (2020) show that the PCA-based estimation procedure effectively constructs a mimicking

portfolio for gt via a principal component regression (PCR) on rt, which is amount to a projection of gt

onto the first few PCs of the sample covariance matrix of rt. This is an unsupervised approach, in that the

PCs are obtained without any information from gt. Therefore, they might be misled by large idiosyncratic

errors in rt when the signal is not sufficiently strong. In contrast with PCA, the partial least squares (PLS)

is a supervised procedure, which has been shown to work better than PCA in other settings, see, e.g., Kelly

and Pruitt (2013). In the same spirit, we now propose a PLS based approach for risk premia estimation,

exploiting variations of returns that are relevant to the target factor of interest. The key difference is that

PCA seeks for linear combinations of R̄ that maximizes variation, ignoring information from the target Ḡ,

whereas PLS seeks for linear combinations that have the largest covariance with Ḡ. In the case that Ḡ is

a 1 × T vector, the weight vector of the first PLS component is proportional to R̄Ḡᵀ, so the first factor is

spanned by ḠR̄ᵀR̄. We can normalized this factor to have a unit norm, and then continue the procedure

with the residuals from a projection of R̄ onto the first factor. We formulate the PLS-based algorithm for

a general d× T matrix of Ḡ below:

Algorithm 2 (PLS-based Estimator of Risk Premia). The estimator proceeds as follows:

Inputs: R̄(1) := R̄, r̄(1) := r̄ and Ḡ.
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S1. For k = 1, 2, · · · , p, repeat the following steps using R̄(k), r̄(k) and Ḡ.

a. Obtain the weight vector w from the largest left singular vector of R̄(k)Ḡ
ᵀ.

b. Estimate the kth factor as V̂(k) =
√
TwᵀR̄(k)/

∥∥wᵀR̄(k)

∥∥. Here, V̂(k) is normalized to have norm√
T .

c. Estimate the risk premium of V̂(k) by γ̂(k) =
√
Twᵀr̄(k)/

∥∥wᵀR̄(k)

∥∥.

d. Estimate the kth factor loading of rt by β̂(k) = T−1R̄(k)V̂
ᵀ

(k).

e. Remove V̂(k) to obtain residuals for the next step: R̄(k+1) = R̄(k) − β̂(k)V̂(k) and r̄(k+1) = r̄(k) −
β̂(k)γ̂(k).

S2. Estimate the factor loading of gt on vt by η̂ = T−1ḠV̂ ᵀ by V̂ = (V̂ ᵀ
(1), · · · , V̂

ᵀ
(p))

ᵀ and the estimated risk

premium is γ̂ = (γ̂(1), · · · , γ̂(p))
ᵀ.

Output: γ̂PLSg = η̂γ̂.

The PLS estimator has a closed-form formula if Ḡ is a 1 × T vector and a single-factor is extracted

(p = 1):

γ̂PLSg =
∥∥ḠR̄ᵀR̄

∥∥−2
ḠR̄ᵀR̄ḠᵀḠR̄ᵀr̄.

While the PLS procedure seems appealing, the next proposition shows that this approach is asymptotically

equivalent to the PCA-based procedure, hence it fails in exactly the same weak factor setting as PCA.

Proposition 2. Suppose that test asset returns follow a single-factor model in the form of (1) with p = 1, gt

satisfies (4) with d = 1, ut and vt i.i.d. normally distributed and independent from each other, and zt = 0. In

addition, suppose that β satisfies N/(‖β‖2 T )→ B ≥ 0 and ‖β‖ → ∞. Then we have γ̂PLSg
p−→ (1+B)−1ηγ.

Intuitively, the covariance information embedded in the objective function of PLS is dominated by its

variance component, hence PLS yields the same asymptotic behavior as PCA.

2.3.3 Ridge

Next, we consider an alternative ridge regression approach to the construction of mimicking portfolios, and

the resulting risk premia estimator can be written as:

γ̂Ridgeg = ḠR̄ᵀ (R̄R̄ᵀ + µIN
)−1

r̄,

where µ > 0 is some tuning parameter. In the case of pervasive factors, Giglio and Xiu (2020) show that

the ridge estimator yields consistent estimate of ηγ. However, the ridge estimator also fails in the presence

of weak factors:

Proposition 3. Suppose that test asset returns follow a single-factor model in the form of (1) with p = 1, gt

satisfies (4) with d = 1, ut and vt i.i.d. normally distributed and independent from each other, and zt = 0. In

addition, suppose that β satisfies N/(‖β‖2 T )→ B ≥ 0 and ‖β‖ → ∞, and the tuning parameter µ satisfies

µ/(‖β‖2 T )→ D for some constant D ≥ 0 such that B+D > 0. Then we have γ̂Ridgeg
p−→ (1 +B+D)−1ηγ.
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Even though the ridge-based risk premia estimator seemingly accounts for the impact of all eigenvectors

as factors instead of only the first p of them, the resulting estimator remains inadequate for consistency.

Intuitively, the tuning parameter µ in the ridge procedure serves as a threshold that impedes the influence

of eigenvectors corresponding to small eigenvalues just like in PCA and PLS, which explains the appearance

of B in the limit. The impact of µ also leads to a shrinkage bias to the first few eigenvectors (i.e., factors),

which is why an extra term D appears in the limit as well.

2.3.4 Risk Premium PCA

Finally, we consider an estimator of ηγ based on the risk premium PCA (rpPCA) estimator proposed by

Lettau and Pelger (2020) in the context of SDF estimation.

Algorithm 3 (rpPCA-based Estimator of Risk Premia). The estimator proceeds as follows:

Inputs: R̄ and Ḡ.

S1. Apply PCA on RRᵀ + µr̄r̄ᵀ, where µ is a tuning parameter, and write the largest p eigenvectors as ς.

The estimated factors are given by V̂ = ςᵀR̄.

S2. Estimate the risk premia of V̂ by γ̂ = ςᵀr̄.

S3. Estimate the factor loading of gt on vt by η̂ = T−1ḠV̂ ᵀ(V̂ V̂ ᵀ)−1.

Outputs: γ̂rpPCAg = η̂γ̂.

The standard PCA is applied to the covariance matrix of returns, that is RRᵀ − r̄r̄ᵀ. Lettau and Pelger

(2020) show that assigning a larger weight µ > −1 to the term related to average returns improves the

Sharpe ratio of the estimated SDF. They derive asymptotic properties of this estimator in a setting where

all factors are weak and N and T increase to infinity at the same rate. In their setting, the strength of weak

factors remains indistinguishable from that of idiosyncratic errors as N and T increase, which precludes

the consistency of any estimators. We discuss here an induced risk premium estimator based on their SDF

estimator, but in a setting where a single factor can be weak yet its strength increases asymptotically.

This setting is more informative for comparing different approaches, under which a consistent estimation

procedure also exists.

Proposition 4. Suppose that test asset returns follow a single-factor model in the form of (1) with p = 1,

gt satisfies (4) with d = 1, ut and vt i.i.d. normally distributed and independent from each other, and zt = 0.

In addition, suppose that β satisfies N/(‖β‖2 T )→ B ≥ 0 and ‖β‖ → ∞, that the factor has a non-zero risk

premia, i.e., γ 6= 0. Then for some tuning parameter µ > −1, we have

γ̂rpPCAg
p−→ w(1 +B)−1ηγ + (1− w)η(γ + γ−1B),

where

w =
2 + 2B

1 + 2B +
√

(1− a)2 + 4(1 + µ)γ + a
, a = (1 + µ)(γ2 +B)−B.
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Proposition 4 suggests that this rpPCA estimator is also inconsistent, with a more involved bias term

compared to the above estimators.

2.4 Our Solution: Test Asset Selection

Results in the previous section shed light on the limitation of dimension reduction or shrinkage estimators,

when factors are not pervasive. In practice, test assets are constructed by characteristics-sorted portfolios,

e.g., by size or value. If the majority of the test assets have zero or little exposure to some of the factors,

say, momentum, in the data generating process of returns, the weak factor problem arises.

One potential solution is to screen test assets and only keep those that have nontrivial exposure to the

factor of interest. This factor is likely strong within this smaller set of test assets, so it is possible to apply

PCA or any of the above procedures to recover its risk premium, as long as there remains a sufficient number

of test assets.

This strategy echoes some practice in the empirical asset pricing literature. Very often, test assets are

formulated using the exact characteristics-sorted portfolios that the factor of interest is born from. For

instance, Fama and French (1993) use size and value double-sorted portfolios as test assets when estimating

a factor model that include size and value as factors. This choice of test assets ensures considerable exposure

to these factors, therefore the model with such factors is useful in explaining the cross-section of these test

assets. While this strategy might appear ad hoc, we formalize this intuition and make this procedure

rigorous.

We start with a simple one factor setting as discussed in the previous propositions, which helps illustrate

the intuition behind our proposal and facilitates comparison with existing estimators. The next section is

devoted to the general case. To ensure sufficient test assets after screening, we assume that there exists a

subset I0 ⊂ [N ] such that
∥∥β[I0]

∥∥ � √N0, where N0 = |I0| → ∞. Consequently, as long as we locate this

subset of assets, within which there exists a strong factor structure, we can recover risk pemia consistently.

In practice, it is the empirical researchers who decide which test assets to employ in their study. Assuming

that a strong factor structure exists at least within a subset of test assets seems plausible. We next formally

present our SPCA procedure for test assets selection and risk premia estimation.

Algorithm 4 (SPCA-based Estimator of Risk Premia for a Single Factor Model (p = 1)). The procedure

is as follows:

Inputs: R̄ and Ḡ, a 1× T vector.3

S1. Select a subset Î ⊂ [N ]: Î =
{
i
∣∣∣T−1

∣∣R̄[i]Ḡ
ᵀ
∣∣ ≥ cq}, where cq is the (1−q)-quantile of

{
T−1

∣∣R̄[i]Ḡ
ᵀ
∣∣}
i∈[N ]

.

S2. Repeat S1. – S3. of Algorithm 1 with selected return matrix R̄[I] and Ḡ, and p = 1.

Outputs: γ̂SPCAg := η̂γ̂, λ̂, V̂ , η̂, and γ̂.

We establish the consistency of the SPCA estimator in the following proposition:

Proposition 5. Suppose that logN/T → 0 and test asset returns follow a single-factor model in the form

of (1) and that gt satisfies (4), with ut, vt, and zt i.i.d. normally distributed and independent from each

3We discuss the case of a multivariate Ḡ in Section 2.6.
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other. The loading matrix β satisfies ‖β‖MAX . 1 and there exists a subset I0 ⊂ [N ] such that
∥∥β[I0]

∥∥ �
√
N0 where N0 = |I0| → ∞. In addition, suppose that β{qN} and |β|{qN+1} are distinct in the sense that

|β|{qN+1} ≤ (1 + δ)−1 |β|{qN} for some δ > 0, where |β|{k} denotes the kth largest value in
{∣∣β[i]

∣∣}
i∈[N ]

.

Then, for any choice of q in Algorithm 4 such that qN/N0 → 0 and qN →∞, we have γ̂SPCAg
p−→ ηγ.

2.5 The General Case: Selection and Projection

Propositions 1 - 5 focus on a perhaps unrealistic single-factor model since they are meant to illustrate the

intuition behind our procedure as well as the failure of existing approaches due to the presence of a weak

factor. In general, the DGP of returns is likely driven by more than one factors, some of which may be weak.

In the same spirit of Proposition 1, we can show that a more general necessary condition for the consistency

of PCA in a multi-factor model is that

N/(λmin(βᵀβ)T )→ 0. (5)

Intuitively, this condition requires that the weakest one among all p factors in (1) is sufficiently strong so

that it can be recovered by PCA. Once again, we consider below more challenging regimes in which the

condition (5) fails.

In a multi-factor model, even if all factors are strong by themselves, a related problem arises when some

of the factors’ exposures are highly correlated. Consider, for example, a two-factor model where the beta

matrix has the following form:

β =


β11 β12

β21 β22

 . (6)

where β11 and β12 are N0 × 1 vectors and β21 and β22 are (N −N0) × 1 vectors. Suppose that β21 = β22.

Then we can show that λmin(βᵀβ) ≤ ‖β11 − β12‖2 /2 . N0. As a result, N/(λmin(βᵀβ)T ) & N/(N0T ),

which does not necessarily converge to 0 if N0 and T are small, so that the condition (5) could fail. In this

example, while both factors are strong, since they have highly correlated exposures, the same “weak factor”

issue arises.

Also, applying the screening approach alone would not work in a general multi-factor model. Take (6)

again as an example. Suppose that β21 6= β22 = 0, then it is easy to show that λmin(βᵀβ) ≤ ‖β12‖2 . N0,

thus in light of the above discussion, the weak factor problem would occur in this example. Needless to

say, it is the second factor that is weak since most of test assets’ exposure to it is zero. Now suppose that

η = (1, 1), then it implies that the observed factor g is correlated with both factors and hence with all test

assets, so that screening would not eliminate any of them, and yet PCA with all test assets will not recover

the weak factor, if N/(N0T ) does not vanish. This example demonstrates that even though pre-screening

assets ensures that the first PC after screening is strong, there is no guarantee that this procedure can solve

the weak factor issue in one step.

It is worth pointing out that the two aforementioned cases are in fact equivalent, because we can rotate
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the beta matrix in the second case into the form of the first case. Thanks to the rotation invariance property

as illustrated in Giglio and Xiu (2020), both the risk premia and the SDF estimands remain the same.

The above examples illustrate that the screening step may not eliminate any test assets to the extent

that the weak factor problem remains. We provide another example that shows screening can eliminate too

many assets so that a strong factor model becomes a weak or even rank-deficient one. For example, suppose

β has the following form:

β =


β11 β11

0 β22

 , (7)

where β11 and β22 are N/2 × 1 non-zero vectors satisfying ‖β11‖ � ‖β22‖ �
√
N . Clearly, β is full-rank

and that both factors are strong. Therefore, a standard PCA procedure should work smoothly. Suppose

in addition that η = (1, 0) (i.e., gt = v1t) and that v1t and v2t are uncorrelated. Then it implies that gt is

uncorrelated with the second half of test assets in rt, so only the first half would remain after screening with

gt. These remaining test assets, however, have perfectly correlated exposures to both factors, so that only

one factor, v1t + v2t, is left. This example shows the supervised procedure (screening plus PCA) proposed

by Bair et al. (2006), may be counterproductive in a multi-factor setting.

To resolve the issue of weak factors and avoid the excessive screening trap, we propose a multi-step

procedure that iteratively conducts selection and projection. The projection step eliminates the influence

of the estimated factor, which ensures the success of the following-up screening step. More specifically,

Step S1 of Algorithm 4 can help identify one strong factor from a selected subset of test assets. Once we

have estimated this factor, we project the returns of all test assets rt and gt onto this factor, so that their

residuals will not be correlated with this factor. Then we can repeat the same selection procedure with these

residuals. This approach enables a continued discovery of factors, and guarantees that each new factor is

orthogonal to the estimated factors in the previous steps, similar to that of PCA. It is also easy to check that

this iterative screening and projection approach successfully addresses the problems of all three examples

above. Formally, the algorithm is given by:

Algorithm 5 (Selection and Projection). The selection and projection based procedure for risk premium

estimation is as follows:

Inputs: R̄(1) := R̄, r̄(1) := r̄, and Ḡ(1) := Ḡ, a d× T vector.

S1. For k = 1, 2, . . . repeat the following steps using R̄(k), r̄(k), and Ḡ(k):

a. Select an appropriate subset Îk ⊂ [N ].

b. Repeat S1. – S3. of Algorithm 1 with selected return matrix
(
R̄(k)

)
[Îk]

and Ḡ(k). Denote the

estimates as λ̂(k), V̂(k), η̂(k), γ̂(k).

c. Estimate the exposure of R̄(k) on V̂(k) by β̂(k) = T−1R̄(k)V̂
ᵀ

(k).

d. Obtain R̄(k+1) = R̄(k) − β̂(k)V̂(k), r̄(k+1) = r̄(k) − β̂(k)γ̂(k), and Ḡ(k+1) = Ḡ(k) − η̂(k)V̂(k).

15



S2. Stop at k = p̂, where p̂ is chosen based on some proper stopping rule.

S3. Estimate the risk premium by γ̂SPCAg =
∑p̂

k=1 η̂(k)γ̂(k).

Output: γ̂SPCAg , η̂ = (η̂ᵀ(1), · · · , η̂
ᵀ
(p̂))

ᵀ, γ̂ = (γ̂(1), · · · , γ̂(p̂))
ᵀ, V̂ = (V̂ ᵀ

(1), · · · , V̂
ᵀ

(p̂))
ᵀ and β̂ = (β̂(1), · · · , β̂(p̂)).

In Algorithm 5, we recover one factor and obtain its risk premium at each stage of S1. Both the factor

and its risk premium are estimated using a subset of rows in the stage-k return residual matrix R̄(k), within

which this factor is strong. We then project all observables onto this factor and proceed again with residuals.

Because each row of R̄(k+1) is orthogonal to V̂(j) for j ≤ k, so similar to PCA, the factors we obtain are

orthogonal with each other.

Algorithm 5 yields a consistent estimator of γg as long as an appropriate choice of Ik and a stopping

rule are adopted. One possible choice for Ik is:4

Îk =
{
i
∣∣∣T−1

∥∥∥(R̄(k))[i]Ḡ
ᵀ
(k)

∥∥∥
MAX

≥ c(k)
q

}
,

where c
(k)
q is the (1− q)th-quantile of

{
T−1

∥∥∥(R̄(k))[i]Ḡ
ᵀ
(k)

∥∥∥
MAX

}
i∈[N ]

. (8)

Correspondingly, we set the stopping criterion as:

c(k)
q < c, for some threshold c. (9)

In other words, we select test assets that have predictive power for at least one variable in gt and stop when

most test assets are uncorrelated with all variables in gt. With good tuning of q, the iteration stops as soon

as most of the rows of the projected residuals of returns appears uncorrelated with the projected residuals

of gt, which implies that all factors that are correlated with gt are successfully recovered.

To establish the consistency of this estimator, we need a subset of assets, indexed by I0, such that within

this subset all factors are strong, that is, λmin(βᵀ[I0]β[I0]) � N0, where N0 = |I0| → ∞. Because the number

of factors, p, is finite, such a subset I0 always exists as long as for each factor we can locate a sufficiently

large subset within which this factor is strong. With this identification assumption, as well as moment

conditions given in the appendix, the following theorem establishes the consistency of the SPCA estimator:

Theorem 1. Suppose that test asset returns in rt follow (1), the factor proxies in gt satisfy (4), and that

Assumptions A.1-A.8 hold. If log(NT )(N−1
0 +T−1)→ 0 then for any tuning parameters c and q that satisfy

c→ 0, c−1(logNT )1/2(q−1/2N−1/2 + T−1/2)→ 0, qN/N0 → 0,

we have γ̂SPCAg
p−→ ηγ.

4Using covariance for screening allows us to replace all Ḡ(k) in the definition of Îk and Algorithm 5 by Ḡ, that is, only the
projections of R̄(k) and r̄(k) are needed, because this replacement would not affect the covariance between Ḡ(k) and R̄(k), and
in turn, the test assets after screening and the estimates of η̂(k). We use this fact in the proofs, which simplifies the notation.

We can also use correlation screening instead of covariance in Îk. Despite this does not affect the asymptotic analysis, we find
correlation screening performs slightly better in finite samples.
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2.6 Asymptotic Inference on Risk Premia

In this section we develop the asymptotic distribution of the risk premium estimator from Algorithm 5.

Not surprisingly, the conditions in Theorem 1 do not guarantee that γ̂g converges to ηγ at the desirable

rate T−1/2. The major obstacle lies in the recovery of factors, which we can explain with the previous

single-factor example.

Recall that we use the sample correlation/covariance between rt and gt to screen test assets. Even if

gt is independent with test assets, their sample correlation can be as large as T−1/2 log T . Therefore, the

threshold needs no smaller than T−1/2. However, if η � T−1/3, it suggests that gt is not too much different

from random noise, so its correlation with rt will likely not lead to any discovery of strong factors. Our

procedure will give a risk premium estimate of 0, which is certainly consistent, but the estimation error is

of an order T−1/3, so that the CLT fails. Generally speaking, this issue arises because of potential failure

to identify all factors in the DGP. Once all factors are identified, the central limit theorem holds regardless

of the magnitude of η. So we need a stronger assumption that rules out cases like this, in order to insure

against a higher order omitted factor bias that impedes the CLT. It turns out that so long as η ∈ Rd×p

satisfies λmin(ηᵀη) & 1, we can rule out the possibility of missing factors. On the other hand, our algorithm

will not select more factors than needed, if we stop the iteration as soon as c
(k)
q is sufficiently small. Of

course, in a finite sample, a perfect recovery of the factor space is a stretch, but the assumptions here are

substantially weaker than the pervasive factor assumption adopted in the literature. We provide the CLT

result below and investigate its finite sample behavior in Section 3.

Theorem 2. Under the same assumptions as Theorem 1, if we further have T−1/2N0 → ∞, Assumption

A.9 and λmin(ηᵀη) & 1, then for any tuning parameters c and q in (8) and (9) satisfying

c→ 0, c−1(logNT )1/2(q−1/2N−1/2 + T−1/2)→ 0, qN/N0 → 0, q−1N−1T 1/2 → 0,

the estimator constructed via Algorithm 5 satisfies

√
T
(
γ̂SPCAg − ηγ

) d→ N (0,Φ) ,

where Φ is given by

Φ = γᵀΣ−1
v Π11Σ−1

v γ + γᵀΣ−1
v Π12η

ᵀ + ηΠᵀ
12Σ−1

v γ + ηΠ22η
ᵀ,

and Π11, Π12, and Π22 are specified by Assumption A.9.

We can adopt the same Newey-West-type estimator for Φ as in Section 4.5 of Giglio and Xiu (2020),

since each component of Φ can be estimated from the outputs of the SPCA algorithm. These estimates are

consistent up to some rotation matrices which will cancel each other and yield a consistent estimate of Φ.

2.7 The Case of Observable Factors

The previous discussion does not assume the perfect knowledge of the factors vt in (1). If these factors were

known, say, the Fama-French five factors, our procedure can be greatly simplified. It is meaningful to study

17



this case, because it is most common in the empirical literature.

If all factors in vt are known and tradable, and that gt is part of them, then we can estimate the risk

premium of gt by simply taking its time-series average. If gt is either spanned by them or not tradable, then

a simple time series regression of gt onto the factors vt can recover its loading, η, which along with the risk

premia estimates of vt by their averages, give rise to the risk premium estimate of g. These scenarios are

simple, which do not require cross-sectional regressions.

If some of the factors are not tradable, say, GDP growth is part of vt, then a cross-sectional regression

is necessary, which effectively constructs their mimicking portfolios. In this setting, a weak factor problem

potentially arises as documented in the literature, see, e.g., Kan and Zhang (1999), Kleibergen (2009). To

tackle this issue, one could adopt a simplified procedure in Algorithm 5, to supervise the construction of

mimicking portfolios for each of the observed non-tradable factors, while using residuals from the projection

of test asset returns onto tradable factors as new test assets.

2.8 Recovery of the Stochastic Discount Factor

The previous sections focus on estimating the risk premia. We have shown that in order to construct valid

asymptotic inference, we must recover all factors that drive the SDF. Once all these factors are recovered,

we can also reconstruct the SDF. More specifically, from the outputs of Algorithm 5, we can estimate the

SDF by:

m̂SPCA
t = 1− γ̂ᵀv̂t, where v̂1, · · · , v̂T are the columns of V̂ . (10)

Theorem 3. Suppose the same assumptions as in Theorem 2 hold. In addition, we have Assumption A.10.

Then the estimator (10) satisfies

1

T

T∑
t=1

∣∣m̂SPCA
t −mt

∣∣2 .p
1

T
+

logN0

N0
. (11)

There are a number of alternative approaches for SDF estimation proposed in the literature, e.g., the

shrinkage approach by Kozak et al. (2020) and the risk premia PCA by Lettau and Pelger (2020). In what

follows, we provide theoretical comparison of these estimators in the general weak factor framework.

Kozak et al. (2020) consider an SDF in the form of (3), whereas we represent it as in (2). Prior to the

asymptotic analysis of their estimator, we first establish the asymptotic equivalence of these two definitions:

Proposition 6. Suppose that test asset returns rt follows (1), and Assumption A.10 holds. Then as N →∞,

we have

1

T

T∑
t=1

|mt − m̃t|2 .p
1

λmin(βᵀβ)
.

Effectively, Proposition 6 proves that there is no ambiguity with respect to the definition of the estimand,

since the two estimands are asymptotically equivalent as long as λmin(βᵀβ) → ∞. Given that this exact

assumption is necessary for Theorem 3, and that λmin(βᵀβ) � N0, we can replace mt in the left-hand side

18



of (11) by m̃t.

Kozak et al. (2020) suggest estimating the SDF by solving an optimization problem:

b̂ = arg min
b

{
(r̄ − Σ̂b)ᵀΣ̂−1(r̄ − Σ̂b) + pµ(b)

}
, (12)

with which the estimated pricing kernel is given by

m̂t = 1− b̂ᵀ(rt − r̄). (13)

In the above, Σ̂ is the sample covariance matrix of rt and pµ(b) is a penalty term through which economic

priors are imposed. Depending on the penalty function, we will denote the resulting estimator of m by

m̂Ridge
t or m̂Lasso

t .

The objective function in (12) appears to require the inverse of the sample covariance matrix Σ̂−1, which

is not well-defined when N > T . Instead, we suggest optimizing an equivalent but different form of (12):

b̂ = arg min
b

{
bᵀΣ̂b− 2bᵀr̄ + bᵀΣ̂b+ pµ(b)

}
, (14)

which avoids the calculation of Σ̂−1.

The following result sheds light on the asymptotic properties of this estimator in the cases of pµ(b) =

µ ‖b‖1 and pµ(b) = µ ‖b‖2, respectively.

Theorem 4. We investigate two distinct scenarios.

(a) Suppose that rt is driven by p latent factors as in (1). With pµ(b) = µ ‖b‖2, if (N + T )/(λpT ) → 0

and Assumptions A.4-A.7, A.10-A.12 hold, we have

1

T

T∑
t=1

|m̂Ridge
t −mt|2 .p

1

T
+
N + T

λpT
,

where λp is the p-th largest eigenvalue of βΣvβ
ᵀ. Since λp � λmin(βᵀβ), we can replace mt in the

above equation by m̃t.

(b) Suppose that the true SDF satisfies E(m̃2
t ) . 1. With pµ(b) = µ ‖b‖1, if Assumptions A.10, A.11 hold,

we have

1

T

T∑
t=1

|m̂Lasso
t − m̃t|2 .p ‖b‖1

√
logN

T
. (15)

If, in addition, we assume that λmin(Σ) & 1, and ‖b‖20 logN/T → 0, then we have a stronger result

1

T

T∑
t=1

|m̂Lasso
t − m̃t|2 .p ‖b‖0

logN

T
. (16)

Interestingly, both Ridge and Lasso approaches deliver consistent estimates of the SDF, though under
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rather different sets of assumptions. First of all, the convergence rate of the Ridge approach depends critically

on the strength of the weakest factor. If condition (5) fails, then the SDF is not consistent. Furthermore,

this estimator may not converge in the regime that N/(λpT ) → ∞, which is precisely the issue caused by

weak factors which our SPCA estimator can tackle with.

Second, with respect to the estimator using the Lasso penalty, the explicit factor model assumption on

rt is replaced by the sparsity assumption on b. The latter assumption requires that the SDF is spanned by a

sparse linear combination of test assets, but place no explicit assumptions on the DGP of these test assets.

In this case, the Lasso estimator remains consistent, but converge at a rather slow rate, ‖b‖1
√

logN/T as

shown in (15), so it is not as efficient as our SPCA estimator. Nonetheless, under a much stronger sparsity

assumption that ‖b‖20 logN/T → 0, the Lasso estimator can achieve a comparable rate to that of the SPCA.

This stronger sparsity assumption effectively says that the set of true factors must be part of the test assets.

In contrast, our SPCA estimator allows for idiosyncratic components in any of the test assets, which is a

more acceptable assumption in practice.

The SPCA estimator given by equation (10) can also be rewritten in the form of (13), so that it can

yield an estimate of b in the definition of SDF given by equation (3). The reason is that v̂t is in fact a

linear combination of rt. Given that b is invariant to rotations of factors, we can use any rotation of v̂t to

reconstruct an estimate of b. We can exploit this invariance property to construct a convenient estimator

b̂. In fact, in S1.b of Algorithm 5, we can construct an N × p matrix B such that the kth column of B is

defined as: B[Ik],k = ς(k) and B[Ick],k = 0, where ς(k) is the left singular vector of
(
R̄(k)

)
[Ik]

in Step S1.b. It

turns out the SPCA estimates of V̂ can be written as a rotation of BᵀR̄, so to estimate b̂ we can use BᵀR̄ as

factors, denoted by, Ṽ , whose risk premia and covariance are denoted by γ̃ and Σ̃. Indeed, since the SDF is

mt = 1− γ̂ᵀ(Σ̂v)
−1v̂t = 1− γ̃ᵀ(Σ̃v)

−1ṽt = 1− γ̃ᵀ(Σ̃v)
−1Bᵀ(rt − r̄), it follows that the SPCA-based estimate

of b is given by

b̂ = B(Σ̃v)
−1γ̃ = TB

(
BᵀR̄R̄ᵀBᵀ)−1

Bᵀr̄.

Similarly, we can construct estimates of b using PCA, PLS, and rpPCA. With b̂ it is convenient to build

out-of-sample optimal portfolios, which we investigate in simulations and empirical studies.

3 Simulations

In this section, we study the finite sample performance of our SPCA procedure using Monte Carlo simu-

lations. We consider a 4-factor DGP as given by equation (1), where the first three factors are calibrated

to match the de-noised three Fama-French factors (RmRf, SMB, HML) as in Giglio and Xiu (2020), and

the last one is a potentially weak factor, denoted by V1. The risk premium and variance of V1 are selected

such that this factor achieves a 0.35 annualized Sharpe ratio. The realizations of ut and zt are generated

independently from a Gaussian distribution with mean 0 and standard deviation σu and σz, respectively.

We set σz = 0.5σ̄v and σu = 2σ̄v, where σ̄2
v denotes the average volatility of these 4 factors.

The loadings of RmRf are generated independently from N (1, 1) and the loadings of SMB and HML are

generated independently from N (0, 1). For the fourth factor, we simulate two cases of its loadings βV1 , in

which the weak factor problem arises.

Case 1: We generate βi,V1 independently from a Gaussian mixture distribution, with probability a from
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N (0, 1) and 1−a from N (0, 0.12). We use a = 0.1 in the simulations so that for most test assets their factor

loadings are very tiny.

Case 2: We simulate according to βi,V1 = βi,HML + ei, where eis are generated independently from the

same mixture Gaussian distribution as above. In this case, the loading matrices of the factor V1 and HML

are very similar, which (almost) leads to a rank deficient factor loading matrix.

First of all, we study the behavior of the aforementioned risk premia estimators, including PCA, Ridge,

PLS and our SPCA, for some observable factor proxy vector gt that includes noisy versions of the four

factors in the DGP plus a useless factor V2 whose η = 0.

Panel A: A Single Weak Factor
SPCA PCA rpPCA PLS Lasso Ridge

T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
RmRf 53.7 -0.2 41.4 -0.1 41.2 0.3 43.4 0.0 41.4 -16.6 26.8 -17.0 26.9
SMB 21.7 0.2 28.0 0.2 27.3 0.9 32.0 0.3 27.6 -7.6 16.4 -8.1 15.4

120 HML 25.4 -2.0 26.3 -2.8 25.9 -0.0 30.7 -2.3 26.2 -18.2 23.0 -17.4 22.4
V1 80.0 -18.5 26.4 -38.6 40.7 65.1 92.2 -29.9 33.5 -67.6 68.7 -72.7 73.3
V2 0.0 0.1 6.0 -0.0 4.7 -0.1 13.2 0.0 5.1 -0.1 2.8 -0.0 2.1

RmRf 53.7 -0.3 29.3 -0.3 29.3 0.3 30.1 -0.2 29.3 -11.4 21.2 -11.5 20.8
SMB 21.7 -1.2 19.1 -1.1 19.0 -0.8 20.3 -1.1 19.1 -5.7 13.7 -6.5 13.6

240 HML 25.4 -1.1 18.3 -1.4 18.1 0.3 19.5 -1.1 18.2 -13.3 18.9 -12.4 18.8
V1 80.0 -13.8 19.0 -26.5 28.7 36.5 49.6 -19.0 22.5 -58.2 60.1 -66.1 67.6
V2 0.0 0.1 4.0 0.1 3.5 0.2 6.5 0.1 3.8 0.0 2.4 0.0 2.0

RmRf 53.7 0.1 23.4 0.1 23.4 0.6 23.7 0.1 23.4 -8.2 17.5 -8.6 17.1
SMB 21.7 -0.9 15.7 -0.8 15.6 -0.6 16.4 -0.8 15.7 -4.0 11.7 -4.9 11.8

360 HML 25.4 -0.0 14.5 -0.2 14.4 1.2 15.3 -0.0 14.5 -10.8 16.0 -9.8 16.2
V1 80.0 -11.5 15.9 -20.0 22.3 24.4 33.9 -13.8 17.3 -50.9 53.5 -60.4 62.5
V2 0.0 0.1 3.3 0.0 3.0 0.1 4.7 0.1 3.2 0.1 2.4 0.0 1.8

Panel B: Two Strong Factors with Highly Correlated Loadings
RmRf 53.7 0.1 42.1 0.2 42.0 1.3 44.1 0.3 42.0 -10.9 30.6 -10.0 31.6
SMB 21.7 -0.3 26.6 -0.4 26.3 0.7 29.7 -0.4 26.6 -5.2 18.5 -5.4 17.7

120 HML 25.4 5.0 25.2 12.3 25.9 -14.8 60.2 9.8 25.5 5.6 19.0 8.3 18.9
V1 80.0 -8.7 22.6 -17.4 25.1 14.3 54.7 -13.6 23.4 -46.9 49.6 -46.0 47.8
V2 0.0 -0.3 6.4 -0.2 6.0 -0.5 13.2 -0.3 6.1 -0.2 4.3 -0.2 4.0

RmRf 53.7 0.5 29.1 0.6 29.0 1.0 29.4 0.7 29.1 -6.1 24.1 -5.2 24.5
SMB 21.7 0.7 19.0 0.6 18.8 1.2 19.5 0.6 19.0 -2.5 15.1 -2.9 14.3

240 HML 25.4 3.4 19.0 8.2 19.6 -5.9 33.2 5.8 19.2 9.5 17.8 13.4 19.3
V1 80.0 -5.5 15.3 -10.8 17.0 5.7 27.1 -7.8 15.7 -36.9 39.4 -37.9 39.3
V2 0.0 -0.2 4.3 -0.1 4.2 -0.0 5.6 -0.1 4.2 -0.1 3.5 -0.1 3.2

RmRf 53.7 0.7 23.3 0.7 23.2 1.0 23.4 0.8 23.2 -4.1 20.1 -3.6 20.3
SMB 21.7 0.2 15.7 0.1 15.6 0.4 16.0 0.2 15.7 -1.7 13.0 -2.2 12.5

360 HML 25.4 3.7 15.6 6.8 16.1 -1.9 20.4 4.9 15.8 10.2 16.6 14.8 18.8
V1 80.0 -4.5 12.6 -7.9 13.7 2.2 17.6 -5.6 12.8 -32.0 34.0 -33.6 34.8
V2 0.0 -0.1 3.6 -0.1 3.5 -0.1 4.0 -0.1 3.5 -0.0 3.0 -0.1 2.8

Table 1: Simulation Results for Risk Premia Estimators

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the risk

premia estimates using SPCA, PCA, rpPCA, Lasso, PLS, and Ridge approaches, respectively. The true data-generating

process has four factors, driven by RmRf, SMB, HML, and V1, whereas we estimate the risk premia for noisy versions of these

four factors, as well as a useless noise factor V2. Their true risk premia are provided in Column “True.” We fix N = 1, 000

while varying T = 120, 240, and 360 in this experiment. Panel A reports result for the case of a single weak factor V1, and

Panel B the case of two strong factors (HML and V1) with highly correlated exposures.

We report in Table 1 the bias and the RMSE (root-mean-square error) of the estimates. To construct
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the SPCA, we use all factors in gt to supervise the procedure. The parameter c and q in SPCA are tuned by

cross-validation using the time series R2 of the mimicking portfolios for gt as the criterion. This means that

the tuning parameters are selected such that in the validation sample, the mimicking portfolios are the best

for tradable proxies for gt. Except for SPCA, all the remaining methods use optimal yet infeasible tuning

parameters. Specifically, for PCA, PLS and rpPCA, we make use of the true number of factors, p = 4,

even though it is difficult to obtain a consistent estimator of p in the regime of weak factors. The tuning

parameter µ of Ridge estimator is determined via maximum likelihood estimation (with perfect knowledge

of Σr and E(r)). The five rows in each panel provide the results of risk premia estimation for the RmRf,

SMB, HML, the weak factor V1, and the useless factor V2, respectively.

We find that our SPCA approach has smaller biases for the weak factors, whereas PCA, Ridge and PLS

estimates have substantial biases, which agrees with our theoretical analysis. Nonetheless, if the true risk

premium is small and N0, T are not very large, PCA, Ridge and PLS can be better than SPCA in the sense

of RMSE since the variance term is the main portion of RMSE in that case.

We next investigate the finite sample performance of the inference result developed in Theorem 2. Figure

1 plots histograms of the standardized risk premia estimators using the estimated asymptotic standard

errors for SPCA and PCA, respectively, using the DGP in Case 2 as an example. The histograms of PCA

deviates from the standard normal distribution for HML and the weak factor. In contrast, the histograms

corresponding to the SPCA match the normal distribution well, which verifies our central limit results.
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Figure 1: Histogram of the Standardized Estimates in Simulations

Note: The left panels provide the histograms of the standardized SPCA estimates as in Algorithm 5 with asymptotic standard

errors given by Theorem 2, whereas the right panels provide those of the standardized PCA-based risk premia estimates as

in Algorithm 1. We simulate the models with N = 1, 000 and T = 240. The number of Monte Carlo repetitions is 1,000.

Finally, we study the finite sample behavior of the SDF estimators. We compare the performance of
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Panel A: A Single Weak Factor
SPCA PCA rpPCA PLS Lasso Ridge

T p̂ MSE MSE MSE MSE MSE MSE
120 4.054 0.044 0.055 0.401 0.059 0.110 0.112

(0.278) (0.028) (0.030) (0.780) (0.029) (0.027) (0.028)

240 4.008 0.022 0.026 0.105 0.029 0.090 0.096
(0.089) (0.014) (0.015) (0.118) (0.014) (0.022) (0.028)

360 4.004 0.014 0.016 0.052 0.018 0.084 0.084
(0.063) (0.008) (0.009) (0.049) (0.009) (0.031) (0.028)

Panel B: Two Strong Factors with Highly Correlated Loadings
120 4.038 0.039 0.039 0.531 0.040 0.078 0.055

(0.242) (0.027) (0.027) (1.460) (0.027) (0.025) (0.026)

240 4.003 0.019 0.019 0.109 0.020 0.061 0.040
(0.055) (0.013) (0.013) (0.350) (0.013) (0.017) (0.016)

360 4.012 0.013 0.013 0.042 0.014 0.056 0.034
(0.109) (0.009) (0.009) (0.136) (0.009) (0.030) (0.013)

Table 2: Simulation Results for SDF estimators

Note: In this table, we report the mean-squared errors (Column “MSE”) defined by 1
T

∑T
t=1 |m̂t − m̃t|2 for various SDF

estimates using SPCA, PCA, rpPCA, PLS, Lasso, and Ridge approaches, respectively. The reported MSEs are the sample

average over 1,000 Monte Carlo repetitions and their standard errors are reported in the brackets. We also report the mean

and standard deviation of the estimated number of factors p̂ using the SPCA approach. The true data-generating process

has four factors, driven by RmRf, SMB, HML, and a weak factor V1, whereas we estimate the SDF using a vector of factor

proxies, gt, that includes noisy versions of the four factors, as well as a useless pure noise factor V2. We compare three

scenarios with T = 120, 240, and 360, where N = 1, 000 is fixed. In Case 1, there is a single weak factor, V1, whereas in Case

2 HML and V1 are highly correlated.

SPCA, PCA, rpPCA, Lasso and Ridge in the aforementioned two cases. We report in Table 2 the MSE of

the SDF estimators where the true SDF is defined by equation (3). The estimated number of factors from

our SPCA approach is also reported. We also report in Table 3 the out-of-sample Sharpe ratios of different

methods, given by b̂ᵀE(r)/
√
b̂ᵀΣb̂, where E(r) and Σ are the true mean and covariance of all test assets and

b̂ is the estimated SDF loading using each method. We find that in terms of the MSE, SPCA outperforms

all other methods, which agrees with our theoretical prediction, and that rpPCA is on par with SPCA, both

dominating PCA, Ridge, and Lasso when it comes to the out-of-sample Sharpe ratio. Last but not least,

SPCA produces a good estimator of p̂ when T is large.
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Panel A: A Single Weak Factor
T SPCA PCA rpPCA PLS Lasso Ridge Theoretical Value

120 0.326 0.279 0.331 0.278 0.207 0.187 0.385
(0.040) (0.049) (0.050) (0.049) (0.052) (0.067)

240 0.358 0.341 0.361 0.340 0.252 0.231 0.385
(0.019) (0.026) (0.017) (0.025) (0.039) (0.065)

360 0.368 0.360 0.369 0.360 0.272 0.257 0.385
(0.012) (0.015) (0.009) (0.015) (0.041) (0.062)

Panel B: Two Strong Factors with Highly Correlated Loadings
120 0.357 0.347 0.335 0.346 0.285 0.319 0.393

(0.029) (0.030) (0.040) (0.030) (0.037) (0.043)

240 0.374 0.370 0.363 0.370 0.311 0.341 0.393
(0.015) (0.015) (0.026) (0.015) (0.024) (0.024)

360 0.380 0.378 0.375 0.378 0.323 0.350 0.393
(0.010) (0.011) (0.018) (0.011) (0.031) (0.018)

Table 3: Simulation Results for Out-of-Sample Sharpe Ratios of Optimal Portfolios

Note: In this table, we report the mean and standard deviation of the out-of-sample Sharpe ratios for various optimal

portfolios constructed by SPCA, PCA, rpPCA, PLS, Lasso, and Ridge approaches, respectively. The true data-generating

process has four factors, driven by RmRf, SMB, HML, and a weak factor V1, whereas we estimate the SDF using a vector of

factor proxies, gt, that includes noisy versions of the four factors, as well as a useless noise factor V2. The reported Sharpe

ratios are the sample average over 1,000 Monte Carlo repetitions and their standard errors are reported in the brackets.

Column “‘Theoretical Value” provides the benchmark Sharpe ratio calculated by bᵀE(r)/
√
b′Σ−1b using true parameter

values. We compare three scenarios with T = 120, 240, and 360, where N = 1, 000 is fixed. In Case 1, there is a single weak

factor, V1, whereas in Case 2 HML and V1 are highly correlated.

4 Empirical Analysis

In this section we apply our SPCA methodology to estimate the risk premium of several factors, both

tradable and non-tradable, and we compare them with those obtained using alternative methodologies,

including the PCA-based method of Giglio and Xiu (2020), PLS, and rpPCA.

4.1 Data

Our main dataset is the Chen and Zimmermann (2020) data, that is composed of a large number of equity

portfolios sorted by characteristics. Specifically, we employ version 0.1.2 of the data. For each anomaly

considered, Chen and Zimmermann (2020) construct a variable number of portfolios (as many as used in the

original papers that introduced the anomaly in the literature: 2, 5, or 10). Not all test assets are available

for the entire time period; for our analysis, we study the time period 1976m3 to 2019m9, for which 772 test

portfolios are available. All of our results are at the monthly frequency.

We study the risk premium of both tradable and nontradable factors. Among the hundreds of possible

factors, we focus on a few representative ones to illustrate our methodology. The tradable factors are the

market (in excess of the risk-free rate), size (SMB), value (HML), profitability (RMW), investment (CMA),

momentum (MOM), betting-against-beta (BAB, from Frazzini and Pedersen (2014)), and quality-minus-

junk (QMJ, from Asness et al. (2013)). The nontradable factors are: the liquidity factor from Pástor and

Stambaugh (2003), the intermediary capital factor from He et al. (2017), AR(1) innovations in industrial
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production growth (IP), and VAR(1) innovations in the first three principal components of 279 macro-finance

variables from Ludvigson and Ng (2010).

4.2 Latent Factors in the Returns Data

We start by examining the factor structure of the panel of returns. This is important because the method-

ologies studied in this paper (with the exception of Lasso and Ridge) require taking a stand on the number

of factors. The plot of eigenvalues we present here will offer some guidance in choosing the baseline number

of latent factors.

Figure 2 plots the log of the first 15 eigenvalues. There appear to be at least three strong factors.

In addition, based on this figure, it appears that factors 4-10 might also be relevant, though weaker. In

discussing the empirical results, we will present all of the results under different choices for the number of

factors, p. Motivated by the scree plot, we will report results for p equal to 1, 3, 4, 5, 8, 11, and 13, therefore

showing the robustness of our results to a wide range of model dimensions.
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Figure 2: Logarithm of the First 15 Eigenvalues in the Chen-Zimmerman data

Note: The figure plots the log of the first 15 eigenvalues of the data, obtained from Chen and Zimmermann (2020), covering

the period 1976-2019.

4.3 Estimation and Out-of-sample Evaluation

For our empirical analysis, we split the sample period into two equal-sized subsamples. The first half sample

is used for the estimation of the model and the selection of the tuning parameter q (using cross-validation,

as explained below). The latter half sample is used for evaluation of the results, to guarantee an entirely
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out-of-sample evaluation. We slightly abuse the notation and call the first sample training sample (which is

also the validation sample), and the second half testing sample.

To estimate the risk premia, we proceed as follows. We first choose the number of factors p in the model

(from 1 to 13). In the training sample, we then run 3-fold cross-validation 100 times. In each cross-validation

run, the tuning parameter is chosen to maximize the time-series R2 of the mimicking portfolio implied by

our procedure. This gives us 100 choices for the tuning parameter. We then select the median value across

those 100 as our choice of q. The risk-premium estimate is the one that corresponds to that chosen q.

In addition to estimating the risk premium of the factor, our procedure also obtains (still in the training

sample) the portfolio weights for the mimicking-portfolio of the factor, based on the estimated factors. The

testing sample can then be used to evaluate how closely the mimicking portfolio is able to track the factor

out of sample. In what follows, therefore, we will report these two key numbers: the estimated risk premium

of the factor, and the out-of-sample R2 of the factor using our model.

4.3.1 Out-of-sample R2

Table 4 shows the out-of-sample R2 obtained by SPCA. Each panel corresponds to a different factor; each

row within a panel corresponds to a different choice for p. SPCA is the first column in each panel.

The table shows large heterogeneity in the OOS R2 for different factors. For example, the market has

an R2 of 89% even when using just one latent factor, which rises to 97% using 13 factors. This should not

be surprising: the market effectively corresponds to the first latent factor in the panel of returns; so even

with only 1 factor, SPCA’s first factor corresponds closely to it. Other tradable factors also display high

OOS R2, though not as high as the market. For example, the R2s for SMB and Momentum reach above

80%, and that for HML close to 70%.

On the other hand, many of the factors (especially nontradable ones) have effectively zero R2. This

indicates that these factors are not spanned by the large panel of test assets; they appear spurious (in

fact, out-of-sample R2 are often negative, precisely because the factor that the procedure is aiming to fit is

effectively noise.). This is the case of the three LN factors, IP growth, and liquidity.

There is however an intermediate case, which is the focus of this paper: there are factors, both tradables

and nontradables, that are not clearly strong, in that their time-series R2s are significantly below 1, but at

the same time they are not spurious: the R2 one can obtain is in the range .3-.6. These are likely weak

factors, whose risk premium our procedure helps estimate. These weak factors include both tradables (like

RMW, CMA and BAB) and nontradables (like the intermediary factor of He et al. (2017)).

There are two things worth reemphasizing here. First, strength of a factor is not really a discrete

statement, but rather there is a continuum of strength from spurious to strong. Weak factors as the set

of factors whose strength falls somewhere in between the two extremes; but an exact categorization of the

factors in strong or weak is not important for practical purposes, since our methodology recovers the correct

risk premium for all levels of strengths. Second, strength and weakness of factors are not inherent properties

of the factors; they simply reflect how pervasive a factor is in the chosen cross-section of test assets.

Figure 3 reports the time-series R2 information in graphical form, for all 14 factors (using 3 to 13 latent

factors with SPCA). The distinction between strong factors (at the top), weak factors (in the middle) and

spurious factors (at the bottom) appears quite clear from this figure.
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Market SMB HML
# factors SPCA PCA PLS rpPCA SPCA PCA PLS rpPCA SPCA PCA PLS rpPCA

1 0.89 0.76 0.77 0.76 0.37 0.33 0.34 0.33 -0.01 -0.07 -0.07 -0.07
3 0.95 0.88 0.92 0.87 0.81 0.41 0.77 0.30 0.64 0.47 0.59 -0.02
4 0.96 0.90 0.97 0.87 0.75 0.50 0.78 0.43 0.73 0.50 0.68 0.58
5 0.95 0.89 0.97 0.89 0.82 0.51 0.84 0.48 0.70 0.53 0.67 0.59
8 0.96 0.95 0.98 0.94 0.86 0.63 0.85 0.64 0.64 0.64 0.67 0.61
11 0.97 0.96 0.98 0.96 0.86 0.76 0.85 0.79 0.67 0.66 0.59 0.64
13 0.97 0.96 0.98 0.96 0.85 0.80 0.84 0.82 0.66 0.65 0.59 0.67

Momentum CMA RMW
# factors SPCA PCA PLS rpPCA SPCA PCA PLS rpPCA SPCA PCA PLS rpPCA

1 -0.12 -0.09 -0.10 -0.09 0.12 0.05 0.06 0.05 0.14 0.07 0.10 0.07
3 0.75 -0.04 0.79 0.05 0.41 0.35 0.40 0.25 0.40 0.05 0.35 0.30
4 0.76 0.01 0.77 0.57 0.47 0.36 0.46 0.37 0.68 0.11 0.68 0.18
5 0.81 0.50 0.83 0.57 0.45 0.33 0.49 0.37 0.65 0.24 0.64 0.21
8 0.82 0.77 0.83 0.69 0.43 0.42 0.21 0.42 0.68 0.23 0.69 0.24
11 0.81 0.80 0.83 0.80 0.52 0.47 0.09 0.45 0.65 0.48 0.72 0.33
13 0.84 0.79 0.81 0.79 0.52 0.48 0.07 0.50 0.69 0.51 0.71 0.54

BAB QMJ Liquidity
# factors SPCA PCA PLS rpPCA SPCA PCA PLS rpPCA SPCA PCA PLS rpPCA

1 -0.34 -0.25 -0.26 -0.25 0.51 0.43 0.44 0.43 0.02 0.02 0.02 0.02
3 0.45 0.17 0.47 0.41 0.81 0.44 0.72 0.61 -0.06 0.02 -0.12 0.00
4 0.62 0.20 0.67 0.40 0.81 0.49 0.80 0.63 -0.05 0.02 -0.07 0.01
5 0.41 0.54 0.48 0.41 0.77 0.55 0.73 0.65 -0.03 0.01 -0.16 0.01
8 0.53 0.53 0.72 0.55 0.73 0.71 0.77 0.70 -0.05 -0.02 -0.39 -0.01
11 0.50 0.50 0.75 0.55 0.74 0.75 0.75 0.70 -0.05 -0.01 -0.51 0.00
13 0.54 0.36 0.76 0.33 0.73 0.71 0.71 0.72 -0.03 -0.01 -0.69 0.02

LN1 LN2 LN3
# factors SPCA PCA PLS rpPCA SPCA PCA PLS rpPCA SPCA PCA PLS rpPCA

1 0.00 0.00 -0.01 0.00 -0.04 -0.03 -0.03 -0.03 0.04 0.02 0.03 0.02
3 -0.43 -0.28 -0.41 -0.12 -0.01 -0.01 -0.16 0.00 0.05 0.05 0.06 0.05
4 -0.39 -0.25 -0.57 -0.29 -0.01 -0.01 -0.15 -0.01 0.06 0.06 0.03 0.05
5 -0.21 -0.19 -0.33 -0.27 -0.01 0.00 -0.28 -0.01 0.05 0.06 -0.04 0.06
8 -0.22 -0.18 -0.95 -0.17 -0.01 -0.01 -0.44 0.01 0.06 0.06 -0.19 0.06
11 -0.26 -0.22 -1.78 -0.22 -0.01 -0.01 -0.50 -0.01 0.06 0.06 -0.29 0.07
13 -0.11 -0.11 -1.84 -0.10 -0.01 -0.01 -0.56 -0.02 0.06 0.06 -0.36 0.07

Intermediary IP growth
# factors SPCA PCA PLS rpPCA SPCA PCA PLS rpPCA

1 0.48 0.38 0.39 0.38 0.01 0.01 0.01 0.01
3 0.59 0.45 0.51 0.39 -0.03 -0.02 -0.16 -0.02
4 0.52 0.47 0.56 0.47 -0.03 -0.02 -0.24 -0.02
5 0.58 0.52 0.51 0.48 0.00 0.00 -0.31 -0.02
8 0.56 0.56 0.47 0.55 -0.01 -0.01 -0.89 0.00
11 0.53 0.55 0.36 0.55 -0.02 -0.02 -1.09 -0.02
13 0.56 0.56 0.37 0.55 -0.03 -0.02 -1.18 -0.01

Table 4: Out-of-sample R2

Note: In this table, we report the out-of-sample time-series R2 achieved with different methods (SPCA, PCA, PLS, rpPCA).

Each panel corresponds to a different factor. Rows correspond to a different choice for the number of factors p. Sample is

the Chen-Zimmerman data for the period 1976-2019.
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Market SMB HML

# factors SPCA PCA PLS rpPCA
SPCA
(many)

Std.
err.

SPCA PCA PLS rpPCA
SPCA
(many)

Std.
err.

SPCA PCA PLS rpPCA
SPCA
(many)

Std.
err.

1 79 66 66 69 75 26 28 29 29 30 25 9 -20 -18 -18 -19 -21 9
3 87 81 96 117 84 26 12 10 -3 -32 -1 16 43 33 23 154 54 16
4 85 79 88 105 64 26 25 14 12 14 50 17 13 33 -14 -37 28 16
5 93 85 90 111 88 26 18 16 6 3 15 17 16 29 4 -36 57 16
8 80 108 68 127 94 26 33 -21 28 -48 -1 18 37 -10 39 -36 32 18
11 71 97 66 69 83 26 48 -4 32 42 26 18 5 -12 49 -4 7 19
13 68 99 63 66 70 26 47 -5 34 35 47 17 38 -9 62 20 14 20

Avg ret 72 19 40

Momentum CMA RMW

# factors SPCA PCA PLS rpPCA
SPCA
(many)

Std.
err.

SPCA PCA PLS rpPCA
SPCA
(many)

Std.
err.

SPCA PCA PLS rpPCA
SPCA
(many)

Std.
err.

1 13 8 9 9 10 6 -12 -11 -11 -12 -13 5 -5 -3 -4 -3 -1 2
3 97 -10 94 108 -19 14 28 16 18 98 27 9 10 -6 27 21 -11 6
4 129 -8 140 374 78 15 15 16 8 13 20 9 34 -5 55 81 4 7
5 125 72 130 371 100 20 26 19 12 15 37 9 22 6 41 79 0 8
8 110 153 85 298 114 21 -10 13 32 13 32 11 29 31 22 76 16 8
11 95 146 85 89 139 23 10 0 38 12 22 13 28 44 30 48 24 9
13 113 144 87 74 115 23 18 -2 49 30 7 15 35 44 19 23 26 11

Avg ret 86 27 37

BAB QMJ Liquidity

# factors SPCA PCA PLS rpPCA
SPCA
(many)

Std.
err.

SPCA PCA PLS rpPCA
SPCA
(many)

Std.
err.

SPCA PCA PLS rpPCA
SPCA
(many)

Std.
err.

1 23 15 17 16 12 5 -14 -15 -15 -16 -13 5 42 34 34 36 36 14
3 105 59 96 254 69 15 25 -17 28 22 -25 8 84 58 84 133 56 23
4 109 60 119 202 92 18 36 -16 50 90 -5 8 96 58 39 87 85 27
5 103 93 113 200 116 18 22 -10 38 87 -14 9 84 76 -32 85 82 31
8 94 92 113 133 119 20 41 34 12 92 17 9 75 77 -131 14 92 35
11 116 84 102 147 114 22 38 35 24 68 17 10 96 44 -123 8 85 40
13 123 94 112 164 118 21 30 41 9 45 16 11 43 52 -162 -3 78 32

Avg ret 125 41

LN1 LN2 LN3

# factors SPCA PCA PLS rpPCA
SPCA
(many)

Std.
err.

SPCA PCA PLS rpPCA
SPCA
(many)

Std.
err.

SPCA PCA PLS rpPCA
SPCA
(many)

Std.
err.

1 11 11 29 12 28 31 45 27 31 29 41 28 30 24 25 25 16 20
3 208 169 202 443 238 84 102 106 200 292 96 59 19 19 -183 -98 55 42
4 220 154 -63 -160 32 100 108 109 80 75 118 70 12 12 -289 -245 4 68
5 17 46 199 -119 159 102 99 84 248 66 93 84 47 39 -62 -224 46 70
8 182 110 716 196 213 143 65 -3 -93 88 19 97 -215 -94 -40 -374 -40 90
11 59 49 842 -352 -34 171 112 114 -309 351 83 105 -259 -226 141 13 -68 93
13 50 53 937 115 -199 259 113 118 -378 293 253 115 -230 -215 46 32 -75 138

Intermediary IP growth

# factors SPCA PCA PLS rpPCA
SPCA
(many)

Std.
err.

SPCA PCA PLS rpPCA
SPCA
(many)

Std.
err.

1 90 72 73 76 85 31 0 0 0 0 0 0
3 122 122 136 244 143 35 -1 -1 -3 -4 -2 1
4 88 121 116 96 73 39 -1 -1 -2 -1 -1 1
5 136 90 164 98 116 40 0 -1 -4 -1 -1 1
8 207 137 23 210 144 42 -2 -2 -10 -4 -3 2
11 171 148 32 113 113 44 -2 -2 -12 1 0 2
13 179 170 61 127 99 51 -2 -2 -15 -2 -1 3

Table 5: Risk Premium

Note: In this table, we report the risk premium in bp estimated using different methods (SPCA, PCA, PLS, rpPCA).

The last two columns report the SPCA estimate using all 14 factors jointly as well as the standard error estimates. Each

panel corresponds to a different factor. Rows correspond to a different choice for the number of factors p. Sample is the

Chen-Zimmerman data for the period 1976-2019.
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Figure 3: Out-of-sample R2s of Different Factors

Note: The figure plots the time-series out of sample R2 for 14 different factors, using SPCA. The number of latent factors

extracted with SPCA is reported in the x axis. The data is the panel from Chen and Zimmermann (2020), covering the

period 1976-2019.
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4.3.2 Risk Premia Estimates and Asset Selection

Table 5 reports (in the first column of each panel) the estimated risk premium of the factors, for each choice

of p. While naturally the estimates vary somewhat with the number of factors p, they are broadly stable

when p is greater than 1. The table also reports for comparison the average return of the factor in the

training and testing samples, for tradable factors.

Ideally, for tradable factors the point estimate using SPCA should be close to the average realized return

of the factor; therefore, the comparison between the two reveals how well SPCA can estimate this risk

premium.

Given that SPCA selects assets that have sufficiently high correlation with the factor, one may wonder

whether we should expect SPCA to perfectly recover the risk premium of the tradable factor; just like a

standard mimicking portfolio estimate should perfectly mimic the tradable factor if the tradable factor itself

is among the test assets. The reason why this is not necessarily the case here, so that the risk premium may

differ from the average realized return and the R2 may be less than 100%, is that SPCA is not simply trying

to find the best mimicking portfolio for the factor. Rather, it is imposing the assumed factor structure,

and using it to recover the latent factors that drive the SDF (or at least the part that is relevant for the

factor of interest), using them to estimate the factor risk premium. This has two advantages. For tradable

factors, it allows to account for potential measurement error in the factor; for example, if the tradable

factor is exposed to a true latent risk factor but also contains undiversified idiosyncratic risk, standard

mimicking portfolio regressions would not yield efficient estimates of the risk premium (because they would

“mimick” the entire portfolio, including the undiversified risk). SPCA instead aims to extract only the part

of the observable factor that, according to the model, relates to the fundamental factors driving returns.

For nontradable factors, a mimicking portfolio approach would be inefficient or even infeasible (as in our

empirical application) as the number of assets is greater than the available time series.

Each of the estimates in column (1) of these panels reports the risk premia of each factor estimated

individually. While this provides a consistent estimate of the risk premium (as discussed in Section 2.5), it

does not allow us to do inference, because of the possibility of omitted weak factors. Under the assumption

that all relevant weak latent factors can be captured when considering all 14 observable factors only (that

is, that for each weak latent factor in the panel of returns, there is at least one of the 14 observable factors

that loads on it), we can then also do inference. Columns (5) and (6) report the risk premia estimates and

standard errors obtained using all factors simultaneously.

Table 5 shows that for tradable factors, the estimated risk premia are close to the realized average returns

of the factors, both statistically and economically, and the results are robust to the choice of p.

To gain a better understanding of how SPCA works, it is useful to look into the specific assets that

are selected to build the latent factors. We consider three factors for illustration purposes: one strong

(momentum), one weak tradable factor (RMW), and the intermediary capital factor, a weak nontradable

factor.

To estimate the risk premium for momentum, SPCA chooses qN = 100 assets to build each latent factor.

For the first latent factor, the assets selected have correlation with momentum as high as .37, and a large

fraction of them relate to different versions of momentum (specifically, the long portfolios that enter the
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momentum factor).5 The second latent factor is built by considering the correlation between the part of

momentum not explained by the first factor and the residuals of the returns. Interestingly, these correlations

are even higher, and are as high as .75 in absolute value. To build the second factor, SPCA picks assets

on the short side of the momentum strategies.6 This simple analysis shows how SPCA is able to zoom

immediately into portfolios that are relevant to explain the time variation in the Momentum factor. The

out-of-sample time-series R2 of the factor using SPCA is 75% even when using only 3 factors.

RMW is a profitability portfolio. It should therefore not be a surprise that the first factor selected by

SPCA combines returns of portfolios sorted by various accounting variables, like ROA, EPS, and book equity

(though also other variables are selected, like volatility); further factors add more accounting information.

For the case of intermediary capital, the assets selected by SPCA are portfolios with high idiosyncratic

volatility and low size for the first two factors (with correlations with the factor as high as .8), whereas the

further factors include sorts by leverage and profitability.

From all these results, it is clear that SPCA does not simply choose to build the first factor as the

market; rather it selects assets that capture relevant information for estimating the risk premium of the

factor of interest.

4.3.3 Comparison with Other Estimators

We now compare the results obtained using SPCA with those obtained using alternative estimators, namely:

the PCA-based estimator as in Giglio and Xiu (2020), a PLS version of this estimator, and rpPCA motivated

from the SDF estimator by Lettau and Pelger (2020). In both Table 4 and Table 5, the risk premia and

out-of-sample R2 are reported in each panel in columns (2) to (4).

Starting from the OOS R2 (Table 4), several patterns emerge. First, for strong factors (e.g., the market),

all estimators perform very similarly, irrespective of p. For completely spurious factors (e.g., IP growth),

all methods work as expected (with zero or negative R2). Negative out-of-sample R2s for what are clearly

spurious factors arise from overfitting, something that all methodologies appear equally subject to.

More interesting are the cases with the intermediate factors. There are two main patterns to note. First,

SPCA often obtains a high R2 with significantly fewer factors than the alternative methods. For example,

in the case of momentum, SPCA achieves a 75% R2 with 3 factors only, whereas standard PCA approach

requires 8 factors to get to the same R2, and rpPCA 11 factors (PLS behaves similarly to SPCA in this

case, but as we will see later, it is less robust in general).

The second pattern is that for all other factors, where R2 of the order 20%-60% are achieved, SPCA

does as well or better than all other methodologies very consistently, and in a way that is most robust

to the choice of p. Specifically, PLS has the highest variability, obtaining in a few cases very good out-of-

sample performance (e.g., for BAB), but in many cases performing disastrously (e.g., dramatically overfitting

spurious factors). PCA does almost as well as SPCA in most cases, but its performance depends more

strongly on the choice of p (and for given p, its performance is still typically below that of SPCA). rpPCA also

5Specifically, the list of the top 10 assets by correlation is: Mom12m05, FirmAgeMom0, IntMom05, retMomVol05, MomVol04,
FirmAgeMom04, ResidualMomentum11m05, Mom12m04, High5205, RIO BM01, where the name of the sorting characteristic
follows Chen and Zimmermann (2020), and the last two digit indicate the number of the portfolio.

6Specifically, the list of the top 10 assets by correlation is: ResidualMomentum11m01, Mom12m02, MomVol01, DownFore-
cast01, UpForecast01, Mom6m02, ResidualMomentum6m01, IntMom02, sfe01, MomSeasAlt1n02.
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performs almost as well as SPCA, but underperforms for some of the weak factors, sometimes significantly

(e.g. for RMW).

These similarities and differences across estimators are visible also when comparing risk premia (Table

5). In those cases where the estimators achieve similar out-of-sample R2, the risk premia estimates are

also close; but in several interesting cases, the risk-premia estimates differ significantly. For example, for

the intermediary capital factor, SPCA tends to show a significantly higher risk premium than the other

methodologies.

Overall, the empirical results show that all these methodologies perform relatively similarly in capturing

the time variation and risk premium of both tradable and nontradable factors: especially so for strong

factors, much less so for weak factors. SPCA shows two advantages: first, it consistently performs as well or

better than all other estimators, across all factor strengths. Second, it does so in a way that appears very

robust to the choice of factors p, much more so than the other methods. Its flexibility allows it to handle

well all ranges of factor strengths.

5 Conclusions

The choice of test assets plays a fundamental role in empirical asset pricing tests. The recent explosion of

anomaly discoveries and related characteristics in the empirical literature has provided researchers with a

large universe of potential test assets to choose from. On the one hand, the availability of so many different

characteristics gives us hope that the returns of these portfolios can help us uncover and identify the pricing

of various dimensions of risk, including those that are not well captured by standard cross-sections. On

the other hand, the large dimensionality goes hand in hand with the weak factor issue: a factor may well

be captured by some assets within the large cross-section, but if most assets do not have exposure to that

factor, it will be weak and inference will be incorrect.

Traditional methodologies to estimate risk premia take the cross-section of assets as given. In this paper,

we present a new methodology, SPCA, that instead actively selects assets in order to estimate risk premia of

factors of interest, whether they are strong or weak, and at the same time addresses the issue of potentially

omitted factors, again regardless of whether they are strong or weak.

In the paper, we propose some empirical applications of SPCA, and compare its performance to alter-

native methodologies to estimate the SDF and risk premia. While the road to a full understanding of risk

and risk premia in financial markets is still long, we believe that properly selecting the cross-section of test

portfolios and addressing weak and strong omitted factors are important steps in this direction.
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Appendix

A Model Assumptions

To derive the asymptotic properties of the SPCA and alternative estimators, we need the following high-

level assumptions, which can be easily verified by standard and more primitive assumptions. We start with

assumptions that characterize the DGP of returns and factor proxies.

Assumption A.1. The factor innovation V satisfies:

‖v̄‖ .p T
−1/2,

∥∥T−1V V ᵀ − Σv

∥∥ .p T
−1/2, ‖V ‖MAX .p

√
log T ,

where Σv ∈ Rp×p is a positive-definite matrix with λp (Σv) & 1 and λ1 (Σv) . 1.

Assumption A.2. The residual innovation Z satisfies:

‖z̄‖ .p T
−1/2,

∥∥T−1ZZᵀ − Σz

∥∥ .p T
−1/2, ‖Z‖MAX .p

√
log T .

where Σz ∈ Rd×d is a positive-definite matrix with λd (Σz) & 1 and λ1 (Σz) . 1. In addition,

‖ZV ᵀ‖ .p T
1/2.

Assumptions A.1 and A.2 impose rather weak conditions on the time series behavior of the factors and

measurement error. Since vt and zt have a finite cross-sectional dimension, both assumptions hold if these

processes are stationary, strong mixing, and satisfy some moment conditions.

Assumption A.3. The factor loading matrix β satisfies

‖β‖MAX . 1, λp(β
ᵀ
[I0]β[I0]) & N0,

for some index set I0, where N0 = |I0|.

Assumption A.3 implies that there exists a subset of test assets, within which all latent factors are strong.

Because the number of factors is finite, requiring all factors to be strong within a common index set I0 is

equivalent to requiring each factor to be strong in its own index set. One direction of the equivalence is

trivial. To prove the other direction, suppose that for factor i, there exists an index set, Ii, in which this

factor is strong, that is, λ1(βᵀ[Ii]β[Ii]) & |Ii|. Then we can find k? := mink |Ik|, and build up I0 from Ik∗ (so

that |I0| ≥ |Ik? |) by adding randomly selected |Ik? | number of assets from each Ij , j = 1, 2, . . . , p, j 6= k?.

The resulting index set I0 contains at most p × |Ik? | number of test assets, barring from repeated counts.

We thereby construct a common index set such that all factors are strong within this set.

Next, we need the following moment conditions.

Assumption A.4. The idiosyncratic component U satisfies:

‖U‖MAX .p (log T )1/2 + (logN)1/2, ‖ū‖MAX .p T
−1/2(logN)1/2.
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In addition, for any non-random subset I ⊂ [N ],∥∥U[I]

∥∥ .p |I|1/2 + T 1/2,
∥∥ū[I]

∥∥ .p |I|1/2 T−1/2.

Assumption A.4 imposes restrictions on the time-series dependence and heteroskedasticity of ut. The

first two inequalities are results of some large deviation theorem, see, e.g., Fan et al. (2011). The last

inequality can be shown by random matrix theory, see Bai and Silverstein (2009), if ut is i.i.d. both in time

and in the cross section.

Assumption A.5. For any non-random subset I ⊂ [N ], the factor loading β[I] and the idiosyncratic error

U[I] satisfy the following conditions:

(i)
∥∥∥(βᵀ[I]β[I])

−1/2βᵀ[I]U[I]

∥∥∥ .p T
1/2.

(ii)
∥∥∥(βᵀ[I]β[I])

−1/2βᵀ[I]U[I]ιT

∥∥∥ .p T
1/2.

If βᵀ[I]β[I] is singular, we need replace the matrix inverse above by the Moore-Penrose inverse.

Assumption A.6. The following conditions hold for U , V , β, and any non-random subset I ⊂ [N ]:

(i)
∥∥U[I]V

ᵀ
∥∥ .p |I|1/2 T 1/2,

∥∥U[I]V
ᵀ
∥∥

MAX
.p (logN)1/2T 1/2.

(ii)
∥∥∥(βᵀ[I]β[I])

−1/2βᵀ[I]U[I]V
ᵀ
∥∥∥ .p T

1/2.

Assumption A.7. The following conditions hold for U , Z, β, and any non-random subset I ⊂ [N ]:

(i)
∥∥U[I]Z

ᵀ
∥∥ .p |I|1/2 T 1/2,

∥∥U[I]Z
ᵀ
∥∥

MAX
.p (logN)1/2T 1/2.

(ii)
∥∥∥(βᵀ[I]β[I])

−1/2βᵀ[I]U[I]Z
ᵀ
∥∥∥ .p T

1/2.

Assumptions A.5 - A.7 resemble Assumptions A.7, A.9, and A.10 of Giglio and Xiu (2020), except that

here we impose their stronger versions which hold for any non-random subset I ⊂ [N ]. Of course, these two

sets of assumptions are equivalent if ut is identically distributed along the cross sectional dimension.

In the main text, we denote the selected subsets in the SPCA procedure as Îk, k = 1, 2, . . .. We now define

their population counterparts. For simplicity, we consider the case Σv = Ip here. In general case, replace β

and η by β
′

= βΣ
1/2
v and η

′
= ηΣ

1/2
v in the following definiiton. In detail, we start with a

(1)
i :=

∥∥β[i]η
ᵀ
∥∥

MAX

and define I1 := {a(1)
i ≥ c

(1)
qN}, where c

(1)
qN is the (qN)th largest value in

{
a

(1)
i

}
i=1,...,N

. Then, we denote

the largest right singular vector of β(1) := β[I1] by b1. For k > 1, we obtain a
(k)
i :=

∥∥∥β[i]

∏
j<kMbjη

ᵀ
∥∥∥

MAX
,

Ik := {a(k)
i ≥ c

(k)
qN} and bk is the largest right singular vector of β(k) := β[Ik]

∏
j<kMbj . This procedure

is stopped at step p̃ (for some p̃ not necessarily equal to p) if c
(p̃+1)
qN < c. In a nutshell, Ik’s are what

we will select if we do SPCA directly on β ∈ RN×p and η ∈ Rd×p, while Îk’s are obtained by SPCA on

R̄ ∈ RN×T and Ḡ ∈ Rd×T . We need the following assumption to guarantee the selection consistency, that

is, P(Îk = Ik)→ 1 for any 1 ≤ k ≤ p̃.

Assumption A.8. We assume that β(k), a
(k)
i and c in the above procedure satisfy:
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(i) σ1(β(k)) and σ2(β(k)) are distinct in the sense that there exists a constant δ > 0 such that

σ2(β(k)) ≤ (1 + δ)−1σ1(β(k)).

(ii) c
(k)
qN and c

(k)
qN+1 are distinct in the sense that there exists a constant δ > 0 such that

c
(k)
qN+1 ≤ (1 + δ)−1c

(k)
qN ,

where c
(k)
qN and c

(k)
qN+1 are the (qN)th and (qN + 1)th largest value in

{
a

(k)
i

}
i=1,...,N

, respectively.

(iii) c
(p̃+1)
qN and c are distinct in the sense that there exists a constant δ > 0 such that

c
(p̃+1)
qN ≤ (1 + δ)−1c.

Assumption A.8 requires that these singular values are distinguishable, so that their (relative) differences

will not vanish asymptotically. This assumption is rather mild, despite not being very explicit.

Assumption A.9. As T →∞, the following joint central limit theorem holds:

T 1/2

(
T−1vec(V Zᵀ)

v̄

)
d−→ N

((
0

0

)
,

(
Π11 Π12

Πᵀ
12 Π22

))
,

where Π11, Π12, Π22 are dp× dp, dp× p, and p× p matrices, respectively, defined as:

Π11 = lim
T→∞

1

T
E (V ZᵀZV ᵀ) ,

Π12 = lim
T→∞

1

T
E
(
V ZᵀιᵀTV

ᵀ) ,
Π22 = lim

T→∞

1

T
E
(
V ιT ι

ᵀ
TV

ᵀ) .
Assumption A.9 characterizes the joint asymptotic distribution of ZV ᵀ and V ιT . Since the dimensions

of these random processes are finite, this CLT is a fairly standard result of a central limit theory for mixing

processes.

Blow we introduce assumptions needed for the SDF estimation. Assumption A.10 ensures that the SDF

concept is well defined. Assumption A.11 again can be shown by some large deviation result and certain

central limit theorem.

Assumption A.10. Suppose that vt and ut are stationary time series independent of β, and that Σv =

Cov(vt) and Σu = Cov(ut) satisfy λmin(Σv) & 1 and λmax(Σu) . 1. Consequently, Σ = Cov(rt) = βΣvβ
ᵀ +

Σu.

Assumption A.11. The time series rt and the SDF defined by mt = 1− bᵀ(rt − E(r)) with b = Σ−1E(rt)
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satisfy:

(1)

∥∥∥∥∥T−1
T∑
t=1

(rt − r̄t)(mt − m̄t)− Cov(rt,mt)

∥∥∥∥∥
MAX

.p (logN)1/2T−1/2.

(2)

∥∥∥∥∥T−1
T∑
t=1

(rt − r̄t)(rt − r̄t)ᵀ − Cov(rt)

∥∥∥∥∥
MAX

.p (logN)1/2T−1/2.

(3)

∣∣∣∣∣T−1
T∑
t=1

mt − E(mt)

∣∣∣∣∣ .p T
−1/2.

(4)

∥∥∥∥∥T−1
T∑
t=1

rt − E(rt)

∥∥∥∥∥
MAX

.p (logN)1/2T−1/2.

Finally, we need the following assumption for establishing the convergence of the ridge-based SDF esti-

mator. It ensures that all eigenvalues of βΣvβ
ᵀ are well separated. This assumption shares the spirit with

Assumption A.8. A similar assumption has been adopted by, e.g., Wang and Fan (2017).

Assumption A.12. The eigenvalues of βΣvβ
ᵀ are separated in the sense that

(λj − λj+1)/λj ≥ δ

for some constant δ > 0, where λj := λj(βΣvβ
ᵀ) is the jth eigenvalue of βΣvβ

ᵀ.

B Mathematical Proofs

B.1 Proof of Proposition 1

Proof. Note that for any orthogonal matrix Γ ∈ RN×N , the estimators based on PCA, PLS and Ridge

on R′ = ΓR are the same as those based on R. Thus, without loss of generality, we can assume β =

(λ1/2, 0, · · · , 0)ᵀ, where λ = ‖β‖2. The same simplifying assumption is adopted in the proofs of Propositions

1, 2, and 3. Also, since zt = 0, Ḡ = ηV̄ .

We start with γ̂PCAg . We write R̄ in the following form:

R̄ = βV̄ + Ū =

(√
λV̄ + Ū1

Ū2

)
, (B.1)

where Ū1 is the first row of Ū and Ū2 contains the remaining rows. Correspondingly, we write the largest

left singular vector of R̄ as ς = (ς1, ς
ᵀ
2 )ᵀ, where ς1 is the first element of ς and ς2 is a vector of the remaining

N−1 entries of ς. Recall that in Algorithm 1, we denote ξ and ς as the largest right and left singular vectors

of R̄ with the singular value
√
T λ̂, so that by simple algebra we have

ς1 =
(
√
λV̄ + Ū1)ξ√

T λ̂
, ς2 =

Ū2ξ√
T λ̂

. (B.2)
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Since the entries of U and V are i.i.d N (0, 1), we have∣∣T−1V̄ V̄ ᵀ − 1
∣∣ =

∣∣T−1V (IT − T−1ιT ι
ᵀ
T )V ᵀ − 1

∣∣ ≤ ∣∣T−1V V ᵀ − 1
∣∣+ |v̄|2 .p T

−1/2,

where we use large deviation results
∣∣T−1V V ᵀ − 1

∣∣ .p T
−1/2 and |v̄| .P T−1/2 in the last equation. This

equation also implies that
∥∥V̄ ∥∥−√T .p 1.

Similarly, we can get
∣∣T−1Ū1Ū

ᵀ
1 − 1

∣∣ .p T
−1/2 and

∥∥Ū1

∥∥−√T .p 1.

In addition, by Lemma A.1 in Wang and Fan (2017), we have
∥∥N−1UᵀU − IT

∥∥ .p

√
T/N , which leads

to ∥∥N−1ŪᵀŪ − (IT − T−1ιT ι
ᵀ
T )
∥∥ =

∥∥(IT − T−1ιT ι
ᵀ
T )(N−1UᵀU − IT )(IT − T−1ιT ι

ᵀ
T )
∥∥ .p

√
T/N.

Next, by direct calculation using the above inequalities we obtain∥∥∥∥ V̄ ᵀŪ1 + Ūᵀ
1 V̄

T
√
λ

+
ŪᵀŪ −N(IT − T−1ιT ι

ᵀ
T )

Tλ

∥∥∥∥ .p
1√
λ

+

√
NT

Tλ
.p

1√
λ
.

Together with (B.1), we have ∥∥∥∥R̄ᵀR̄

Tλ
− V̄ ᵀV̄

T
−
N(IT − T−1ιT ι

ᵀ
T )

Tλ

∥∥∥∥ .p
1√
λ
. (B.3)

Because of this result, to study the eigenstructure of R̄ᵀR̄/(Tλ), we need analyze the eigenstructure of

M :=
V̄ ᵀV̄

T
+
N(IT − T−1ιT ι

ᵀ
T )

Tλ
=
V̄ ᵀV̄

T
+ B̃(IT − T−1ιT ι

ᵀ
T ),

where B̃ = N/(Tλ) and the assumption of the proposition implies that B̃ → B for a constant B.

Note that V̄ ιT = 0, the eigenvalues of M can be explicitly given by:

λi =


T−1V̄ V̄ ᵀ + B̃ i = 1;

B̃ 2 ≤ i ≤ T − 1;

0 i = T.

, (B.4)

and the first eigenvector is V̄ ᵀ/
∥∥V̄ ᵀ

∥∥. Since the largest eigenvalue of R̄ᵀR̄/(Tλ) is λ̂/λ with its corresponding

eigenvector ξ, Weyl’s theorem yields that

λ̂

λ
=
V̄ V̄ ᵀ

T
+ B̃ +Op

(
1√
λ

)
= 1 + B̃ +Op

(
1√
λ

+
1√
T

)
, (B.5)

and the sin-theta theorem in Davis and Kahan (1970) implies that

‖PV̄ ᵀ − Pξ‖ =
∥∥V̄ ᵀ(V̄ V̄ ᵀ)−1V̄ − ξξᵀ

∥∥ .p
1√
λ
, (B.6)
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which implies that (V̄ V̄ )−1(V̄ ξ)2 = ξᵀV̄ ᵀ(V̄ V̄ )−1V̄ ξ = 1+Op(λ
−1/2+T−1/2). Together with

∣∣T−1V̄ V̄ ᵀ − 1
∣∣ .

T−1/2, we have ∣∣V̄ ξ∣∣
√
T

= 1 +Op

(
1√
λ

+
1√
T

)
. (B.7)

It is easy to observe that the sign of ξ plays no role in the estimator γ̂PCAg , we can choose ξ such that

V̄ ξ√
T

= 1 +Op

(
1√
λ

+
1√
T

)
. (B.8)

Recall that the risk premium estimator is γ̂PCAg = η̂γ̂, where

η̂ =
Ḡξ√
T

and γ̂ =
ςᵀr̄√
λ̂
. (B.9)

Using Ḡ = ηV̄ and (B.8), we have

η̂ = η +Op

(
1√
λ

+
1√
T

)
. (B.10)

Write

γ̂ =
ςᵀr̄√
λ̂

=
ςᵀβ(γ + v̄)√

λ̂
+
ςᵀū√
λ̂

=

√
λς1√
λ̂

(γ + v̄) +
ςᵀū√
λ̂
, (B.11)

where we use β = (
√
λ, 0, . . . , 0)ᵀ in the last step. Now we analyze the two terms on the right hand side of

(B.11) one by one. For the first term, using (B.2), we have

√
λς1√
λ̂

=
λ

λ̂

(V̄ + λ−1/2Ū1)ξ√
T

=
λ

λ̂

(
V̄ ξ√
T

+
Ū1ξ√
Tλ

)
.

Using (B.5) and (B.8) and
∥∥Ū1

∥∥ .p

√
T , it follows that

√
λς1√
λ̂

=
1

1 + B̃
+Op

(
1√
λ

+
1√
T

)
. (B.12)

For the second term in (B.11), using (B.2) again, we can write

ςᵀū√
λ̂

=
ς1U1ιT

T
√
λ̂

+
ςᵀ2U2ιT

T
√
λ̂

=
ς1U1ιT

T
√
λ̂

+
ξᵀ(IT − T−1ιT ι

ᵀ
T )Uᵀ

2U2ιT

T 3/2λ̂
. (B.13)

The condition that entries of U are independent N (0, 1) implies that ‖U1ιT ‖ .p

√
T , with λ̂/λ

p−→ 1 + B

as shown in (B.5), the first term in (B.13) is of order Op(T
−1/2λ−1/2). For the second term in (B.13), using
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∥∥(N − 1)−1Uᵀ
2U2 − IT

∥∥ .p

√
T/N , we have∣∣∣∣ξᵀ(IT − T−1ιT ι

ᵀ
T )Uᵀ

2U2ιT

T 3/2λ̂

∣∣∣∣ ≤ ∣∣∣∣(N − 1)ξᵀ(IT − T−1ιT ι
ᵀ
T )ιT

T 3/2λ̂

∣∣∣∣+
N − 1

T λ̂

∥∥(N − 1)−1Uᵀ
2U2 − IT

∥∥
=
N − 1

T λ̂

∥∥(N − 1)−1Uᵀ
2U2 − IT

∥∥ .p
1√
λ
,

which leads to
∣∣∣λ̂−1/2ςᵀū

∣∣∣ .p λ
−1/2. Plugging this and (B.12) into (B.11), we obtain

γ̂ =
ςᵀr̄√
λ̂

=
γ

1 + B̃
+Op

(
1√
λ

+
1√
T

)
, (B.14)

and thus γ̂PCAg
p−→ (1 +B)−1ηγ by (B.10), (B.14) and B̃ → B.

B.2 Proof of Proposition 2

Proof. Recall that in Section 2.3.2, we have

γ̂PLSg =
∥∥ḠR̄ᵀR̄

∥∥−2
ḠR̄ᵀR̄ḠᵀḠR̄ᵀr̄. (B.15)

We analyze
∥∥ḠR̄ᵀR̄

∥∥, ḠR̄ᵀR̄Ḡᵀ and ḠR̄ᵀr̄ separately. Recall that from (B.3), we have∥∥∥∥R̄ᵀR̄

Tλ
− V̄ ᵀV̄

T
− B̃(IT − T−1ιT ι

ᵀ
T )

∥∥∥∥ .p
1√
λ
,

where B̃ = N/(Tλ) satisfies B̃ → B. Together with Ḡ = ηV̄ and
∥∥Ḡ∥∥ .p

√
T , we have

1

Tλ
√
T

∥∥ḠR̄ᵀR̄
∥∥ =

1√
T

∥∥∥∥Ḡ( V̄ ᵀV̄

T
+ B̃(IT − T−1ιT ι

ᵀ
T )

)∥∥∥∥+Op

(
1√
λ

)
=

η√
T

∥∥∥∥ V̄ V̄ ᵀV̄

T
+ B̃V̄

∥∥∥∥+Op

(
1√
λ

)
p−→ η(1 +B), (B.16)

where we use
∣∣T−1V̄ V̄ ᵀ − 1

∣∣ .p T
−1/2 and

∥∥V̄ ∥∥ − √T .p 1 in the last equation. For the same reason, by

direct calculation we have

1

T 2λ
ḠR̄ᵀR̄Ḡᵀ =

1

T
Ḡ

(
V̄ ᵀV̄

T
+ B̃(IT − T−1ιT ι

ᵀ
T )

)
Ḡᵀ +Op

(
1√
λ

)
= η2 V̄ V̄

ᵀV̄ V̄ ᵀ

T 2
+ η2B̃

V̄ V̄ ᵀ

T
+Op

(
1√
λ

)
p−→ η2(1 +B). (B.17)

Next, we write

1

Tλ
ḠR̄ᵀr̄ =

1

Tλ
ḠR̄ᵀβ(γ + v̄) +

1

Tλ
ḠR̄ᵀū. (B.18)
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We analyze these two terms in (B.18) separately. For the first term, we can write R̄ in the form of (B.1) as

in the proof of Proposition 1. Then, using
∥∥Ū1

∥∥ .p

√
T we have

1

Tλ
ḠR̄ᵀβ = η

V̄ V̄ ᵀ

T
+ η

V̄ Ūᵀ
1

T
√
λ

= η
V̄ V̄ ᵀ

T
+Op

(
1√
λ

)
. (B.19)

For the second term in (B.18), we have

1

Tλ
ḠR̄ᵀū = η

1

T 2
√
λ
V̄ V̄ ᵀŪ1ιT + η

1

T 2λ
V̄ ŪᵀUιT = η

1√
λ

V̄ V̄ ᵀ

T

Ū1ιT
T

+ η
1

T 2λ
V̄ UᵀUιT

= Op

(
1√
Tλ

)
+ η

N

T 2λ
V̄
(
N−1UᵀU − IT

)
ιT + η

N

T 2λ
V̄ ιT = Op

(
1√
Tλ

)
+Op

(
1√
λ

)
, (B.20)

where we use
∥∥N−1UᵀU − IT

∥∥ .p

√
T/N and V̄ ιT = 0 in the last equation. Plugging (B.19) and (B.20)

into (B.18), we have

1

Tλ
ḠR̄ᵀr̄ = η

V̄ V̄ ᵀ

T
(γ + v̄) +Op

(
1√
λ

)
p−→ ηγ. (B.21)

Plug (B.16), (B.17), (B.21) into (B.15), we have

γ̂PLSg
p−→ 1

η2(1 +B)2
η2(1 +B)ηγ =

1

1 +B
ηγ.

B.3 Proof of Proposition 3

Proof. Since Rank(R̄) ≤ min{N,T − 1}, and the assumptions of the proposition imply that N/T →∞, we

thereby have a condensed SVD of R̄ as

R̄ =
√
T (ς, ς∗)Λ̂

1/2(ξ, ξ∗)
ᵀ =
√
Tςλ̂1/2ξᵀ +

√
Tς∗Λ̂

1/2
∗ ξᵀ∗ ,

where Λ̂1/2 is the diagonal matrix of T − 1 singular values, ς, ξ are the left and right singular vectors

corresponding to the largest singular value of T−1/2R̄, which is denoted by λ̂1/2. In addition, ς∗ ∈ RN×(T−2)

and ξ∗ ∈ RT×(T−2) are the singular vectors corresponding to the rest T − 2 nonzero singular values, Λ̂
1/2
∗ ∈

R(T−2)×(T−2). By direct calculation, we have

√
TR̄ᵀ (R̄R̄ᵀ + µI

)−1
= (ξ, ξ∗)Λ̂

1/2(Λ̂ + T−1µI)−1(ς, ς∗)
ᵀ =

λ̂1/2

λ̂+ T−1µ
ξςᵀ + ξ∗Λ̂

1/2
∗

(
Λ̂∗ + T−1µI

)−1
ςᵀ∗ ,

and thus, with Ḡ = ηV̄ , the Ridge estimator can be written as

γ̂Ridgeg = ḠR̄ᵀ (R̄R̄ᵀ + µI
)−1

r̄ =
λ̂

λ̂+ T−1µ

ηV̄ ξ√
T

ςᵀr̄√
λ̂

+
ηV̄ ξ∗√
T

Λ̂
1/2
∗

(
Λ̂∗ + T−1µ

)−1
ςᵀ∗ r̄
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=
λ̂

λ̂+ T−1µ
γ̂PCAg +

ηV̄ ξ∗√
T

Λ̂
1/2
∗

(
Λ̂∗ + T−1µ

)−1
ςᵀ∗ r̄. (B.22)

Using (B.5) and the fact that T−1λ−1µ → D and Proposition 1, we can show that the first term in (B.22)

converges to (1 +B +D)−1ηγ. With respect to the second term, as shown in (B.3), we have∥∥∥∥R̄ᵀR̄

Tλ
− V̄ ᵀV̄

T
−
N(IT − T−1ιT ι

ᵀ
T )

Tλ

∥∥∥∥ .p
1√
λ
,

and the eigenvalues of

M =
V̄ ᵀV̄

T
+
N(IT − T−1ιT ι

ᵀ
T )

Tλ

are given by (B.4), it then follows from Weyl’s theorem that λi(T
−1λ−1R̄ᵀR̄) = B̃ +Op(λ

−1/2) for 2 ≤ i ≤

T − 1. Note that Λ̂
1/2
∗

(
Λ̂∗ + T−1µ

)−1
is a (T − 2) × (T − 2) diagonal matrix and the ith element on the

diagonal is

λi+1(T−1R̄ᵀR̄)1/2

λi+1(T−1R̄ᵀR̄) + T−1µ
=

1√
λ

λi+1(T−1λ−1R̄ᵀR̄)1/2

λi+1(T−1λ−1R̄ᵀR̄) + T−1λ−1µ
.

Together with T−1λ−1µ→ D, we have∥∥∥∥Λ̂
1/2
∗

(
Λ̂∗ + T−1µ

)−1
∥∥∥∥ = max

1≤i≤T−2

λi+1(T−1R̄ᵀR̄)1/2

λi+1(T−1R̄ᵀR̄) + T−1µ
.p

1√
λ
. (B.23)

Also, with ‖ū‖ .p

√
N/T , we have

‖ςᵀ∗ r̄‖ ≤ ‖ςᵀ∗β(γ + v̄)‖+ ‖ςᵀ∗ ū‖ ≤ ‖β(γ + v̄)‖+ ‖ū‖ .p

√
λ+

√
N/T .p

√
λ (B.24)

and∥∥∥∥ V̄ ξ∗√T
∥∥∥∥2

=

∥∥∥∥ V̄ (ξ, ξ∗)√
T

∥∥∥∥2

−
∥∥∥∥ V̄ ξ√T

∥∥∥∥2

≤
∥∥∥∥ V̄√

T

∥∥∥∥2

−
∥∥∥∥ V̄ ξ√T

∥∥∥∥2

= 1 +Op

(
1√
T

)
−
∥∥∥∥ V̄ ξ√T

∥∥∥∥2

.p
1√
λ

+
1√
T
, (B.25)

where we use (B.8) in the last inequality. Consequently, using (B.23), (B.24) and (B.25), we have∣∣∣∣ηV̄ ξ∗√
T

Λ̂
1/2
∗

(
Λ̂∗ + T−1µ

)−1
ςᵀ∗ r̄

∣∣∣∣ ≤ ∥∥∥∥ηV̄ ξ∗√
T

∥∥∥∥∥∥∥∥Λ̂
1/2
∗

(
Λ̂∗ + T−1µ

)−1
∥∥∥∥ ‖ςᵀ∗ r̄‖ . T−1/4 + λ−1/4.

By comparing this with the limit of the first term in (B.22), we obtain

γ̂Ridgeg
p−→ 1

1 +B +D
ηγ.
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B.4 Proof of Proposition 4

Proof. By direct calculation, we can write

RRᵀ +
µ

T
r̄r̄ᵀ = R

(
IT +

µ

T
ιT ι

ᵀ
T

)
Rᵀ = R

(
IT +

µ̃

T
ιT ι

ᵀ
T

)2

Rᵀ, (B.26)

where µ̃ =
√
µ+ 1− 1. Hence, the eigenvectors of RRᵀ +T−1µr̄r̄ᵀ are equivalent to the left singular vectors

of R
(
IT + T−1µ̃ιT ι

ᵀ
T

)
. Let ς and ξ denote the largest left and right singular vector of R

(
IT + T−1µ̃ιT ι

ᵀ
T

)
.

Note that ξ can be viewed as the largest eigenvector of

(IT + T−1µ̃ιT ι
ᵀ
T )RᵀR(IT + T−1µ̃ιT ι

ᵀ
T ),

we analyze the eigenspace of this matrix first. Similar to (B.3) in the PCA case, we have the following

approximation of RᵀR∥∥∥∥RᵀR

Tλ
− V̄ ᵀV̄

T
− γ

ιT V̄ + V̄ ᵀιᵀT
T

− γ2 ιT ι
ᵀ
T

T
− N

Tλ
IT
∥∥∥∥ .p

1√
T

+
1√
λ
, (B.27)

by
∣∣T−1V̄ V̄ ᵀ − 1

∣∣ .p T
−1/2,

∥∥Ū1

∥∥ .p T
1/2 and

∥∥N−1ŪᵀŪ − (IT − T−1ιT ι
ᵀ
T )
∥∥ .p

√
T/N .

Then, with (B.27) and N/(Tλ)→ B, we have∥∥T−1λ−1(IT + T−1µ̃ιT ι
ᵀ
T )RᵀR(IT + T−1µ̃ιT ι

ᵀ
T )−M∗

∥∥ = 0p(1) (B.28)

where the matrix M∗ here is defined by

M∗ := BIT + T−1V̄ ᵀV̄ + T−1(1 + µ̃)γ(ιT V̄ + V̄ ᵀιᵀT ) + T−1
(

(1 + µ̃)2γ2 + µ̃2B + 2µ̃B
)
ιT ι

ᵀ
T .

Recall that ξ is the eigenvector of T−1λ−1(IT+T−1µ̃ιT ι
ᵀ
T )RᵀR(IT+T−1µ̃ιT ι

ᵀ
T ), we can analyze the eigenspace

of M∗ first and then use sin-theta theorem to characterize ξ.

Firstly, the rank of M∗ −BIT is at most 2. Using the fact that V̄ ιT = 0, by direct calculation, we have

the two nozero eigenvalues of M∗ −BIT are the solutions of the equation

(x− a1)(x− a3)− a2
2 = 0, (B.29)

where a1 = T−1
∥∥V̄ ∥∥2

, a2 = T−1/2(1 + µ̃)γ
∥∥V̄ ∥∥ and a3 = (1 + µ̃)2γ2 + µ̃2B+ 2µ̃B. Since the larger solution

of (B.29) is

a1 + a3 +
√

(a1 − a3)2 + 4a2
2

2
≥ a1 > 0 (B.30)

with probability 1, it is also the largest eigenvalue of M∗−BIT . In addition, the second largest eigenvalue of

M∗ −BIT should be distinct with λ1(M∗ −BIT ). To see this, if the second eigenvalue is the other solution

of (B.29), we have λ1(M∗ − BIT ) − λ2(M∗ − BIT ) =
√

(a1 − a3)2 + 4a2
2 ≥ max{2a2, |a1 − a3|} > 0. If the

second eigenvalue is 0 (in which case the second solution of the above equation must be negative), we have
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shown in (B.30) that λ1(M∗ − BIT ) − λ2(M∗ − BIT ) = λ1(M∗ − BIT ) ≥ a1 > 0. In both cases, we have

λ1(M∗ −BIT )− λ2(M∗ −BIT ) ≥ δ > 0 for some constant δ > 0. Consequently,

λ1(M∗)− λ2(M∗) = λ1(M∗ −BIT )− λ2(M∗ −BIT ) ≥ δ, (B.31)

for some constant δ > 0. Now we calculate the first eigenvector of M∗, which should also be the first

eigenvector of M∗ − BIT . We use ξ̃ to denote this eigenvector. Since we already know that the largest

eigenvalue of λ1(M∗ −BIT ) is a solution of (B.29), which means that ξ̃ should be in the space spanned by

V̄ ᵀ and ιT . Writing ξ̃ = K1

∥∥V̄ ∥∥−1
V̄ ᵀ +K2T

−1/2ιT and plugging the largest eigenvalue of λ1(M∗−BIT ) of

(B.30) into λ1(M −BIT )ξ̃ = (M −BIT )ξ̃, we directly get

K2

K1
=

√
(a1 − a3)2 + 4a2

2 + a3 − a1

2a2
, (B.32)

which will pin down K1 and K2 because we also have
∥∥∥ξ̃∥∥∥ = 1.

Using
∥∥T−1λ−1(IT + T−1µ̃ιT ι

ᵀ
T )RᵀR(IT + T−1µ̃ιT ι

ᵀ
T )−M

∥∥ = op(1), (B.31) and sin-theta theorem, we

have ∥∥∥Pξ − Pξ̃
∥∥∥ ≤ op(1)

δ − op(1)
= op(1),

which implies that
∣∣∣ξ̃ᵀξ∣∣∣ p−→ 1 and consequently,

∥∥∥ξ −K1

∥∥V̄ ∥∥−1
V̄ ᵀ −K2T

−1/2ιT

∥∥∥ = op(1) or
∥∥∥ξ +K1

∥∥V̄ ∥∥−1
V̄ ᵀ +K2T

−1/2ιT

∥∥∥ = op(1).

Since the sign of ξ plays no role in the estimator γ̂rpPCAg , we can simply assume the former one.

Also, the relationship between singular vectors implies that

F̂ = ςᵀR =
∥∥R(IT + T−1µ̃ιT ι

ᵀ
T )
∥∥−1

ξᵀ(IT + T−1µ̃ιT ι
ᵀ
T )RᵀR. (B.33)

With the approximation of RᵀR in (B.27), V̄ ιT = 0, T−1V̄ V̄ ᵀ = 1 + Op(T
−1/2) and N/(Tλ) → B, by

direct calculation, we have∥∥∥∥∥V̄ ∥∥−1
V̄ (IT + T−1µ̃ιT ι

ᵀ
T )RᵀR− λT 1/2

(
(1 +B)V̄ + γιᵀT

)∥∥∥ = op(λT ), (B.34)

and ∥∥∥T−1/2ιᵀT (IT + T−1µ̃ιT ι
ᵀ
T )RᵀR− λT 1/2(1 + µ̃)

(
γV̄ + (γ2 +B)ιᵀT

)∥∥∥ = op(λT ). (B.35)

Plugging (B.34), (B.35) and
∥∥∥ξ −K1

∥∥V̄ ∥∥−1
V̄ ᵀ +K2T

−1/2ιT

∥∥∥ = op(1) into (B.33) we have

∥∥∥∥∥R(IT + T−1µ̃ιT ι
ᵀ
T )
∥∥ F̂ − λT 1/2(L1V̄ + L2ι

ᵀ
T )
∥∥∥ = op(λT ), (B.36)

45



where

L1 = K1(1 +B) +K2(1 + µ̃)γ, L2 = K1γ +K2(1 + µ̃)(γ2 +B). (B.37)

It is easy to observe that scalar plays no role in the estimator γ̂rpPCAg , we can redefine

F̂ ∗ = λ−1T−1/2L−1
1

∥∥R(IT + T−1µ̃ιT ι
ᵀ
T )
∥∥ F̂

and use F̂ ∗ to create γ̂rpPCAg . Then, (B.36) becomes
∥∥∥F̂ ∗ − V̄ − L−1

1 L2ι
ᵀ
T

∥∥∥ = op
(
T 1/2

)
. Consequently,∥∥∥V̂ − V̄ ∥∥∥ =

∥∥∥F̂ ∗(IT − T−1ιT ι
ᵀ
T )− V̄

∥∥∥ = op
(
T 1/2

)
, γ̂ = T−1F̂ ∗ιT = L−1

1 L2 + op(1), and

η̂ = ḠV̂ ᵀ(V̂ V̂ ᵀ)−1 = ηV̄ V̂ ᵀ(V̂ V̂ ᵀ)−1 = η
(
V̄ V̄ ᵀ + op(T )

)(
V̄ V̄ ᵀ + op(T )

)−1
= η + op(1),

and the estimator γ̂rpPCAg = η̂γ̂
p−→ ηL−1

1 L2, where L1 and L2 are defined in (B.37).

In light of that a1
p−→ 1, a2

p−→ (1+µ̃)γ, µ̃ =
√

1 + µ−1, γ̂rpPCAg
p−→ ηL2/L1, (B.32) and the definitions

of L1 and L2 in (B.37), we have

γ̂rpPCAg
p−→ w(1 +B)−1ηγ + (1− w)η(γ + γ−1B),

where

w =
2 + 2B

1 + 2B +
√

(1− a)2 + 4(1 + µ)γ + a
, a = (1 + µ)(γ2 +B)−B.

B.5 Proof of Proposition 5

Proof. Consider the set I = {
∣∣β[i]

∣∣ ≥ β{qN}}, where |β|{qN} is the (qN)th largest value in
{∣∣β[i]

∣∣}
i∈[N ]

. Since

T−1R̄Ḡᵀ − βηᵀ = β
(
T−1V̄ V̄ ᵀ − 1

)
ηᵀ + T−1Ū V̄ ᵀηᵀ + T−1βV̄ Z̄ᵀ + T−1Ū Z̄ᵀ,

we have ∥∥T−1R̄Ḡᵀ − βηᵀ
∥∥

MAX
. ‖β‖MAX

∣∣T−1V̄ V̄ ᵀ − 1
∣∣ ‖η‖+ T−1

∥∥Ū V̄ ᵀ
∥∥

MAX
‖η‖

+ T−1 ‖β‖MAX

∥∥V̄ Z̄ᵀ
∥∥+ T−1

∥∥Ū Z̄ᵀ
∥∥

MAX
.p (logN)1/2T−1/2.

In other words, the difference between T−1R̄Ḡᵀ and βηᵀ for all test assets is bounded byOp
(
(logN)1/2T−1/2

)
,

which is o(1) under our assumption.

On the other hand, with the assumption that ‖β‖MAX . 1 and the definition of |β|{qN}, we have∥∥β[I0]

∥∥2
. qN + (N0 − qN) |β|2{qN}. Together with the assumption that qN/N0 → 0 and

∥∥β[I0]

∥∥ � √N0, it

leads to |β|2{qN} & ‖βI0‖
2 /N0 � 1. Then, with the assumption that |β|{qN+1} ≤ (1 + δ)−1 |β|{qN}, we have

that the difference between |β|{qN+1} and |β|{qN} should be at the same rate as |β|{qN} & 1, which is larger
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than the difference between T−1R̄Ḡᵀ and βηᵀ. Therefore, with probability approaching one, we have Î = I.

In what follows, we only need consider the case of Î = I.

Since qN/N0 → 0, by the definition of I, we have
∥∥β[I]

∥∥ /√|I| ≥ ∥∥β[I0]

∥∥ /√|I0|. Together with the

assumption that
∥∥β[I0]

∥∥ � √N0,
∥∥β[I0]

∥∥ → ∞ and |I| = qN → ∞, we have |I| /(T
∥∥β[I]

∥∥2
) → 0 and∥∥β[I]

∥∥ → ∞. Now compared to the case with PCA, the expansion on γ̂SPCAg resembles that of (B.11),

except for an extra term that depends on Z̄ and the restriction of r̄ on I:

γ̂SPCAg =
ηV̄ ξ√
T

ςᵀr̄[I]√
λ̂

+
Z̄ξ√
T

ςᵀr̄[I]√
λ̂
. (B.38)

In restriction to the smaller set I, the first term matches exactly the case of |I| /(T
∥∥β[I]

∥∥2
) → 0 = B in

Proposition 1, which yields
ηV̄ ξ√
T

ςᵀr̄[I]√
λ̂

= ηγ + op(1).

We now analyze the second term in (B.38). As shown in (B.14), we have∥∥∥∥∥ ςᵀr̄[I]√
λ̂

∥∥∥∥∥ .p 1,

so to prove that SPCA is consistent in this case, it is sufficient to show that T−1/2
∥∥Z̄ξ∥∥ p−→ 0, where ξ is

the largest right singular vector of R̄[I]. Similar to the proof of (B.6) in Proposition 1, we can show that the

difference between projection matrices, Pξ and PV̄ ᵀ is small by sin-theta theorem. That is to say, we have∥∥ξξᵀ − V̄ ᵀ(V̄ V̄ ᵀ)−1V̄
∥∥ p−→ 0. Then, with the fact that∥∥Z̄V̄ ᵀ(V̄ V̄ ᵀ)−1V̄

∥∥ ≤ ∥∥Z̄V̄ ᵀ
∥∥∥∥(V̄ V̄ ᵀ)−1

∥∥∥∥V̄ ∥∥ .p T
1/2 × T−1 × T 1/2 .p 1,

we have T−1/2
∥∥Z̄ξξᵀ∥∥ p−→ 0. Consequently,

T−1/2
∥∥Z̄ξ∥∥ = T−1/2

∥∥Z̄ξξᵀξ∥∥ ≤ T−1/2
∥∥Z̄ξξᵀ∥∥ ‖ξ‖ p−→ 0.

Hence, zt does not affect the consistency of the SPCA estimator. This completes the proof.

B.6 Proof of Theorem 1

Proof. It is sufficient to consider the case Σv = Ip. Otherwise, we can do transformation V ′ = Σ
− 1

2
v V ,

β′[I] = β[I]Σ
1
2
v , η′ = ηΣ

1
2
v and γ′ = Σ

− 1
2

v γ. All the Assumptions A.1-A.8 still hold for the new V ′, β′[I].

Therefore, we only need analyze the case of Σv = Ip.
For notation simplicity, throughout the proofs of Theorems 1-3, we use R̃(k) :=

(
R̄(k)

)
[Îk]

to denote the

matrix on which we perform SVD in each step of Algorithm 5. Similarly, we use r̃(k) :=
(
r̄(k)

)
[Îk]

. The first

left and right singular vectors of R̃(k) are denoted by ς(k) and ξ(k), while the largest singular value of R̃(k) is

denoted by
√
T λ̂(k). As a result, λ̂(k) = T−1

∥∥∥R̃(k)

∥∥∥2
.

Using the above notation, our estimated factor at k-th step is V̂(k) =
√
Tξᵀ(k) ∈ R1×T , the risk premium
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of this factor is given by γ̂(k) = λ̂
−1/2
(k) ςᵀ(k)r(k), the loading matrix of R on this factor is β̂(k) = T−1/2R̄ξ(k),

and the loading of G on this factor is η̂(k) = T−1/2Ḡξ(k). By footnote 4, we can use Ḡ instead of Ḡ(k) in

Algorithm 5 and throughout the proof. We denote η̂ = (η̂(1), . . . , η̂(p̃)) and γ̂ = (γ̂(1), . . . , γ̂(p̃))
ᵀ, so the risk

premium estimator is γ̂SPCAg = η̂γ̂.

By Lemma 2, we have ξᵀ(i)ξ(j) = 0 for i 6= j ≤ p̃. This suggests that V̂(k) at each step k are pairwise

orthogonal. Using this property and the definition of R̃(k), we have

R̃(k) :=
(
R̄(k)

)
[Îk]

= R̄
[Îk]

k−1∏
i=1

M
V̂ ᵀ
(i)

= R̄
[Îk]

(
IT −

k−1∑
i=1

ξ(i)ξ
ᵀ
(i)

)
, (B.39)

for k > 1 and when k = 1,

R̃(1) = R̄
[Î1]

= β
[Î1]
V̄ + Ū

[Î1]
.

If we define β̃(1) = β
[Î1]

and Ũ(1) = Ū
[Î1]

, then R̃(1) can be written in the form R̃(1) = β̃(1)V̄ + Ũ(1). We can

iteratively define

Ũ(k) := Ū
[Îk]
−
k−1∑
i=1

R̄
[Îk]
ξ(i)

√
T

ςᵀ(i)Ũ(i)√
λ̃(i)

and β̃(k) := β
[Îk]
−
k−1∑
i=1

R̄
[Îk]
ξ(i)

√
T

ςᵀ(i)β̃(i)√
λ̃(i)

. (B.40)

Recall that ξ(k) and ς(k) are singular vectors of R̃(k), we have

ς(k) =
R̃(k)ξ(k)√
T λ̂(k)

, ξ(k) =
R̃ᵀ

(k)ς(k)√
T λ̂(k)

. (B.41)

Using (B.41), if R̃(i) = β̃(i)V̄ + Ũ(i) for i < k, we can write (B.39) as

R̃(k) = R̄
[Îk]

(
IT −

k−1∑
i=1

ξ(i)ξ
ᵀ
(i)

)
=R̄

[Îk]
−
k−1∑
i=1

R̄
[Îk]
ξ(i)

ςᵀ(i)R̃(i)√
T λ̂(i)

=β̃
[Îk]
V̄ + Ũ

[Îk]
−
k−1∑
i=1

R̄
[Îk]
ξ(i)

ςᵀ(i)β̃(i)V̄√
T λ̂(i)

−
k−1∑
i=1

R̄
[Îk]
ξ(i)

ςᵀ(i)Ũ(i)√
T λ̂(i)

=β̃(k)V̄ + Ũ(k).

Consequently, by induction, R̃(k) = β̃(k)V̄ + Ũ(k) for k ≤ p̃+ 1. Similarly, we can write

r̃(k) = β̃(k)(γ + v̄) + ũ(k), (B.42)
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where ũ(k) is defined by

ũ(k) := ū
[Îk]
−
k−1∑
i=1

R̄
[Îk]
ξ(i)

√
T

ςᵀ(i)ũ(i)√
λ̂(i)

, (B.43)

and ũ(1) = ū
[Î1]

.

Similar representations can be created for G̃(k) := Ḡ
∏k−1
i=1 M

V̂ ᵀ
(i)

. Specifically, we have

G̃(k) := Ḡ

(
IT −

k−1∑
i=1

ξ(i)ξ
ᵀ
(i)

)
=Ḡ−

k−1∑
i=1

Ḡξ(i)

ςᵀ(i)R̃(i)√
T λ̂(i)

= ηV̄ + Z̄ −
k−1∑
i=1

Ḡξ(i)

ςᵀ(i)β̃(i)V̄√
T λ̂(i)

−
k−1∑
i=1

Ḡξ(i)

ςᵀ(i)Ũ(i)√
T λ̂(i)

=

η − k−1∑
i=1

Ḡξ(i)

ςᵀ(i)β̃(i)√
T λ̂(i)

 V̄ +

Z̄ − k−1∑
i=1

Ḡξ(i)

ςᵀ(i)Ũ(i)√
T λ̂(i)

 .

Using the following notation

η̃(k) := η −
k−1∑
i=1

Ḡξ(i)

ςᵀ(i)β̃(i)√
T λ̂(i)

, and Z̃(k) := Z̄ −
k−1∑
i=1

Ḡξ(i)

ςᵀ(i)Ũ(i)√
T λ̂(i)

, (B.44)

G̃(k) can be written as G̃(k) = η̃(k)V̄ + Z̃(k).

To sum up, we have defined R̃(k), r̃(k), β̃(k), Ũ(k), ũ(k), η̃(k) and Z̃(k) at the kth step of the algorithm. Note

that β̃(k) ∈ R|Ik|×p and η̃(k) ∈ Rd×p can be viewed as the loading of R̃(k) and G̃(k) on V̄ , but they are not

the same as the estimators defined in Algorithm 5, β̂(k) ∈ RN×1 and η̂(k) ∈ Rd×1, which are the estimated

loadings of R and G on the kth factor.

By Lemma 4, we have P(Îk = Ik) → 1 for k ≤ p̃ and P(p̂ = p̃) → 1. Thus, we can impose that Îk = Ik

for any k and p̂ = p̃ in what follows. In addition, Lemma 3(ii) and Lemma 4(iii) imply that λ̂(k) � qN and

that |Ik| = qN . Therefore, the assumptions of Lemmas 6-9 hold.

Since our algorithm stops at p̃, it implies that at most qN−1 test assets satisfy T−1
∥∥∥(R̄(p̃+1)

)
[i]
Ḡᵀ
∥∥∥

MAX
≥

c. Consider the test assets in I0, we have

T−1
∥∥∥G̃(p̃+1)R̄

ᵀ
[I0]

∥∥∥ = T−1
∥∥∥(R̄(p̃+1)

)
[I0]

Ḡᵀ
∥∥∥ . q1/2N1/2 + cN

1/2
0 = o

(
N

1/2
0

)
, (B.45)

where we use the the assumptions c→ 0 and qN/N0 → 0 in the last equation.

Write the left hand side of (B.45) as

G̃(p̃+1)R̄
ᵀ
[I0] = η̃(p̃+1)V̄ V̄

ᵀβ[I0] + η̃(p̃+1)V̄ Ū
ᵀ
[I0] + Z̄(p̃+1)V̄

ᵀβ[I0] + Z̄(p̃+1)Ū
ᵀ
[I0]. (B.46)

Using (B.45), (B.46) and Lemma 8(i)(ii), we have∥∥∥η̃(p̃+1)

(
V̄ V̄ ᵀβ[I0] + V̄ Ūᵀ

[I0]

)∥∥∥ = op

(
N

1/2
0 T

)
. (B.47)
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Also, using Assumption A.6, Lemma 1(i) and Weyl’s theorem, we have∣∣∣σp(V̄ V̄ ᵀβ[I0] + V̄ Ūᵀ
[I0])− σp(Tβ[I0])

∣∣∣ ≤ ∥∥∥V̄ Ūᵀ
[I0]

∥∥∥+
∥∥T−1V̄ V̄ ᵀ − Ip

∥∥∥∥Tβ[I0]

∥∥ .p N
1/2
0 T 1/2. (B.48)

Since Assumption A.3 implies that σp(β[I0]) � N
1/2
0 , we have σp(V̄ V̄

ᵀβ[I0] + V̄ Ūᵀ
[I0]) � N

1/2
0 T . Using this

result, (B.47) and the inequality
∥∥∥η̃(p̃+1)

(
V̄ V̄ ᵀβ[I0] + V̄ Ūᵀ

[I0]

)∥∥∥ ≥ σp(V̄ V̄
ᵀβ[I0] + V̄ Ūᵀ

[I0])
∥∥η̃(p̃+1)

∥∥, we have∥∥η̃(p̃+1)

∥∥ p−→ 0. That is, by definition of η̃(p̃+1) in (B.44),∥∥∥∥∥∥η −
p̃∑
i=1

Ḡξ(i)

ςᵀ(i)β̃(i)√
T λ̂(i)

∥∥∥∥∥∥ = op(1). (B.49)

Multiplying (B.49) by γ from the right-hand side, we have∥∥∥∥∥∥ηγ −
p̃∑
i=1

Ḡξ(i)

ςᵀ(i)β̃(i)√
T λ̂(i)

γ

∥∥∥∥∥∥ = op(1). (B.50)

Recall that our final estimator of γg is

γ̂SPCAg = η̂γ̂ =

p̃∑
i=1

η̂(i)γ̂(i) =

p̃∑
i=1

Ḡξ(i)

ςᵀ(i)r̃(i)√
T λ̂(i)

=

p̃∑
i=1

Ḡξ(i)

ςᵀ(i)β̃(i)√
T λ̂(i)

(γ + v̄) +

p̃∑
i=1

Ḡξ(i)

ςᵀ(i)ũ(i)√
T λ̂(i)

. (B.51)

Combining (B.50) and (B.51), we have

‖ηγ − η̂γ̂‖ ≤
p̃∑
i=1

∥∥∥∥∥∥Ḡξ(i)

ςᵀ(i)β̃(i)√
T λ̂(i)

v̄

∥∥∥∥∥∥+

p̃∑
i=1

∥∥∥∥∥∥Ḡξ(i)

ςᵀ(i)ũ(i)√
T λ̂(i)

∥∥∥∥∥∥+ op(1). (B.52)

Using
∥∥Ḡ∥∥ .p T

1/2, Lemma 7(ii), Lemma 9(i) and the assumptions that qN →∞, we have∥∥∥∥∥∥Ḡξ(i)

ςᵀ(i)β̃(i)√
T λ̂(i)

v̄

∥∥∥∥∥∥ ≤ ∥∥Ḡξ(i)

∥∥∥∥∥∥∥∥
ςᵀ(i)β̃(i)√
T λ̂(i)

∥∥∥∥∥∥ ‖v̄‖ = op(1),

and ∥∥∥∥∥∥Ḡξ(i)

ςᵀ(i)ũ(i)√
T λ̂(i)

∥∥∥∥∥∥ ≤ ∥∥Ḡξ(i)

∥∥∥∥∥∥∥∥
ςᵀ(i)ũ(i)√
T λ̂(i)

∥∥∥∥∥∥ = op(1).

Plugging them into (B.52) completes the proof.
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B.7 Proof of Theorem 2

To derive the asymptotic distribution, we need a more intricate analysis. As in the proof of Theorem 1, we

impose that p̂ = p̃ and Îk = Ik, since Lemma 4 shows that both events occur with probability approaching

1.

Recall that in Algorithm 5 the SPCA estimator is written as γ̂SPCAg = η̂γ̂ =
∑p̂

k=1 η̂(k)γ̂(k), where p̂ is

the number of factors selected and, with the notation defined in the proof of Theorem 1,

η̂(k) =
Ḡξ(k)√
T

=
ηV̄ ξ(k)√

T
+
Z̄ξ(k)√
T
, γ̂(k) =

ςᵀ(k)r̃(k)√
λ̂(k)

=
ςᵀ(k)β̃(k)(γ + v̄)√

λ̂(k)

+
ςᵀ(k)ũ(k)√
λ̂(k)

. (B.53)

Denote H1 = (h11, . . . , hp̂1), H2 = (h12, . . . , hp̂2), where

hk1 = T−1/2V̄ ξ(k), hk2 = λ̂
−1/2
(k) β̃ᵀ(k)ς(k). (B.54)

Therefore, we can write (B.53) as

η̂(k) − ηhk1 =
Z̄ξ(k)√
T
, γ̂(k) − h

ᵀ
k2(γ + v̄) =

ςᵀ(k)ũ(k)√
λ̂(k)

. (B.55)

Since ξ(k) and ς(k) are the largest singular vectors of R̃(k) with the singular value
√
T λ̂(k), we have

ς(k) =
R̃(k)ξ(k)√
T λ̂(k)

, ξ(k) =
R̃ᵀ

(k)ς(k)√
T λ̂(k)

. (B.56)

From (B.56), we have

Z̄ξ(k)√
T

=
Z̄√
T

R̃ᵀ
(k)ς(k)√
T λ̂(k)

=
Z̄V̄ ᵀ

T

β̃ᵀ(k)ς(k)√
λ̂(k)

+
Z̄Ũᵀ

(k)ς(k)

T
√
λ̂(k)

=
Z̄V̄ ᵀ

T
hk2 +

Z̄Ũᵀ
(k)ς(k)

T
√
λ̂(k)

.

Using Lemma 7(ii) and the assumptions on q, we have∥∥∥∥∥∥
Z̄Ũᵀ

(k)ς(k)

T
√
λ̂(k)

∥∥∥∥∥∥ = op(T
−1/2),

∥∥∥∥∥∥
ςᵀ(k)ũ(k)√
λ̂(k)

∥∥∥∥∥∥ = op(T
−1/2).

Then, along with (B.55) and Lemma 1(vi), the above equations lead to∥∥∥∥η̂ − ηH1 −
ZV

T
H2

∥∥∥∥ = op(T
−1/2), (B.57)
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and

‖γ̂ −Hᵀ
2γ −H

ᵀ
2 v̄‖ = op(T

−1/2). (B.58)

Combining (B.57) and (B.58), with ‖H1‖ .p 1, ‖H2‖ .p 1 from Lemma 9 and Assumptions A.1, A.2, we

have ∥∥∥∥η̂γ̂ − ηH1H
ᵀ
2 (γ + v̄)− ZV ᵀ

T
H2H

ᵀ
2γ

∥∥∥∥ = op(T
−1/2). (B.59)

As shown in Lemma 3(iv), under the assumption that λp(η
ᵀη) & 1, we have p̃ = p. Together with

P(p̂ = p̃) → 1, we can impose that p̂ = p for derivations below. To analyze H1H
ᵀ
2 and H2H

ᵀ
2 in (B.59),

using Lemma 9 and the assumptions on q, we have

‖Hᵀ
2H2 − Ip‖ ≤ ‖Hᵀ

1H2 − Ip‖+ ‖H1 −H2‖ ‖H2‖ .p T
−1/2. (B.60)

Then, for the term H2H
ᵀ
2 , we have

‖H2H
ᵀ
2 − Ip‖ = max

1≤i≤p
|λi(H2H

ᵀ
2 )− 1| = max

1≤i≤p
|λi(Hᵀ

2H2)− 1| = ‖Hᵀ
2H2 − Ip‖ .p T

−1/2 (B.61)

since H2 is a p× p matrix.

For the term H1H
ᵀ
2 , by Lemma 9 and the assumptions on q, we have

‖Hᵀ
1H2 − Ip‖ = op(T

−1/2). (B.62)

In addition, we have

σp(H2) ‖H2H
ᵀ
1 − Ip‖ ≤ ‖(H2H

ᵀ
1 − Ip)H2‖ = ‖H2(Hᵀ

1H2 − Ip)‖ ≤ ‖H2‖ ‖Hᵀ
1H2 − Ip‖ . (B.63)

Since (B.60) implies that σ1(H2)/σp(H2) = λ1(H2H
ᵀ
2 )1/2/λp(H2H

ᵀ
2 )1/2 .p 1, (B.62) and (B.63) give

‖H1H
ᵀ
2 − Ip‖ = ‖H2H

ᵀ
1 − Ip‖ ≤

σ1(H2)

σp(H2)
‖Hᵀ

1H2 − Ip‖ = op(T
−1/2). (B.64)

Combining (B.59), (B.61), and (B.64), we obtain
∥∥η̂γ̂ − η(γ + v̄)T−1ZV ᵀγ

∥∥ = op(T
−1/2). Using Delta

method and Assumption A.9, it is straightforward to obtain:
√
T (η̂γ̂ − ηγ)

d−→ N (0,Φ) , where Φ is

as defined in Theorem 2.

B.8 Proof of Theorem 3

Proof. As shown in the proof of Theorem 2, we have P(p̂ = p)→ 1 and P(Îk = Ik)→ 1 for k ≤ p. Thus, we

impose p̂ = p̃ = p and Îk = Ik below. Using the same notation as in the proof of Theorem 2 and (B.58), we
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have

1

T

T∑
t=1

|mt − m̂t|2 =
1

T

∥∥∥V̂ ᵀγ̂ − V ᵀγ
∥∥∥2

=
1

T

∥∥∥√Tξ(Hᵀ
2γ +Op(T

−1/2))− V ᵀγ
∥∥∥2

=
1

T

∥∥∥√TξHᵀ
2γ − V̄

ᵀγ
∥∥∥2

+Op
(
T−1

)
, (B.65)

where ξ = (ξ(1), . . . , ξ(p)).

Using (B.56), we can write

√
Tξ(k)h

ᵀ
k2 =

R̃ᵀ
(k)ς(k)√
λ̂(k)

hᵀk2 =
V̄ ᵀβ̃ᵀ(k)ς(k)√

λ̂(k)

hᵀk2 +
Ũᵀ

(k)ς(k)√
λ̂(k)

hᵀk2. (B.66)

Using Lemma 7(i), Lemma 9(i) and λ̂(k) �p |Ik|, |Ik| = qN , we can derive from (B.66) that

√
Tξ(k)h

ᵀ
k2 = V̄ ᵀhk2h

ᵀ
k2 +Op

(
q−1/2N−1/2T 1/2 + T−1/2

)
.

That is,

√
TξHᵀ

2 = V̄ ᵀH2H
ᵀ
2 +Op

(
q−1/2N−1/2T 1/2 + T−1/2

)
. (B.67)

Therefore, using (B.67), (B.61) and the assumptions on q, we have

T−1/2
∥∥∥√TξHᵀ

2γ − V̄
ᵀγ
∥∥∥ .p T

−1/2
∥∥V̄ ᵀH2H

ᵀ
2 − V̄

ᵀ
∥∥ ‖γ‖+ q−1/2N−1/2 + T−1

.p T
−1/2

∥∥V̄ ∥∥ ‖H2H
ᵀ
2 − Ip‖+ q−1/2N−1/2 + T−1

.p q
−1/2N−1/2 + T−1/2.

Therefore, it follows from (B.65) that

1

T

T∑
t=1

|mt − m̂t|2 =
1

T

∥∥∥V̂ ᵀγ̂ − V ᵀγ
∥∥∥2

.p
1

T
+

1

qN
.

In light of the assumptions on q, we can choose q such that qN & N0/ logN0, which leads to

1

T

T∑
t=1

|mt − m̂t|2 .p
1

T
+

logN0

N0
.
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B.9 Proof of Proposition 6

Proof. Write β̃ = Σ
−1/2
u βΣ

1/2
v , then by definition m̃t can be written as

m̃t = 1− γᵀβᵀΣ−1
r (βvt + ut) = 1− γᵀΣ−1/2

v β̃ᵀ
(
β̃β̃ᵀ + IN

)−1
(β̃Σ−1/2

v vt + Σ−1/2
u ut), (B.68)

or in matrix form

M̃ = 1− γᵀβᵀΣ−1
r (βV + U) = 1− γᵀΣ−1/2

v β̃ᵀ
(
β̃β̃ᵀ + IN

)−1
(β̃Σ−1/2

v V + Σ−1/2
u U), (B.69)

where M̃ = (m̃1, . . . , m̃T ), V = (v1, . . . , vT ) and U = (u1, . . . , ut). Suppose that the SVD of β̃ can be

written as β̃ = BΛ1/2Γ, where B ∈ RN×p and Γ ∈ Rp×p are matrices of left and right singular vectors,

Λ1/2 = diag(λ̃
1/2
1 , · · · , λ̃1/2

p ) is a diagonal matrix and λ̃i is the ith eigenvalue of β̃ᵀβ̃. Write B = (b1, · · · , bp),
then bᵀi bj = 0 for i 6= j. Using the SVD of β̃, we have

β̃ᵀ
(
β̃β̃ᵀ + IN

)−1
= ΓᵀΛ1/2(Λ + Ip)−1Bᵀ.

Hence, we have∥∥∥∥β̃ᵀ (β̃β̃ᵀ + IN
)−1

β̃ − Ip
∥∥∥∥ =

∥∥∥ΓᵀΛ1/2(Λ + Ip)−1Λ1/2Γ− Ip
∥∥∥ =

∥∥∥Λ1/2(Λ + Ip)−1Λ1/2 − Ip
∥∥∥ .p λ̃

−1
p , (B.70)

and ∥∥∥∥β̃ᵀ (β̃β̃ᵀ + IN
)−1

Σ−1/2
u U

∥∥∥∥ =
∥∥∥ΓᵀΛ1/2(Λ + Ip)−1BᵀΣ−1/2

u U
∥∥∥ .p

(
λ̃−1/2
p

)∥∥∥BᵀΣ−1/2
u U

∥∥∥ . (B.71)

Since Cov(BᵀΣ
−1/2
u ut) = Ip, we have E

(∥∥∥BᵀΣ
−1/2
u U

∥∥∥2

F

)
= pT , which leads to

∥∥∥BᵀΣ−1/2
u U

∥∥∥ ≤ ∥∥∥BᵀΣ−1/2
u U

∥∥∥
F
.p T

1/2. (B.72)

For the same reason, we have
∥∥∥Σ
−1/2
v V

∥∥∥ .p T
1/2. Then, with Assumption A.10, (B.69), (B.70), (B.71), and

(B.72), we have√√√√ T∑
t=1

|mt − m̃t|2 ≤
∥∥∥∥γᵀΣ−1/2

v

(
β̃ᵀ
(
β̃β̃ᵀ + IN

)−1
β̃ − Ip

)
Σ−1/2
v V

∥∥∥∥+

∥∥∥∥γᵀΣ−1
v β̃ᵀ

(
β̃β̃ᵀ + IN

)−1
Σ−1/2
u U

∥∥∥∥
.

∥∥∥∥β̃ᵀ (β̃β̃ᵀ + IN
)−1

β̃ − Ip
∥∥∥∥∥∥∥Σ−1/2

v V
∥∥∥+

∥∥∥∥β̃ᵀ (β̃β̃ᵀ + IN
)−1

Σ−1/2
u U

∥∥∥∥
.p T

1/2λ̃−1/2
p ,
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which in turn leads to

1

T

T∑
t=1

|mt − m̃t|2 .p λ̃
−1
p ,

where

λ̃p = λp

(
Σ1/2
v βᵀΣ−1

u βΣ1/2
v

)
≥ λp(βΣvβ

ᵀ)λmin(Σ−1
u ) �p λp(βᵀβ)λ−1

max(Σu),

which concludes the proof.

B.10 Proof of Theorem 4(a)

Proof. For Ridge SDF estimator m̂t, we have

1

T

T∑
t=1

|mt − m̂t|2 =
1

T

∥∥∥R̄ᵀ(Σ̂ + µIN )−1r̄ − V ᵀγ
∥∥∥2
. (B.73)

Recall that in the proof of Proposition 3, we have a condensed form of SVD on R̄:

R̄ =
√
TςΛ̂1/2ξᵀ +

√
Tς∗Λ̂

1/2
∗ ξᵀ∗ ,

where Λ̂1/2 is the diagonal matrix of the first p singular values of T−1/2R̄ and Λ̂ = diag{λ̂1, . . . , λ̂p}, ς, ξ
are the corresponding left and right singular vectors, and ς∗ ∈ RN×K , ξ∗ ∈ RT×K are the singular vectors

corresponding to the remaining K nonzero singular values in Λ̂
1/2
∗ ∈ RK×K , where K = min{N,T − 1} − p.

Using this representation, (B.73) becomes√√√√ T∑
t=1

|mt − m̂t|2 =
∥∥∥(V̄ ᵀβᵀ + Ūᵀ)ς(Λ̂ + µI)−1ςᵀr̄ − V ᵀγ + (V̄ ᵀβᵀ + Ūᵀ)ς∗(Λ̂∗ + µI)−1ςᵀ∗ r̄

∥∥∥
≤
∥∥∥V̄ ᵀβᵀς(Λ̂ + µI)−1ςᵀβγ − V̄ ᵀγ

∥∥∥+
∥∥∥V̄ ᵀβᵀς(Λ̂ + µI)−1ςᵀ(βv̄ + ū)

∥∥∥
+
∥∥∥Ūᵀς(Λ̂ + µI)−1ςᵀr̄

∥∥∥+
∥∥∥V̄ ᵀβᵀς∗(Λ̂∗ + µI)−1ςᵀ∗ r̄

∥∥∥
+
∥∥∥Ūᵀς∗(Λ̂∗ + µI)−1ςᵀ∗ r̄

∥∥∥+
∥∥V ᵀγ − V̄ ᵀγ

∥∥ (B.74)

We analyze these terms one-by-one. Firstly, we consider the properties of ς and ξ. Let ςk and ξk denote

the kth columns of ς and ξ, respectively. Note that ςk and ξk can be regarded as the ς(k) and ξ(k) in our

SPCA procedure with Ik = [N ], where ςk and ξk are the singular vectors at the kth stage. This means we

can reuse some of the proofs without repeating essentially the same arguments therein.

Similar to (B.54), we define

h̃k1 = T−1/2V̄ ξk, h̃k2 = λ̂
−1/2
k βᵀςk, (B.75)
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and H̃1 = (h̃11, . . . , h̃p1), H̃2 = (h12, . . . , h̃p2). Using Lemma 14, we can obtain∥∥∥H̃1H̃
ᵀ
2 − Ip

∥∥∥ .p T
−1 + λ−1

p (T−1N + 1),
∥∥∥H̃1 − H̃2

∥∥∥ .p T
−1/2 + λ−1

p (T−1N + 1). (B.76)

Using (B.76) and Lemma 14(i), we have
∥∥∥H̃2H̃

ᵀ
2 − Ip

∥∥∥ ≤ ∥∥∥H̃1H̃
ᵀ
2 − Ip

∥∥∥ +
∥∥∥H̃1 − H̃2

∥∥∥∥∥∥H̃2

∥∥∥ .p T
−1/2 +

λ−1
p (T−1N + 1), which, by (B.75), is equivalent to

∥∥∥βᵀςΛ̂−1ςᵀβ − Ip
∥∥∥ .p

1√
T

+
N + T

Tλp
. (B.77)

Consequently, with Lemma 11 and
∥∥∥βᵀςΛ̂−1/2

∥∥∥ =
∥∥∥H̃2

∥∥∥ .p 1, we have

∥∥∥∥βᵀς (Λ̂ + µI
)−1

ςᵀβ − Ip
∥∥∥∥ ≤ ∥∥∥∥βᵀςΛ̂−1/2

(
Λ̂1/2

(
Λ̂ + µI

)−1
Λ̂1/2 − Ip

)
Λ̂−1/2ςᵀβ

∥∥∥∥+
∥∥∥βᵀςΛ̂−1ςᵀβ − Ip

∥∥∥
≤
∥∥∥βᵀςΛ̂−1/2

∥∥∥2
∥∥∥∥Λ̂1/2

(
Λ̂ + µI

)−1
Λ̂1/2 − Ip

∥∥∥∥+
∥∥∥βᵀςΛ̂−1ςᵀβ − Ip

∥∥∥
.p

1√
T

+
N + T

Tλp
+

µ

λp
, (B.78)

where we use

∥∥∥∥Λ̂1/2
(

Λ̂ + µI
)−1

Λ̂1/2 − Ip
∥∥∥∥ = maxj≤p(λ̂j + µ)−1µ .p λ

−1
p µ in the last step.

With
∥∥V̄ ∥∥ .p T

1/2 from Lemma 1, it implies from (B.78) that the first term in (B.74) can be bounded:

∥∥∥V̄ ᵀβᵀς(Λ̂ + µI)−1ςᵀβγ − V̄ ᵀγ
∥∥∥ .p 1 +

N + T√
Tλp

+
µ
√
T

λp
.

For the second term in (B.74), using Lemma 11, we have

∥∥∥V̄ ᵀβᵀς(Λ̂ + µI)−1ςᵀ(βv̄ + ū)
∥∥∥ ≤ ∥∥V̄ ∥∥∥∥∥βᵀςΛ̂−1/2

∥∥∥∥∥∥Λ̂1/2(Λ̂ + µI)−1
∥∥∥ ‖βv̄ + ū‖ .p

√
N

λp
. (B.79)

Next, recall that ς∗ and ξ∗ are singular vectors of R̄, we have

V̄ ᵀβᵀς∗ + Ūᵀς∗ = R̄ᵀς∗ =
√
Tξ∗Λ̂

1/2
∗ . (B.80)

By Weyl’s theorem and Assumption A.4, we have

∣∣∣σj(T−1/2R̄)− σj(T−1/2βV̄ )
∣∣∣ ≤ T−1/2

∥∥R̄− βV̄ ∥∥ = T−1/2
∥∥Ū∥∥ .p

√
N

T
+ 1, (B.81)

for j ≤ min{N,T}. Since Rank(T−1/2βV̄ ) ≤ p, we have σj(T
−1/2βV̄ ) = 0 for j > p and thus

∥∥∥Λ̂
1/2
∗

∥∥∥ = σp+1(T−1/2R̄) .p

√
N

T
+ 1. (B.82)
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Left multiplying (B.80) by V̄ , we obtain

V̄ V̄ ᵀβᵀς∗ =
√
T V̄ ξ∗Λ̂

1/2
∗ − V̄ Ūᵀς∗. (B.83)

Together with (B.82) and Assumption A.6, we have

‖βᵀς∗‖ ≤
∥∥∥(V̄ V̄ ᵀ)−1

∥∥∥(√T ∥∥V̄ ∥∥∥∥∥Λ̂
1/2
∗

∥∥∥+
∥∥V̄ Ūᵀ

∥∥) .p

√
N

T
+ 1, (B.84)

and consequently,

‖ςᵀ∗ r̄‖ ≤ ‖ςᵀ∗β‖ ‖γ + v̄‖+ ‖ςᵀ∗ ū‖ .p

√
N

T
+ 1. (B.85)

Using (B.84), (B.85), Lemma 13(iv) and
∥∥Ū∥∥ .p N

1/2 + T 1/2, we have∥∥∥βᵀς∗(Λ̂∗ + µI)−1ςᵀ∗ r̄
∥∥∥ ≤ ‖βᵀς∗‖∥∥∥(Λ̂∗ + µI)−1

∥∥∥ ‖ςᵀ∗ r̄‖ .p
N + T

µT
, (B.86)

and ∥∥∥Ūᵀς∗(Λ̂∗ + µI)−1ςᵀ∗ r̄
∥∥∥ ≤ ∥∥Ū∥∥∥∥∥(Λ̂∗ + µI)−1

∥∥∥ ‖ςᵀ∗ r̄‖ .p
N + T

µ
√
T
. (B.87)

Using Lemma 13(iii), we have∥∥∥Λ̂−1/2ςᵀr̄
∥∥∥ .p

∥∥∥Λ̂−1/2ςᵀβ
∥∥∥+

∥∥∥Λ̂−1/2ςᵀū
∥∥∥ .p 1 +

N + T

Tλp
.p 1,

where we use
∥∥∥Λ̂−1/2ςᵀβ

∥∥∥ =
∥∥∥H̃2

∥∥∥ .p 1. Then, with Lemma 13(iv), we have

∥∥∥Ūᵀς(Λ̂ + µI)−1ςᵀr̄
∥∥∥ ≤ ∥∥Ūᵀς

∥∥∥∥∥(Λ̂ + µI)−1Λ̂1/2
∥∥∥∥∥∥Λ̂−1/2ςᵀr̄

∥∥∥ .p

√
T

λp
+
N + T√
Tλp

. (B.88)

Plugging (B.78), (B.79), (B.86), (B.87) and (B.88) into (B.74) and using
∥∥V̄ − V ∥∥ .p 1, we obtain

1

T

T∑
t=1

|mt − m̂t|2 .p
µ2

λ2
p

+
1

T
+
N + T

Tλp
+
N2 + T 2

µ2T 2
.

With µ2 � T−1λp(N + T ), we achieve the best rate from the above bound:

1

T

T∑
t=1

|mt − m̂t|2 .p
1

T
+
N + T

Tλp
.
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B.11 Proof of Theorem 4(b)

Proof. i. (Slow rate) Note that (12) is equivalent to a constrained optimization problem:

b̂ = arg min
b

∥∥∥Σ̂−1/2r̄ − Σ̂1/2b
∥∥∥2
, subject to ‖b‖1 ≤ µ,

for some tuning parameter µ. This implies that the vector of the true SDF loadings, b, satisfies that∥∥∥Σ̂−1/2r̄ − Σ̂1/2b̂
∥∥∥2
≤
∥∥∥Σ̂−1/2r̄ − Σ̂1/2b

∥∥∥2
and

∥∥∥b̂∥∥∥
1
≤ µ, for someµ ≥ s.

Equivalently, expanding the left- and right-hand sides of the above we have

b̂ᵀΣ̂b̂− bᵀΣ̂b ≤ 2(̂b− b)ᵀr̄,

which leads to

(̂b− b)ᵀΣ̂(̂b− b) ≤ 2(̂b− b)ᵀ(r̄ − Σ̂b) ≤ 2
∥∥∥b̂− b∥∥∥

1

∥∥∥r̄ − Σ̂b
∥∥∥
∞
.

With a tuning parameter µ � s, we have

(̂b− b)ᵀΣ̂(̂b− b) . s
∥∥∥r̄ − Σ̂b

∥∥∥
∞
. (B.89)

With Lemma 15, we have

∥∥∥Σ̂1/2(̂b− b)
∥∥∥2

.p s

√
logN

T
. (B.90)

Therefore, we have

1

T

T∑
t=1

‖m̂t − m̃t‖2 =
1

T

T∑
t=1

∥∥∥b̂ᵀ(rt − r̄)− bᵀ(rt − E(rt))
∥∥∥2

≤ 2

T

T∑
t=1

∥∥∥(̂b− b)ᵀ(rt − r̄)
∥∥∥2

+
2

T

T∑
t=1

‖bᵀ(r̄ − E(rt))‖2

≤2
∥∥∥Σ̂1/2(̂b− b)

∥∥∥2
+ 2 ‖b‖21 ‖r̄ − E(rt)‖2∞

.ps

√
logN

T
+ s2 logN

T
.

Since s � µ & ‖b‖1, plugging in the optimal rate choice s � ‖b‖1, we complete the proof.

ii. (Fast rate) Since b̂ is the optimal solution of the minimization problem, it implies that

bᵀΣ̂b− 2bᵀr̄ + bᵀΣ̂b+ µ ‖b‖1 ≥ b̂
ᵀΣ̂b̂− 2b̂ᵀr̄ + b̂ᵀΣ̂b̂+ µ‖b̂‖1. (B.91)
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Rewrite (B.91) as

(̂b− b)ᵀΣ̂(̂b− b) ≤ 2(̂b− b)ᵀ(r̄ − Σ̂b) + µ(‖b‖1 − ‖b̂‖1). (B.92)

If µ ≥ 4
∥∥∥r̄ − Σ̂b

∥∥∥
∞

, (B.92) becomes

∥∥∥Σ̂1/2(̂b− b)
∥∥∥2
≤2
∥∥∥b̂− b∥∥∥

1

∥∥∥r̄ − Σ̂b
∥∥∥
∞

+ µ(‖b‖1 − ‖b̂‖1)

≤1

2
µ
∥∥∥b̂− b∥∥∥

1
+ µ(‖b‖1 − ‖b̂‖1). (B.93)

Let J denote the support of b̂, then (B.93) can be written as∥∥∥Σ̂1/2(̂b− b)
∥∥∥2
≤1

2
µ
∥∥∥b̂J − bJ∥∥∥

1
+

1

2
µ
∥∥∥b̂Jc

∥∥∥
1

+ µ
∥∥∥b̂J − bJ∥∥∥

1
− µ

∥∥∥b̂Jc

∥∥∥
1

=
3

2
µ
∥∥∥b̂J − bJ∥∥∥

1
− 1

2
µ
∥∥∥b̂Jc

∥∥∥
1
. (B.94)

Define b∗ = b̂− b, then (B.94) implies that 3 ‖b∗J‖1 ≥ ‖b
∗
Jc‖1, and we have

b∗ᵀ(Σ− Σ̂)b∗

‖b∗‖2
≤
∥∥∥Σ− Σ̂

∥∥∥
MAX

‖b∗‖21
‖b∗‖2

.p

√
logN

T

(
4 ‖b∗J‖1∥∥b∗J∥∥

)2

.p |J |
√

logN

T
.

Consequently, with the assumption |J |
√

logN/T → 0 and λmin(Σ) & 1, we have

b∗ᵀΣ̂b∗

‖b∗‖2
=
b∗ᵀΣb∗

‖b∗‖2
+
b∗ᵀ(Σ− Σ̂)b∗

‖b∗‖2
&p 1.

Therefore, we have∥∥∥Σ̂1/2(̂b− b)
∥∥∥2

= b∗ᵀΣ̂b∗ &p ‖b∗‖2 ≥ ‖b∗J‖
2 ≥ |J |−1 ‖b∗J‖

2
1 = |J |−1

∥∥∥b̂J − bJ∥∥∥2

1
. (B.95)

Plugging (B.95) into (B.94), we have∥∥∥Σ̂1/2(̂b− b)
∥∥∥2
≤ 3

2
µ
∥∥∥b̂J − bJ∥∥∥

1
.p µ |J |1/2

∥∥∥Σ̂1/2(̂b− b)
∥∥∥ .

Thus, ∥∥∥Σ̂1/2(̂b− b)
∥∥∥2

.p µ
2 |J | . (B.96)

Choosing µ = 4
∥∥∥r̄ − Σ̂b

∥∥∥
∞

and by Lemma 15, we obtain

∥∥∥Σ̂1/2(̂b− b)
∥∥∥2

.p |J |
logN

T
. (B.97)
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Similar to the slow rate case, we have

1

T

T∑
t=1

‖m̂t − m̃t‖2 =
1

T

T∑
t=1

∥∥∥b̂ᵀ(rt − r̄)− bᵀ(rt − E(rt))
∥∥∥2

≤ 2

T

T∑
t=1

∥∥∥(̂b− b)ᵀ(rt − r̄)
∥∥∥2

+
2

T

T∑
t=1

‖bᵀ(r̄ − E(rt))‖2

≤2
∥∥∥Σ̂1/2(̂b− b)

∥∥∥2
+ 2 ‖bᵀ(r̄ − E(rt))‖2

.p ‖b‖0
logN

T
.

B.12 Technical Lemmas and Their Proofs

Without loss of generality, we assume that Σv = Ip in the following lemmas. Also, except for Lemma 4, we

assume that p̂ = p̃ and Îk = Ik for k = 1, . . . , p̃, which hold with probability approaching one as we will

show in Lemma 4.

Lemma 1. Under Assumptions A.1-A.7, for any I ⊂ [N ], we have the following results:

(i)
∥∥T−1V̄ V̄ ᵀ − Ip

∥∥ .p T
−1/2.

(ii)

∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]Ū[I]

∥∥∥∥ .p T
1/2.

(iii)

∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]Ū[I]V̄

ᵀ

∥∥∥∥ .p T
1/2,

∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]Ū[I]Z̄

ᵀ

∥∥∥∥ .p T
1/2.

(iv)
∥∥Ū∥∥

MAX
.p (logNT )1/2,

∥∥Ū V̄ ᵀ
∥∥

MAX
.p (logN)1/2T 1/2,

∥∥Ū Z̄ᵀ
∥∥

MAX
.p (logN)1/2T 1/2.

(v)
∥∥Ū[I]

∥∥ .p |I|1/2 + T 1/2,
∥∥Ū[I]V̄

ᵀ
∥∥ .p |I|1/2 T 1/2,

∥∥Ū[I]Z̄
ᵀ
∥∥ .p |I|1/2 T 1/2.

(vi)
∥∥V̄ ∥∥ .p T

1/2,
∥∥Z̄∥∥ .p T

1/2,
∥∥V̄ Z̄ᵀ

∥∥ .p T
1/2,

∥∥V̄ Z̄ᵀ − V Zᵀ
∥∥ .p 1

Proof. (i) Using Assumption A.1, we have∥∥∥∥ V̄ V̄ ᵀ

T
− Ip

∥∥∥∥ ≤ ∥∥∥∥V V ᵀ

T
− Ip

∥∥∥∥+

∥∥∥∥V ιT ιᵀTV ᵀ

T 2

∥∥∥∥ =

∥∥∥∥V V ᵀ

T
− Ip

∥∥∥∥+ ‖v̄‖2 .p T
−1/2.

(ii) Using Assumption A.5, we have∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]Ū[I]

∥∥∥∥ ≤ ∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]U[I]

∥∥∥∥+ T−1

∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]U[I]ιT ι

ᵀ
T

∥∥∥∥ .p T
1/2.

(iii) By Assumptions A.1, A.5 and A.6, we have∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]Ū[I]V̄

ᵀ

∥∥∥∥ ≤∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]U[I]V

ᵀ

∥∥∥∥+ T−1

∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]U[I]ιT ι

ᵀ
TV

∥∥∥∥
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≤
∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]U[I]V

ᵀ

∥∥∥∥+

∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]U[I]ιT

∥∥∥∥ ‖v̄‖ .p T
1/2.

Replacing V̄ by Z̄ in the above proof, with Assumptions A.2, A.5 and A.7, we also have∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]Ū[I]Z̄

ᵀ

∥∥∥∥ .p T
1/2.

(iv) Using Assumption A.4, we have∥∥Ū∥∥
MAX

≤ ‖U‖MAX + T−1
∥∥UιT ιᵀT∥∥MAX

≤ ‖U‖MAX + ‖ū‖MAX ‖ιT ‖ .p (logN)1/2 + (log T )1/2.

Using Assumptions A.1, A.4, A.6, we have∥∥Ū V̄ ᵀ
∥∥

MAX
≤ ‖UV ᵀ‖MAX + T−1

∥∥UιT ιᵀTV ᵀ
∥∥

MAX
≤ ‖UV ᵀ‖MAX + T ‖ū‖MAX ‖v̄‖ .p (logN)1/2T 1/2.

Replacing V̄ by Z̄ in the above proof, with Assumptions A.2, A.4 and A.7, we also have∥∥Ū Z̄ᵀ
∥∥

MAX
.p (logN)1/2T 1/2.

(v) Using Assumption A.4 , we have∥∥Ū[I]

∥∥ ≤ ∥∥U[I]

∥∥+ T−1
∥∥U[I]ιT ι

ᵀ
T

∥∥ ≤ ∥∥U[I]

∥∥+
∥∥ū[I]

∥∥ ‖ιT ‖ .p |I|1/2 + T 1/2.

Using Assumptions A.1, A.4, A.6, we have∥∥Ū[I]V̄
ᵀ
∥∥ ≤ ∥∥U[I]V

ᵀ
∥∥+ T−1

∥∥U[I]ιT ι
ᵀ
TV

ᵀ
∥∥ ≤ ∥∥U[I]V

ᵀ
∥∥+ T

∥∥ū[I]

∥∥ ‖v̄‖ .p |I|1/2 T 1/2.

Replacing V̄ by Z̄ in the above proof, with Assumptions A.2, A.4 and A.7, we also have∥∥Ū[I]Z̄
ᵀ
∥∥ .p |I|1/2 T 1/2.

(vi) Using Assumption A.1, we have∥∥V̄ ∥∥ ≤ ‖V ‖+ T−1
∥∥V ιT ιᵀT∥∥ ≤ ‖V ‖+ ‖v̄‖ ‖ιT ‖ .p T

1/2.

Using Assumption A.2, we have∥∥Z̄∥∥ ≤ ‖Z‖+ T−1
∥∥ZιT ιᵀT∥∥ ≤ ‖Z‖+ ‖z̄‖ ‖ιT ‖ .p T

1/2.

Using Assumptions A.1 and A.2, we have∥∥V̄ Z̄ᵀ
∥∥ ≤ ‖V Z‖+ T−1

∥∥V ιT ιᵀTZ∥∥ ≤ ‖V ‖+ T ‖v̄‖ ‖z̄‖ .p T
1/2,
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and ∥∥V̄ Z̄ᵀ − V Zᵀ
∥∥ =

∥∥T−1V ιT ι
ᵀ
TZ
∥∥ = T ‖v̄‖ ‖z̄‖ .p 1.

Lemma 2. The singular vectors ξ(k)s we obtain from Algorithm 5 satisfy ξᵀ(j)ξ(k) = δjk for j, k ≤ p̂.

Proof. If j = k, this result holds from the definition of ξ(k). If j < k, recall that R̃(k) is defined in (B.39)

and ξ(k) is the first right singular vector of R̃(k), we have

R̃(k) = R̄[Ik]

∏
i<k

(
IT − ξ(i)ξ

ᵀ
(i)

)
and ξ(k) = arg max

α

∥∥∥R̃(k)α
∥∥∥

‖α‖
.

If ξᵀ(k)ξ(j) = c0 6= 0 for some j < k, then∥∥∥R̃(k)(ξ(k) − c0ξ(j))
∥∥∥ =

∥∥∥R̃(k)ξ(k) − c0R̃(k)ξ(j)

∥∥∥ =
∥∥∥R̃(k)ξ(k)

∥∥∥ , (B.98)

since the definition of R̃(k) implies that R̃(k)ξ(j) = 0 for j < k.

On the other hand, since ξᵀ(k)ξ(j) = c0 6= 0, we have (ξ(k) − c0ξ(j))
ᵀξ(j) = 0, and consequently,

∥∥ξ(k)

∥∥2
=
∥∥ξ(k) − c0ξ(j)

∥∥2
+
∥∥c0ξ(j)

∥∥2
>
∥∥ξ(k) − c0ξ(j)

∥∥2
. (B.99)

Apparently, if
∥∥∥R̃(k)

∥∥∥ = 0, the process will stop so we have
∥∥∥R̃(k)

∥∥∥ > 0 for k ≤ p̂. Together with (B.98) and

(B.99), we have

∥∥∥R̃(k)

∥∥∥ =

∥∥∥R̃(k)ξ(k)

∥∥∥∥∥ξ(k)

∥∥ ≤

∥∥∥R̃(k)(ξ(k) − c0ξ(j))
∥∥∥∥∥ξ(k) − c0ξ(j)

∥∥ ,

which contradicts with the definition of ξ(k). Therefore, ξᵀ(k)ξ(j) = 0 for j < k. This completes the proof.

Lemma 3. Under Assumption A.3, if c→ 0, qN/N0 → 0 then bk, β(k) and p̃ defined in Section A satisfy

(i) 〈bj , bk〉 = δjk for j ≤ k ≤ p̃.

(ii)
∥∥β(k)

∥∥ � q1/2N1/2.

(iii) p̃ ≤ p.

(iv) p̃ = p, if we further have λp(η
ᵀη) & 1.

Proof. (i) Recall that bk is the first right singular vector of β(k) and β(k) = β[Ik]

∏
j<kMbj . Using the same

arguments as in the proof of Lemma 2, we have 〈bj , bk〉 = δjk for j ≤ k ≤ p̃.
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(ii) The selection rule at kth step implies that

1

|Ik|
∑
i∈Ik

∥∥∥∥∥∥β[i]

∏
j<k

Mbjη
ᵀ

∥∥∥∥∥∥
2

MAX

≥ 1

N0

∑
i∈I0

∥∥∥∥∥∥β[i]

∏
j<k

Mbjη
ᵀ

∥∥∥∥∥∥
2

MAX

. (B.100)

For any matrix A ∈ RN×d and set I ⊂ [N ], we have∑
i∈I

∥∥A[i]

∥∥2

MAX
≤ ‖A‖2F ≤ d

∑
i∈I

∥∥A[i]

∥∥2

MAX
,

and

‖A‖2 ≤ ‖A‖2F ≤ d ‖A‖
2 ,

we thereby have

‖A‖2 �
∑
i∈I

∥∥A[i]

∥∥2

MAX
. (B.101)

Using this result, (B.100) becomes

1

|Ik|

∥∥∥∥∥∥β[Ik]

∏
j<k

Mbjη
ᵀ

∥∥∥∥∥∥
2

&
1

N0

∥∥∥∥∥∥β[I0]

∏
j<k

Mbjη
ᵀ

∥∥∥∥∥∥
2

.

Then, we have

1√
|Ik|

∥∥β(k)

∥∥∥∥∥∥∥∥
∏
j<k

Mbjη
ᵀ

∥∥∥∥∥∥ ≥ 1√
|Ik|

∥∥∥∥∥∥β[Ik]

∏
j<k

Mbjη
ᵀ

∥∥∥∥∥∥ &
1√
N0

∥∥∥∥∥∥β[I0]

∏
j<k

Mbjη
ᵀ

∥∥∥∥∥∥ ≥ 1√
N0

σp
(
β[I0]

) ∥∥∥∥∥∥
∏
j<k

Mbjη
ᵀ

∥∥∥∥∥∥ ,
(B.102)

where we use β[Ik]

∏
j<kMbjη

ᵀ = β[Ik](
∏
j<kMbj )

2ηᵀ = β(k)

∏
j<kMbjη

ᵀ in the first inequality. With

σp(β[I0]) &
√
N0 from Assumption A.3, (B.102) leads to

∥∥β(k)

∥∥ & |Ik|1/2. In addition, ‖β‖MAX . 1 from

Assumption A.3 leads to
∥∥β(k)

∥∥ . |Ik|1/2. Therefore, we have
∥∥β(k)

∥∥ � |Ik|1/2 � q1/2N1/2.

(iii) From (i), we have shown that bk’s are pairwise orthogonal for k ≤ p̃. It is impossible to have more

than p pairwise orthogonal p dimensional vectors. Thus, p̃ ≤ p.
(iv) Recall that p̃ is defined in Section A. Since the procedure in its definition stops at p̃+ 1, we have at

most qN − 1 rows of β satisfying
∥∥∥β[i]

∏
j≤p̃Mbjη

ᵀ
∥∥∥

MAX
≥ c, which implies

∥∥∥∥∥∥β[I0]

∏
j≤p̃

Mbjη
ᵀ

∥∥∥∥∥∥
2

. qN + (N0 − qN)c2 = o(N0),

where we use (B.101) and the assumptions c → 0, qN/N0 → 0. With σp(β[I0]) &
√
N0 from Assumption
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A.3, we have ∥∥∥∥∥∥η
∏
j≤p̃

Mbj

∥∥∥∥∥∥ ≤ σp(β[I0])
−1

∥∥∥∥∥∥β[I0]

∏
j≤p̃

Mbjη
ᵀ

∥∥∥∥∥∥ = o(1). (B.103)

If p̃ ≤ p− 1, using (i), we have

η
∏
j≤p̃

Mbj = η − η
∑
j≤p̃

bjb
ᵀ
j ,

which implies that

σp(η) ≤ σ1

η∏
j≤p̃

Mbj

+ σp

η∑
j≤p̃

bjb
ᵀ
j

 . (B.104)

Since

Rank

η∑
j≤p̃

bjb
ᵀ
j

 ≤ p̃ ≤ p− 1, (B.105)

we have σp

(
η
∑

j≤p̃ bjb
ᵀ
j

)
≤ 0 and thus (B.104) and (B.103) lead to σp(η) . σ1

(
η
∏
j≤p̃Mbj

)
−→0. This

contradicts with the assumption that λp(η
ᵀη) & 1. Therefore, we have p̃ ≥ p. Together with the result in

(iii), we have p̃ = p.

Lemma 4. Suppose Assumptions A.1-A.8 hold. If c−1 log(NT )1/2
(
q−1/2N−1/2 + T−1/2

)
→ 0 and c → 0,

then for k ≤ p̃ and for Ik, p̃ and β(k) defined in Section A, we have

(i) P(Îk = Ik)→ 1.

(ii)
∥∥∥R̃(k) − β(k)V̄

∥∥∥ .p q
1/2N1/2 + T 1/2.

(iii)
∣∣∣λ̂1/2

(k) /
∥∥β(k)

∥∥− 1
∣∣∣ .p q

−1/2N−1/2 + T−1/2.

(iv)

∥∥∥∥PV̂ ᵀ
(k)
− T−1V̄ ᵀPbk V̄

∥∥∥∥ .p q
−1/2N−1/2 + T−1/2.

(v) P(p̂ = p̃)→ 1.

Proof. We prove (i)-(iv) by induction. First, we show that (i)-(iv) hold when k = 1:

(i) Recall that Î1 is selected based on T−1R̄Ḡᵀ and I1 based on βηᵀ. With simple algebra, we have

T−1R̄Ḡᵀ − βηᵀ = β
(
T−1V̄ V̄ ᵀ − Ip

)
ηᵀ + T−1Ū V̄ ᵀηᵀ + T−1βV̄ Z̄ᵀ + T−1Ū Z̄ᵀ.

With Assumptions A.1, A.2, A.3, A.6 A.7, we have∥∥T−1R̄Ḡᵀ − βηᵀ
∥∥

MAX
. ‖β‖MAX

∥∥T−1V̄ V̄ ᵀ − Ip
∥∥ ‖η‖+ T−1

∥∥Ū V̄ ᵀ
∥∥

MAX
‖η‖
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+ T−1 ‖β‖MAX

∥∥V̄ Z̄ᵀ
∥∥+ T−1

∥∥Ū Z̄ᵀ
∥∥

MAX
.p (logN)1/2T−1/2.

From Assumption A.8, we have c
(1)
qN −c

(1)
qN+1 & c

(1)
qN and the the definition of p̃ implies that c

(k)
qN ≥ c for k ≤ p̃.

Thus, we have c
(1)
qN − c

(1)
qN+1 & c. Define the events

A1 : =
{ ∥∥T−1R̄[i]Ḡ

ᵀ
∥∥

MAX
> (c

(1)
qN + c

(1)
qN+1)/2 for all i ∈ I1

}
,

A2 : =
{ ∥∥T−1R̄[i]Ḡ

ᵀ
∥∥

MAX
< (c

(1)
qN + c

(1)
qN+1)/2 for all i ∈ Ic1

}
,

A3 : =
{ ∥∥T−1R̄[i]Ḡ

ᵀ − β[i]η
ᵀ
∥∥

MAX
≥ (c

(1)
qN − c

(1)
qN+1)/2 for some i ∈ [N ]

}
. (B.106)

It is easy to observe that {Î1 = I1} ⊃ A1∩A2. In addition, from the definition of I1, we have
∥∥β[i]η

ᵀ
∥∥

MAX
≥

c
(1)
qN for all i ∈ I1 and

∥∥β[i]η
ᵀ
∥∥

MAX
≤ c(1)

qN+1 for all i ∈ Ic1. Therefore, if Ac1 occurs, we have

∥∥T−1R̄[i]Ḡ
ᵀ − β[i]η

ᵀ
∥∥

MAX
≥ (c

(1)
qN − c

(1)
qN+1)/2,

for some i ∈ I1, which implies Ac1 ⊂ A3. Similarly, we have Ac2 ⊂ A3. Using {Î1 = I1} ⊃ A1 ∩ A2 and

Ac1 ∪Ac2 ⊂ A3, we have

P(Î1 = I1) ≥ P(A1 ∩A2) = 1− P(Ac1 ∪Ac2) ≥ 1− P(A3). (B.107)

Using c−1(logN)1/2T−1/2 → 0 and c
(1)
qN − c

(1)
qN+1 & c, we have P(A3)→ 0 and consequently, P(Î1 = I1)→ 1.

(ii) Since Î1 = I1 with high probability, we impose Î1 = I1 below. Then, we have R̃(1) = R̄[I1] and

Assumption A.12 gives
∥∥∥R̃(1) − β(1)V̄

∥∥∥ =
∥∥Ū[I1]

∥∥ .p q
1/2N1/2 + T 1/2.

(iii) From Lemma 10, we have σj(β(1)V̄ )/σj(β1) = T 1/2 +Op(1). The result in (ii) implies that∣∣∣∥∥∥R̃(1)

∥∥∥− ∥∥β(1)V̄
∥∥∣∣∣ ≤ ∥∥∥R̃(1) − β(1)V̄

∥∥∥ .p q
1/2N1/2 + T 1/2.

Together with
∥∥β(1)

∥∥ � qN from Lemma 3, we have∣∣∣∣∣∣
λ̂

1/2
(1)∥∥β(k)

∥∥ − 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∥∥∥R̃(1)

∥∥∥
T 1/2

∥∥β(1)

∥∥ − 1

∣∣∣∣∣∣ ≤
∣∣∣∥∥∥R̃(1)

∥∥∥− ∥∥β(1)V̄
∥∥∣∣∣

T 1/2
∥∥β(1)

∥∥ +

∣∣∥∥β(1)V̄
∥∥− T 1/2

∥∥β(1)

∥∥∣∣
T 1/2

∥∥β(1)

∥∥ .p q
−1/2N−1/2 + T−1/2.

(iv) Let ξ̃(1) ∈ RT×1 denote the first right singular vector of β(1)V̄ . From Lemma 10, we have∥∥∥Pξ̃(1) − T−1V̄ ᵀPbk V̄
∥∥∥ .p T

−1/2 (B.108)

and σj(β(1)V̄ )/σj(β(1)) = T 1/2 +Op(1) for j ≤ p, which leads to

σ1(β(1)V̄ )− σ2(β(1)V̄ ) = T 1/2(σ1(β(1))− σ2(β(1))) +Op(σ1(β(1))) �p T 1/2σ1(β(1)), (B.109)

where we use the assumption that σ2(β(1)) ≤ (1 + δ)−1σ1(β(1)) in the last equation.
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Using
∥∥∥R̃(1) − β(1)V̄

∥∥∥ .p q
1/2N1/2 + T 1/2 as proved in (ii), (B.109), Lemma 3 and Wedin’s sin-theta

theorem for singular vectors in Wedin (1972), we have∥∥∥∥PV̂ ᵀ
(k)
− Pξ̃(1)

∥∥∥∥ .p
q1/2N1/2 + T 1/2

σ1(β(1)V̄ )− σ2(β(1)V̄ )
.p q

−1/2N−1/2 + T−1/2, (B.110)

In light of (B.108) and (B.110), we have that (iv) holds for k = 1.

So far, we have proved that (i)-(iv) hold for k = 1. Now, assuming that (i)-(iv) hold for j ≤ k − 1, we

will show that (i)-(iv) continue to hold for j = k.

(i) Again, we show the difference between the sample covariances and their population counterparts

introduced in the SPCA procedure are tiny. At the kth step, the difference can be written as∥∥∥∥∥∥β
k−1∏
j=1

Mbjη
ᵀ − T−1(βV̄ + Ū)

k−1∏
j=1

M
V̂ ᵀ
(j)

(ηV̄ + Z̄)ᵀ

∥∥∥∥∥∥
MAX

≤

∥∥∥∥∥∥β
k−1∏
j=1

Mbjη
ᵀ − T−1βV̄

k−1∏
j=1

M
V̂ ᵀ
(j)
V̄ ᵀηᵀ

∥∥∥∥∥∥
MAX

+ T−1

∥∥∥∥∥∥βV̄
k−1∏
j=1

M
V̂ ᵀ
(j)
Z̄ᵀ

∥∥∥∥∥∥
MAX

+ T−1

∥∥∥∥∥∥Ū
k−1∏
j=1

M
V̂ ᵀ
(j)
V̄ ᵀηᵀ

∥∥∥∥∥∥
MAX

+ T−1

∥∥∥∥∥∥Ū
k−1∏
j=1

M
V̂ ᵀ
(j)
Z̄ᵀ

∥∥∥∥∥∥
MAX

(B.111)

Since (iv) holds for j ≤ k − 1, we have∥∥∥∥∥∥
k−1∑
j=1

P
V̂ ᵀ
(j)
− T−1V̄ ᵀ

k−1∑
j=1

Pbj V̄

∥∥∥∥∥∥ =

∥∥∥∥∥∥
k−1∑
j=1

(
P
V̂ ᵀ
(j)
− T−1V̄ ᵀPbj V̄

)∥∥∥∥∥∥ .p q
−1/2N−1/2 + T−1/2. (B.112)

Using Lemma 2 and Lemma 3(i), we have

k−1∏
j=1

Mbj = Ip −
k−1∑
j=1

Pbj , and
k−1∏
j=1

M
V̂(j)

= IT −
k−1∑
j=1

P
V̂(j)

.

Using the above equations, (B.112), and
∥∥T−1V̄ V̄ ᵀ − Ip

∥∥ .p T
−1/2, we have

T−1/2

∥∥∥∥∥∥V̄
k−1∏
j=1

M
V̂ ᵀ
(j)
−
k−1∏
j=1

Mbj V̄

∥∥∥∥∥∥ = T−1/2

∥∥∥∥∥∥V̄
k−1∑
j=1

P
V̂ ᵀ
(j)
−
k−1∑
j=1

Pbj V̄

∥∥∥∥∥∥ .p q
−1/2N−1/2 + T−1/2. (B.113)

Similarly, right multiplying V̄ ᵀ to the term inside the ‖·‖ of (B.113), we have∥∥∥∥∥∥T−1V̄

k−1∏
j=1

M
V̂ ᵀ
(j)
V̄ ᵀ −

k−1∏
j=1

Mbj

∥∥∥∥∥∥ .p q
−1/2N−1/2 + T−1/2. (B.114)

Then, we analyze these four terms in (B.111) one by one. For the first term, using (B.114) and Assumption
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A.3, we have∥∥∥∥∥∥β
k−1∏
j=1

Mbjη
ᵀ − T−1βV̄

k−1∏
j=1

M
V̂ ᵀ
(j)
V̄ ᵀηᵀ

∥∥∥∥∥∥
MAX

. ‖β‖MAX

∥∥∥∥∥∥
k−1∏
j=1

Mbj − T
−1V̄

k−1∏
j=1

M
V̂ ᵀ
(j)
V̄ ᵀ

∥∥∥∥∥∥ ‖η‖
.pq

−1/2N−1/2 + T−1/2.

For the second term, using (B.113), Lemma 1 and Assumptions A.3 and A.2, we have

T−1

∥∥∥∥∥∥βV̄
k−1∏
j=1

M
V̂ ᵀ
(j)
Z̄ᵀ

∥∥∥∥∥∥
MAX

.T−1 ‖β‖MAX

∥∥∥∥∥∥
k−1∏
j=1

Mbj

∥∥∥∥∥∥∥∥V̄ Z̄ᵀ
∥∥+ T−1 ‖β‖MAX

∥∥∥∥∥∥V̄
k−1∏
j=1

M
V̂ ᵀ
(j)
−
k−1∏
j=1

Mbj V̄

∥∥∥∥∥∥∥∥Z̄∥∥
.pq

−1/2N−1/2 + T−1/2.

For the third term, using (B.113) and Lemma 1, we have

T−1

∥∥∥∥∥∥Ū
k−1∏
j=1

M
V̂ ᵀ
(j)
V̄ ᵀηᵀ

∥∥∥∥∥∥
MAX

.T−1
∥∥Ū V̄ ᵀ

∥∥
MAX

∥∥∥∥∥∥
k−1∏
j=1

Mbj

∥∥∥∥∥∥ ‖η‖+ T−1
∥∥Ū∥∥

MAX
T 1/2

∥∥∥∥∥∥V̄
k−1∏
j=1

M
V̂ ᵀ
(j)
−
k−1∏
j=1

Mbj V̄

∥∥∥∥∥∥ ‖η‖
.p(logNT )1/2

(
q−1/2N−1/2 + T−1/2

)
.

For the forth term, using (B.112) and Lemma 1, we have

T−1

∥∥∥∥∥∥Ū
k−1∏
j=1

M
V̂ ᵀ
(j)
Z̄ᵀ

∥∥∥∥∥∥
MAX

.T−1
∥∥Ū Z̄ᵀ

∥∥
MAX

+ T−2
∥∥Ū V̄ ᵀ

∥∥
MAX

∥∥∥∥∥∥
k−1∑
j=1

Pbj

∥∥∥∥∥∥∥∥V̄ Z̄ᵀ
∥∥

+ T−1/2
∥∥Ū∥∥

MAX

∥∥∥∥∥∥T−1V̄ ᵀ
k−1∑
j=1

Pbj V̄ −
k−1∑
j=1

P
V̂ ᵀ
(j)

∥∥∥∥∥∥∥∥Z̄∥∥
.p(logNT )1/2

(
q−1/2N−1/2 + T−1/2

)
.

Hence, we have∥∥∥∥∥∥T−1R̄
k−1∏
j=1

M
V̂ ᵀ
(j)
Ḡᵀ − β

k−1∏
j=1

Mbjη
ᵀ

∥∥∥∥∥∥
MAX

.p (logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
. (B.115)

As in the case of k = 1, from Assumption A.8, we have c
(k)
qN − c

(k)
qN+1 & c

(k)
qN . In addition, since the stopping

rule for the procedure in Section A is c
(p̃+1)
qN < c, we have c

(k)
qN ≥ c for k ≤ p̃. With the assumption that

c−1(logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
→ 0,

we can reuse the arguments for (B.106) and (B.107) in the case of k = 1 and obtain P(Îk = Ik)→ 1.
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(ii) We impose Îk = Ik below. Then, we have R̃(k) = R̄[Ik]

∏k−1
j=1 MV̂ ᵀ

(j)
and thus

R̃(k) − β(k)V̄ = R̄[Ik]

k−1∏
j=1

M
V̂ ᵀ
(j)
− β(k)V̄ = β̄[Ik]

V̄ k−1∏
j=1

M
V̂ ᵀ
(j)
−
k−1∏
j=1

Mbj V̄

+ Ū[Ik]

k−1∏
j=1

M
V̂ ᵀ
(j)
.

Hence, using Assumptions A.3, Lemma 1, and (B.113), we have

∥∥∥R̃(k) − β(k)V̄
∥∥∥ ≤ ∥∥β[Ik]

∥∥∥∥∥∥∥∥V̄
k−1∏
j=1

M
V̂ ᵀ
(j)
−
k−1∏
j=1

Mbj V̄

∥∥∥∥∥∥+
∥∥Ū[Ik]

∥∥∥∥∥∥∥∥
k−1∏
j=1

M
V̂ ᵀ
(j)

∥∥∥∥∥∥ .p q
1/2N1/2 + T 1/2.

(iii) The proof of (iii) is analogous to the case k = 1. Rewrite the proof of the case k = 1 by replacing

R̃(1) and β(1) by R̃(k) and β(k). We have
∣∣∣λ̂1/2

(k) /
∥∥β(k)

∥∥− 1
∣∣∣ .p q

−1/2N−1/2 + T−1/2.

(iv) The proof of (iv) is analogous to the case k = 1. Let ξ̃(k) denote the first right singular vector of

β(k)V̄ , then we have
∥∥∥Mξ̃(k)

− T−1V̄ ᵀMbk V̄
∥∥∥ .p T

−1/2 from Lemma 10. Since we have
∥∥∥R̃(k) − β(k)V̄

∥∥∥ .p

q−1/2N−1/2 + T−1/2 from (ii), using the same proof as in the case k = 1, we have∥∥∥∥MV̂ ᵀ
(k)
−Mξ̃(k)

∥∥∥∥ .p q
−1/2N−1/2 + T−1/2,

by Wedin’s sin-theta theorem. Combining these two inequalities completes the proof.

To sum up, by induction, we have shown that (i)-(iv) hold for k ≤ p̃.
(v) Recall that p̃ is determined by β[i]

∏
j<kMbjη

ᵀ whereas p̂ is determined by T−1R̄[i]

∏
j<kMV̂ ᵀ

(j)
Ḡᵀ.

Since (iv) holds for j ≤ p̃ as shown above, using the same proof for (B.115), we have∥∥∥∥∥∥T−1R̄

p̃∏
j=1

M
V̂ ᵀ
(j)
Ḡᵀ − β

p̃∏
j=1

Mbjη
ᵀ

∥∥∥∥∥∥
MAX

.p (logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
. (B.116)

The assumption c
(p̃+1)
qN ≤ (1 + δ)−1c in Assumption A.8 implies that c− c(p̃+1)

qN � c. Together with

c−1(logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
→ 0,

we can reuse the arguments for (B.106) and (B.107) with events

B1 : =


∥∥∥∥∥∥T−1R̄[i]

p̃∏
j=1

M
V̂ ᵀ
(j)
Ḡᵀ

∥∥∥∥∥∥
MAX

> (c+ c
(p̃+1)
qN )/2 for at most qN − 1 rows i ∈ [N ]

 ,

B2 : =


∥∥∥∥∥∥T−1R̄[i]

p̃∏
j=1

M
V̂ ᵀ
(j)
Ḡᵀ − β[i]

p̃∏
j=1

Mbjη
ᵀ

∥∥∥∥∥∥
MAX

≥ (c− c(p̃+1)
qN )/2 for some i ∈ [N ]

 , (B.117)

to obtain P(p̂ = p̃) ≥ P(B1) = 1− P(Bc
1) ≥ 1− P(B2)→ 1.

68



Lemma 5. Suppose that Γ(k) ∈ R|Ik|×|Ik| is an orthogonal matrix with the first p rows equals to
(
βᵀ[Ik]β[Ik]

)− 1
2
βᵀ[Ik]

and we define (
s1

(k)

s2
(k)

)
:= Γ(k)ς(k) and

(
Ũ1

(k)

Ũ2
(k)

)
:= Γ(k)Ū[Ik],

where s1
(k) ∈ Rp×1 and Ũ1

(k) ∈ Rp×T are the first p rows of Γ(k)ς(k) and Γ(k)Ū[Ik], respectively. Then, under

Assumptions A.1-A.8, we have

(i)
∥∥∥s2

(k)

∥∥∥ .p T
−1/2λ̂

−1/2
(k) (|Ik|1/2 + T 1/2).

(ii)
∥∥∥Ũ1

(k)

∥∥∥ .p T
1/2,

∥∥∥Ũ1
(k)V̄

ᵀ
∥∥∥ .p T

1/2,
∥∥∥Ũ1

(k)Z̄
ᵀ
∥∥∥ .p T

1/2.

Proof. (i) The assumption Îk = Ik and the definition (B.39) of R̃(k) together lead to

R̃(k) = R̄[Ik]

∏
i<k

(
IT − ξ(i)ξ

ᵀ
(i)

)
.

Then, with (B.56) and Lemma 2, we have ς(k) = R̄[Ik]ξ(k)/
√
T λ̂(k). From the construction of Γ(k), we have

Γ(k)R̄(k) =

(βᵀ[Ik]β[Ik]

) 1
2
V̄ + Ũ1

(k)

Ũ2
(k)

 ,

which in turn gives

(
s1

(k)

s2
(k)

)
= Γ(k)ς(k) =

1√
T λ̂(k)

(βᵀ[Ik]β[Ik]

) 1
2
V̄ + Ũ1

(k)

Ũ2
(k)

 ξ(k).

With Lemma 1(v), we have

∥∥∥s2
(k)

∥∥∥ =

∥∥∥∥∥∥
Ũ2

(k)√
T λ̂(k)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥ Ū[Ik]√

T λ̂(k)

∥∥∥∥∥∥ .p T
−1/2λ̂

−1/2
(k) (|Ik|1/2 + T 1/2).

(ii) With Lemma 1(ii)(iii) and the definition of Γ(k), these results follow immediately.

Lemma 6. Under Assumptions A.1-A.8, if λ̂(j) �p |Ij | and |Ij | � qN for j ≤ p̃, then for k ≤ p̃, we have

(i)

∥∥∥∥∥ Ūᵀ
[Ik]

ς(k)√
T λ̂(k)

∥∥∥∥∥ .p q
−1/2N−1/2 + T−1.

(ii)

∥∥∥∥∥ V̄ Ūᵀ
[Ik]

ς(k)

T
√
λ̂(k)

∥∥∥∥∥ .p q
−1N−1 + T−1,

∥∥∥∥∥ Z̄Ūᵀ
[Ik]

ς(k)

T
√
λ̂(k)

∥∥∥∥∥ .p q
−1N−1 + T−1,

∣∣∣∣∣ ςᵀ(k)ū[Ik]√
λ̂(k)

∣∣∣∣∣ .p q
−1N−1 + T−1.
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Proof. (i) Using the equation ςᵀ(k)Ū[Ik] = (s1
(k))

ᵀŨ1
(k) + (s2

(k))
ᵀŨ2

(k) and Lemma 5, we have

∥∥∥ςᵀ(k)Ū[Ik]

∥∥∥ ≤ ∥∥∥s1
(k)

∥∥∥∥∥∥Ũ1
(k)

∥∥∥+
∥∥∥s2

(k)

∥∥∥∥∥∥Ũ2
(k)

∥∥∥ ≤ ∥∥∥s1
(k)

∥∥∥∥∥∥Ũ1
(k)

∥∥∥+
∥∥∥s2

(k)

∥∥∥∥∥Ū[Ik]

∥∥ .p

√
T +

|Ik|+ T√
T λ̂(k)

, (B.118)

which leads to ∥∥∥∥∥∥
Ūᵀ

[Ik]ς(k)√
T λ̂(k)

∥∥∥∥∥∥ .p
1√
λ̂(k)

+
|Ik|+ T

T λ̂(k)

.p q
−1/2N−1/2 + T−1.

(ii) From Lemmas 1 and 5, we have∥∥∥V̄ Ūᵀ
[Ik]ς

(k)
∥∥∥ ≤ ∥∥∥V̄ (Ũ1

(k)

)ᵀ
s1

(k)

∥∥∥+
∥∥∥V̄ (Ũ2

(k)

)ᵀ
s2

(k)

∥∥∥ ≤ ∥∥∥V̄ (Ũ1
(k)

)ᵀ∥∥∥+
∥∥∥V̄ Ūᵀ

[Ik]

∥∥∥∥∥∥s2
(k)

∥∥∥
.p

√
T +

|Ik|+ T√
λ̂(k)

,

which leads to ∥∥∥∥∥∥
V̄ Ūᵀ

[Ik]ς(k)

T
√
λ̂(k)

∥∥∥∥∥∥ .p
1√
T λ̂(k)

+
|Ik|+ T

T λ̂(k)

.p q
−1N−1 + T−1.

Replacing V̄ by Z̄ and ιᵀT in the above proof and using Lemmas 1 and 5, we have similar results:∥∥∥∥∥∥
Z̄Ūᵀ

[Ik]ς(k)

T
√
λ̂(k)

∥∥∥∥∥∥ .p q
−1N−1 + T−1, and

∣∣∣∣∣∣
ūᵀ[Ik]ς(k)√
λ̂(k)

∣∣∣∣∣∣ .p q
−1N−1 + T−1. (B.119)

Lemma 7. Under Assumptions A.1-A.8, if λ̂(j) �p |Ij | and |Ij | � qN for j ≤ p̃, then for k, l ≤ p̃, we have

(i)

∥∥∥∥∥ Ũᵀ
(k)
ς(k)√

T λ̂(k)

∥∥∥∥∥ .p q
−1/2N−1/2 + T−1,

∥∥∥∥∥ Ũ(k)√
T λ̂(k)

∥∥∥∥∥ .p q
−1/2N−1/2 + T−1/2.

(ii)

∥∥∥∥∥ V̄ Ũᵀ
(k)
ς(k)

T
√
λ̂(k)

∥∥∥∥∥ .p q
−1N−1 + T−1,

∥∥∥∥∥ Z̄Ũᵀ
(k)
ς(k)

T
√
λ̂(k)

∥∥∥∥∥ .p q
−1N−1 + T−1,

∣∣∣∣∣ ςᵀ(k)ũ(k)√
λ̂(k)

∣∣∣∣∣ .p q
−1N−1 + T−1.

(iii)

∣∣∣∣∣ ξᵀ(l)Ũᵀ
(k)
ς(k)√

T λ̂(k)

∣∣∣∣∣ .p q
−1N−1 + T−1.

Proof. (i) Recall that in the definition of U(k) in (B.40), we have

Ũ(k) = Ū[Ik] −
k−1∑
i=1

R̄[Ik]ξ(i)√
T

ςᵀ(i)Ũ(i)√
λ̂(i)

. (B.120)
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Then, a direct multiplication of ςᵀ(k)/
√
T λ̂(k) from the left side of (B.120) leads to

ςᵀ(k)Ũ(k)√
T λ̂(k)

=
ςᵀ(k)Ū[Ik]√
T λ̂(k)

−
k−1∑
i=1

ςᵀ(k)R̄[Ik]ξ(i)√
T λ̂(k)

ςᵀ(i)Ũ(i)√
T λ̂(i)

.

Consequently, with Lemma 6(i) we have∥∥∥∥∥∥
ςᵀ(k)Ũ(k)√
T λ̂(k)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
ςᵀ(k)Ū[Ik]√
T λ̂(k)

∥∥∥∥∥∥+
k−1∑
i=1

∥∥∥∥∥∥ R̄[Ik]√
T λ̂(k)

∥∥∥∥∥∥
∥∥∥∥∥∥
ςᵀ(i)Ũ(i)√
T λ̂(i)

∥∥∥∥∥∥ .p
1√
λ̂(k)

+
|Ik|+ T

T λ̂(k)

+

√
|Ik|
λ̂(k)

k−1∑
i=1

∥∥∥∥∥∥
ςᵀ(i)Ũ(i)√
T λ̂(i)

∥∥∥∥∥∥
.p q

−1/2N−1/2 + T−1 +
k−1∑
i=1

∥∥∥∥∥∥
ςᵀ(i)Ũ(i)√
T λ̂(i)

∥∥∥∥∥∥ . (B.121)

If
∥∥∥T−1/2λ̂

−1/2
(i) ςᵀ(i)Ũ(i)

∥∥∥ .p q
−1/2N−1/2 + T−1 holds for i ≤ k − 1, then (B.121) implies that this inequality

also holds for k. In addition, when k = 1, Ũ(1) = Ū[I1] and this equation is implied from Lemma 6(i).

Therefore, we have
∥∥∥T−1/2λ̂

−1/2
(k) ςᵀ(k)Ũ(k)

∥∥∥ .p q
−1/2N−1/2 + T−1 for k ≤ p̃ by induction.

Using (B.120) again, with Assumption A.4, we have∥∥∥∥∥∥ Ũ(k)√
T λ̂(k)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥ Ū[Ik]√

T λ̂(k)

∥∥∥∥∥∥+
k−1∑
i=1

∥∥∥∥∥∥ R̄[Ik]√
T λ̂(k)

∥∥∥∥∥∥
∥∥∥∥∥∥ Ũ(i)√

T λ̂(i)

∥∥∥∥∥∥ .p q
−1/2N−1/2 + T−1/2 +

k−1∑
i=1

∥∥∥∥∥∥ Ũ(i)√
T λ̂(i)

∥∥∥∥∥∥ . (B.122)

When k = 1, Assumption A.4 implies that
∥∥∥T−1/2λ̂

−1/2
(k) Ũ(k)

∥∥∥ .p q
−1/2N−1/2 +T−1/2. Then, using the same

induction argument with (B.122), we have this ineqaulity holds for k ≤ p̃.
(ii) Similarly, by simple multiplication of V̄ ᵀ from the right side of (B.120), we have

ςᵀ(k)Ũ(k)V̄
ᵀ

T
√
λ̂(k)

=
ςᵀ(k)Ū[Ik]V̄

ᵀ

T
√
λ̂(k)

−
k−1∑
i=1

ςᵀ(k)R̄[Ik]ξ(i)√
T λ̂(k)

ςᵀ(i)Ũ(i)V̄
ᵀ

T
√
λ̂(i)

.

Consequently, we have∥∥∥∥∥∥
ςᵀ(k)Ũ(k)V̄

ᵀ

T
√
λ̂(k)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
ςᵀ(k)Ū[Ik]V̄

ᵀ

T
√
λ̂(k)

∥∥∥∥∥∥+
k−1∑
i=1

∥∥∥∥∥∥ R̄[Ik]√
T λ̂(k)

∥∥∥∥∥∥
∥∥∥∥∥∥
ςᵀ(i)Ũ(i)V̄

ᵀ

T
√
λ̂(i)

∥∥∥∥∥∥
.p

1√
T λ̂(k)

+
|Ik|+ T

T λ̂(k)

+

√
|Ik|
λ̂(k)

k−1∑
i=1

∥∥∥∥∥∥
ςᵀ(i)Ũ(i)V̄

ᵀ√
T λ̂(i)

∥∥∥∥∥∥
.p q

−1N−1 + T−1 +

k−1∑
i=1

∥∥∥∥∥∥
ςᵀ(i)Ũ(i)V̄

ᵀ√
T λ̂(i)

∥∥∥∥∥∥ . (B.123)

When k = 1,
∥∥∥T−1λ̂

−1/2
(k) ςᵀ(k)Ũ(k)V̄

ᵀ
∥∥∥ .p q

−1N−1 + T−1 is a result of Lemma 6(ii). Then, a direct induction
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argument using (B.123) leads to this inequality for k ≤ p̃.
Replacing V̄ by Z̄ and ιᵀT in the above proof, and using Lemma 6(ii), we have the following results:∥∥∥∥∥∥

Z̄Ũᵀ
(k)ς(k)

T
√
λ̂(k)

∥∥∥∥∥∥ .p q
−1N−1 + T−1 and

∣∣∣∣∣∣
ũᵀ(k)ς(k)√
λ̂(k)

∣∣∣∣∣∣ .p q
−1N−1 + T−1.

(iii) Recall that R̃(k) = β̃(k)V̄ + Ũ(k) as defined in (B.39), we have∣∣∣ςᵀ(l)R̃(l)Ũ
ᵀ
(k)ς(k)

∣∣∣ ≤ ∣∣∣ςᵀ(l)β̃(l)V̄ Ũ
ᵀ
(k)ς(k)

∣∣∣+
∣∣∣ςᵀ(l)Ũ(l)Ũ

ᵀ
(k)ς(k)

∣∣∣ ≤ ∥∥∥ςᵀ(l)β̃(l)

∥∥∥∥∥∥V̄ Ũᵀ
(k)ς(k)

∥∥∥+
∥∥∥ςᵀ(l)Ũ(l)

∥∥∥∥∥∥Ũᵀ
(k)ς(k)

∥∥∥ .
Using (B.56), we have∣∣∣∣∣∣

ξᵀ(k)Ũ
ᵀ
(k)ς(k)√
T λ̂(k)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
ςᵀ(l)R̃(l)Ũ

ᵀ
(k)ς(k)

T
√
λ̂(k)λ̂(l)

∣∣∣∣∣∣ ≤
∥∥∥∥∥∥
ςᵀ(l)β̃(l)√
λ̂(l)

∥∥∥∥∥∥
∥∥∥∥∥∥
V̄ Ũᵀ

(k)ς(k)

T
√
λ̂(k)

∥∥∥∥∥∥+

∥∥∥∥∥∥
Ũᵀ

(k)ς(k)√
T λ̂(k)

∥∥∥∥∥∥
∥∥∥∥∥∥
Ũᵀ

(l)ς(l)√
T λ̂(l)

∥∥∥∥∥∥ . (B.124)

With Lemma 1 and (i), we have

T 1/2
∥∥∥β̃(k)

∥∥∥ .p σp(V̄ )
∥∥∥β̃(k)

∥∥∥ ≤ ∥∥∥β̃(k)V̄
∥∥∥ ≤ ∥∥∥Ũ(k)

∥∥∥+
∥∥∥R̃(k)

∥∥∥ ≤ ∥∥∥Ũ(k)

∥∥∥+
∥∥R̄[Ik]

∥∥ .p T
1/2q1/2N1/2, (B.125)

which leads to
∥∥∥λ̂−1/2

(k) ςᵀ(k)β̃(k)

∥∥∥ .p q
−1/2N−1/2

∥∥∥β̃(k)

∥∥∥ .p 1. Using this inequality and results of (i) and (ii)

in (B.124) completes the proof.

Lemma 8. Under Assumptions A.1-A.8, if λ̂(j) �p |Ij | and |Ij | � qN for j ≤ p̃, then for k ≤ p̃ + 1, we

have

(i)
∥∥∥Z̃(k)V̄

ᵀ
∥∥∥ .p T

1/2 + Tq−1N−1.

(ii)
∥∥∥Z̃(k)Ū

ᵀ
[I0]

∥∥∥ .p N
1/2
0 T 1/2 + Tq−1/2N−1/2.

Proof. (i) From the definition (B.44) of Z̃(k), we have

Z̃(k)V̄
ᵀ = Z̄V̄ ᵀ −

k−1∑
i=1

Ḡξ(i)

ςᵀ(i)Ũ(i)V̄
ᵀ√

T λ̂(i)

.

Then, with Lemma 7(ii), we have

∥∥∥Z̃(k)V̄
ᵀ
∥∥∥ ≤ ∥∥Z̄V̄ ᵀ

∥∥+

k−1∑
i=1

∥∥Ḡξ(i)

∥∥∥∥∥∥∥∥
ςᵀ(i)Ũ(i)V̄

ᵀ√
T λ̂(i)

∥∥∥∥∥∥ .p T
1/2 + T

(
q−1N−1 + T−1

)
.p T

1/2 + Tq−1N−1.

(ii) With (B.44) again, we have

Z̃(k)Ū
ᵀ
[I0] = Z̄Ūᵀ

[I0] −
k−1∑
i=1

Ḡξ(i)

ςᵀ(i)Ũ(i)Ū
ᵀ
[I0]√

T λ̂(i)

,
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which, along with Lemma 7(i) and the assumptions on q, lead to

∥∥∥Z̃(k)Ū
ᵀ
[I0]

∥∥∥ ≤ ∥∥∥Z̄Ūᵀ
[I0]

∥∥∥+
k−1∑
i=1

∥∥Ḡξ(i)

∥∥∥∥∥∥∥∥
ςᵀ(i)Ũ(i)√
T λ̂(i)

∥∥∥∥∥∥∥∥Ū[I0]

∥∥
.p N

1/2
0 T 1/2 +

(
q−1/2N−1/2 + T−1

)(
N

1/2
0 T 1/2 + T

)
.p N

1/2
0 T 1/2 + Tq−1/2N−1/2.

Lemma 9. Suppose that Assumptions A.1-A.8 hold. If λ̂(j) �p |Ij | and |Ij | � qN for j ≤ p̃, then H1, H2

defined by (B.54) satisfy

(i) ‖H1‖ .p 1, ‖H2‖ .p 1.

(ii) ‖Hᵀ
1H2 − Ip̃‖ .p T

−1 + q−1N−1.

(iii) ‖H1 −H2‖ .p T
−1/2 + q−1N−1.

Proof. (i) Using the definition (B.54) of H1 and Lemma 1, we have

‖hk1‖ =

∥∥∥∥∥ V̄ ξ(k)√
T

∥∥∥∥∥ ≤ T−1/2
∥∥V̄ ∥∥ .p 1,

which leads to ‖H1‖ .p 1.

Using the definition (B.54) of H2, we have

‖hk2‖ =

∥∥∥∥∥∥
β̃ᵀ(k)ς(k)√
λ̂(k)

∥∥∥∥∥∥ ≤ q−1/2N−1/2
∥∥∥β̃(k)

∥∥∥ . (B.126)

With Lemma 1 and Lemma 7(i), we have

T 1/2
∥∥∥β̃(k)

∥∥∥ .p σp(V̄ )
∥∥∥β̃(k)

∥∥∥ ≤ ∥∥∥β̃(k)V̄
∥∥∥ ≤ ∥∥∥Ũ(k)

∥∥∥+
∥∥∥R̃(k)

∥∥∥ ≤ ∥∥∥Ũ(k)

∥∥∥+
∥∥R̄[Ik]

∥∥ .p T
1/2q1/2N1/2. (B.127)

Combining (B.126) and (B.127), we have ‖hk2‖ .p 1 and thus ‖H2‖ .p 1.

(ii) By (B.56) and Lemma 2, we have

δlk = ξᵀ(l)ξ(k) =
ξᵀ(l)V̄

ᵀβ̃ᵀ(k)ς(k)√
T λ̂(k)

+
ξᵀ(l)Ũ

ᵀ
(k)ς(k)√
T λ̂(k)

= hᵀl1hk2 +
ξᵀ(l)Ũ

ᵀ
(k)ς(k)√
T λ̂(k)

.

By Lemma 7(iii), we have ∣∣hᵀl1hk2 − δlk
∣∣ .p q

−1N−1 + T−1,

and thus ‖Hᵀ
1H2 − Ip̃‖ .p q

−1N−1 + T−1.
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(iii) Using (B.56), we have

V̄ ξ(k) =
V̄ V̄ ᵀβ̃ᵀ(k)√
T λ̂(k)

ς(k) +
V̄ Ũᵀ

(k)ς(k)√
T λ̂(k)

.

With the definition of hk1 and hk2, it becomes

hk1 =
V̄ V̄ ᵀ

T
hk2 +

V̄ Ũᵀ
(k)ς(k)

T
√
λ̂(k)

. (B.128)

With ‖hk2‖ .p 1, Lemma 1 and Lemma 7(ii), (B.128) leads to

hk1 − hk2 .p T
−1/2 + q−1N−1.

This completes the proof.

Lemma 10. For any N × p matrix β, if
∥∥T−1V̄ V̄ ᵀ − Ip

∥∥ .p T
−1/2, we have

(i) σj(βV̄ )/σj(β) = T 1/2 +Op(1) for j ≤ p.

(ii) If σ1(β)− σ2(β) � σ1(β), then
∥∥∥Pξ̃ − T−1V̄ ᵀPbV̄

∥∥∥ .p T
−1/2, where b is the first right singular vector

of β and ξ̃ is the first right singular vector of βV̄ .

Proof. (i) For j ≤ p, σj(βV̄ )2 = λj(βV̄ V̄
ᵀβᵀ) = λj(β

ᵀβV̄ V̄ ᵀ) which implies

λj(β
ᵀβ)λp(V̄ V̄

ᵀ) ≤ σj(βV̄ )2 ≤ λj(βᵀβ)λ1(V̄ V̄ ᵀ).

With the assumption
∥∥T−1V̄ V̄ − Ip

∥∥ .p T
−1/2, we have T−1/2σj(βV̄ )/σj(β) = 1 +Op

(
T−1/2

)
by sin-theta

theorem.

(ii) Let ς and ς̃ be the first singular vectors of β and βV̄ , respectively. Equivalently, ς and ς̃ are the

eigenvectors of ββᵀ and T−1βV̄ V̄ ᵀβᵀ. Since
∥∥ββᵀ − T−1βV̄ V̄ ᵀβᵀ

∥∥ ≤ ‖β‖2 ∥∥T−1V̄ V̄ ᵀ − Ip
∥∥ .p σ1(β)2T−1/2

and σ1(β)− σ2(β) � σ1(β), by sin-theta theorem we have

‖ςςᵀ − ς̃ ς̃ᵀ‖ .
∥∥ββᵀ − T−1βV̄ V̄ ᵀβᵀ

∥∥
σ1(β)2 − σ2(β)2 −O(

∥∥ββᵀ − T−1βV̄ V̄ ᵀβᵀ
∥∥)

.p T
−1/2.

Using the relationship between left and right singular vectors, we have

bᵀ =
ςᵀβ

σ1(β)
, ξ̃ᵀ =

ς̃ᵀβV̄∥∥βV̄ ∥∥ .
Therefore,∥∥∥∥∥Pξ̃ − σ1(β)2∥∥βV̄ ∥∥2 V̄

ᵀPbV̄

∥∥∥∥∥ =

∥∥∥∥∥ξ̃ξ̃ᵀ − V̄ ᵀβᵀςςᵀβV̄∥∥βV̄ ∥∥2

∥∥∥∥∥ =

∥∥∥∥∥ V̄ ᵀβᵀς̃ ς̃ᵀβV̄∥∥βV̄ ∥∥2 − V̄ ᵀβᵀςςᵀβV̄∥∥βV̄ ∥∥2

∥∥∥∥∥ .p T
−1/2. (B.129)
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By Weyl’s inequality, we have T−1
∥∥βV̄ ∥∥2

= λ1(T−1βV̄ V̄ ᵀβᵀ) = λ1(ββᵀ) + Op(σ1(β)2T−1/2) = σ1(β)2 +

Op(σ1(β)2T−1/2). Plugging this result into (B.129), we have
∥∥∥Pξ̃ − T−1V̄ ᵀPbV̄

∥∥∥ .p T
−1/2.

Lemmas 11-13 below are concerned with the singular values and singular vectors of T−1/2R̄. We use ςj ,

ξj and λ̂
1/2
j , j ≤ p to denote them throughout Lemmas 11-13.

Lemma 11. Under the assumptions of Theorem 4(a), we have

λ̂j
λj
− 1 .p λ

−1/2
j (T−1/2N1/2 + 1) + T−1/2,

where λj = λj(β
ᵀβ) and λ̂j = λj(T

−1R̄R̄ᵀ).

Proof. Since λj
(
βV̄ V̄ ᵀβᵀ

)
= λj

(
βᵀβV̄ V̄ ᵀ

)
, we have

λj (βᵀβ)λp

(
V̄ V̄ ᵀ

T

)
≤
λj
(
βᵀβV̄ V̄ ᵀ

)
T

≤ λj (βᵀβ)λ1

(
V̄ V̄ ᵀ

T

)
. (B.130)

By Lemma 1(i) and Weyl’s inequality, we have λj
(
T−1V̄ V̄ ᵀ

)
−1 .p T

−1/2 for j ≤ p. Then, (B.130) becomes

λj
(
βV̄ V̄ ᵀβᵀ

)
Tλj(βᵀβ)

− 1 .p T
−1/2,

which is equivalent to

σj
(
βV̄
)

√
Tσj(β)

− 1 .p T
−1/2. (B.131)

Using Weyl’s inequality again, we have
∣∣σj (R̄)− σj (βV̄ )∣∣ ≤ ∥∥Ū∥∥ .p N

1/2 + T 1/2, which is equivalent to

λ̂
1/2
j

λ
1/2
j

− σj(βV̄ )√
Tσj(β)

.p
1√
T

+

√
N +

√
T√

Tλj
. (B.132)

Combine (B.131) and (B.132), we complete the proof.

Lemma 12. Suppose that the SVD of β is given by:

β = Γᵀ

(
Λ

1
2

0

)
H, (B.133)

where Γ ∈ RN×N , H ∈ Rp×p are orthogonal matrices, and Λ is a diagonal matrix of the eigenvalues of βᵀβ.

If we write Γςj = (sᵀj1, s
ᵀ
j2)ᵀ, where sj1 ∈ Rp, sj2 ∈ RN−p. Then under the assumptions of Theorem 4(a),

we have

(i)
∥∥∥(Λ/λj)

1/2 (sj1 − 〈sj1, ej1〉ej1)
∥∥∥ .p λ

−1/2
j (T−1/2N1/2 + 1), where ei1 is a p× 1 unit vector with the

ith entry being equal to 1.
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(ii) ‖sj1 − 〈sj1, ej1〉ej1‖ .p λ
−1/2
j (T−1/2N1/2 + 1).

(iii)
∥∥∥(Λ/λj)

1/2 sj1

∥∥∥ .p 1.

(iv) ‖sj2‖ .p λ
−1/2
j (T−1/2N1/2 + 1).

Proof. With the orthogonal matrix Γ defined above, we can write

Ũ = ΓŪ =

(
Ũ1p×T

Ũ2(N−p)×T

)
, (B.134)

so that

ΓR̄ =

(
Λ

1
2

0

)
V̄ + Ũ =

(
Λ

1
2 V̄ + Ũ1

Ũ2

)
.

The relationship between singular vectors ςj and ξj can be written as

Γςj =

(
ΓR̄
)
ξj√

T λ̂j

, ξj =

(
ΓR̄
)ᵀ

(Γςj)√
T λ̂j

. (B.135)

Specifically, we have

sj1 =

(
Λ

1
2 V̄ + Ũ1

)
ξj√

T λ̂j

, sj2 =
Ũ2ξj√
T λ̂j

, ξj =

(
Λ

1
2 V̄ + Ũ1

)ᵀ
sj1 + Ũᵀ

2 sj2√
T λ̂j

. (B.136)

From (B.136), we have(
Λ

1
2 V̄ + Ũ1

)(
Λ

1
2 V̄ + Ũ1

)ᵀ
sj1 +

(
Λ

1
2 V̄ + Ũ1

)
Ũᵀ

2 sj2 = T λ̂jsj1. (B.137)

We can rewrite (B.137) as(
Ip −

Λ

λj

)
sj1 =

1

Tλj

(
Λ

1
2 V̄ + Ũ1

)
Ũᵀ

2 sj2 +
1

λj
Λ

1
2

(
V̄ V̄ ᵀ

T
− I
)

Λ
1
2 sj1 +

Λ
1
2 V̄ Ũᵀ

1

Tλj
sj1

+
Ũ1V̄

ᵀΛ
1
2

Tλj
sj1 +

Ũ1Ũ
ᵀ
1

Tλj
sj1 −

(
λ̂j
λj
− 1

)
sj1. (B.138)

Define L = diag(l1, . . . , lp), where li is equal to λj/(λj − λi) if i 6= j and 0 otherwise.

By left multiplying L to both sides of (B.138), we have

sj1 − 〈sj1, ej1〉ej1 =
1

Tλj
LΛ

1
2 V̄

Ũᵀ
2 Ũ2√
T λ̂j

ξj +
1

Tλj
LŨ1

Ũᵀ
2 Ũ2√
T λ̂j

ξj +
1

λj
LΛ

1
2

(
V̄ V̄ ᵀ

T
− Ip

)
Λ

1
2 sj1

+
LΛ

1
2 V̄ Ũᵀ

1

Tλj
sj1 + L

Ũ1V̄
ᵀΛ

1
2

Tλj
sj1 + L

Ũ1Ũ
ᵀ
1

Tλj
sj1 −

(
λ̂j
λj
− 1

)
Lsj1. (B.139)
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Now left multiplying
(

Λ
λj

) 1
2

again, we have

(
Λ

λj

) 1
2

(sj1 − 〈sj1, ej1〉ej1) =
1

Tλ
3/2
j

Λ
1
2LΛ

1
2 V̄

Ũᵀ
2 Ũ2√
T λ̂j

ξj +
1

Tλ
3/2
j

Λ
1
2LŨ1

Ũᵀ
2 Ũ2√
T λ̂j

ξj

+
1

λj
Λ

1
2LΛ

1
2

(
V̄ V̄ ᵀ

T
− Ip

)(
Λ

λj

) 1
2

sj1 + Λ
1
2LΛ

1
2
V̄ Ũᵀ

1

Tλ
3/2
j

sj1

+ Λ
1
2L
Ũ1V̄

ᵀ

Tλj

(
Λ

λj

) 1
2

sj1 + Λ
1
2L

Ũ1Ũ
ᵀ
1

Tλ
3/2
j

sj1 −

(
λ̂j
λj
− 1

)(
Λ

λj

) 1
2

Lsj1

=K1 +K2 +K3 +K4 +K5 +K6 +K7. (B.140)

Before we analyze these seven terms in (B.140), we first analyze ‖L‖,
∥∥LΛ1/2

∥∥ and ‖LΛ‖. Since L and Λ

are diagonal matrices, by Assumption A.12 we can easily show that

‖L‖ . 1,
∥∥∥LΛ1/2

∥∥∥ . λ
1/2
j , ‖LΛ‖ . λj . (B.141)

In addition, Lemma 1(ii)(iii)(v) imply that∥∥∥Ũ1

∥∥∥ =
∥∥∥(βᵀβ)−1/2βᵀŪ

∥∥∥ .p T
1/2,

∥∥∥Ũ1V̄
ᵀ
∥∥∥ =

∥∥∥(βᵀβ)−1/2βᵀŪ V̄ ᵀ
∥∥∥ .p T

1/2,
∥∥∥Ũ2

∥∥∥ ≤ ∥∥Ū∥∥ .p N
1/2 + T 1/2.

(B.142)

Using Lemma 1(i)(vi), Lemma 11, (B.141) and (B.142), we analyze these seven terms in (B.140) one by one.

For the first term, we have

‖K1‖ ≤T−3/2λ
−3/2
j λ̂

−1/2
j ‖LΛ‖

∥∥V̄ ∥∥∥∥∥Ũᵀ
2 Ũ2

∥∥∥ ‖ξj‖ .p λ
−1
j (T−1N + 1),

where we also use
∥∥∥Ũᵀ

2 Ũ2

∥∥∥ ≤ ∥∥ŪᵀŪ
∥∥ .p N + T in the last equation. For the second term, we have

‖K2‖ ≤ T−3/2λ
−3/2
j λ̂

−1/2
j

∥∥∥Λ1/2L
∥∥∥∥∥∥Ũ1

∥∥∥∥∥∥Ũᵀ
2 Ũ2

∥∥∥ ‖ξj‖ .p λ
−3/2
j (T−1N + 1).

For the third term, we have

‖K3‖ ≤ λ−1
j ‖LΛ‖

∥∥T−1V̄ V̄ ᵀ − Ip
∥∥∥∥∥(Λ/λj)

1/2sj1

∥∥∥ .p T
−1/2

∥∥∥(Λ/λj)
1/2sj1

∥∥∥ .
For the forth term, we have

‖K4‖ ≤ T−1λ
−3/2
j ‖LΛ‖

∥∥∥V̄ Ũᵀ
1

∥∥∥ .p λ
−1/2
j T−1/2,

where we use
∥∥∥V̄ Ũᵀ

1

∥∥∥ .p T
1/2 from Lemma 1. For the fifth term, we have

‖K5‖ ≤ T−1λ−1
j

∥∥∥LΛ1/2
∥∥∥∥∥∥Ũ1V̄

ᵀ
∥∥∥∥∥∥(Λ/λj)

1/2sj1

∥∥∥ .p λ
−1/2
j T−1/2

∥∥∥(Λ/λj)
1/2sj1

∥∥∥ .
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For the sixth term, we have

‖K6‖ ≤ T−1λ
−3/2
j

∥∥∥LΛ1/2
∥∥∥∥∥∥Ũ1Ũ

ᵀ
1

∥∥∥ .p λ
−1
j ,

where we use
∥∥∥Ũ1Ũ

ᵀ
1

∥∥∥ .p T as shown in Lemma 1. For the last term, we have

‖K7‖ ≤ λ−2
j

∣∣∣λ̂j − λj∣∣∣ ∥∥∥LΛ1/2
∥∥∥ .p λ

−1/2
j (T−1/2N1/2 + 1) + T−1/2.

To sum up, (B.140) gives∥∥∥(Λ/λj)
1/2 (sj1 − 〈sj1, ej1〉ej1)

∥∥∥ .p λ
−1/2
j (T−1/2N1/2 + 1) + T−1/2 + T−1/2

∥∥∥(Λ/λj)
1/2sj1

∥∥∥ . (B.143)

Note that ∥∥∥(Λ/λj)
1/2sj1

∥∥∥ ≤∥∥∥(Λ/λj)
1/2 (sj1 − 〈sj1, ej1〉ej1)

∥∥∥+
∥∥∥(Λ/λj)

1/2〈sj1, ej1〉ej1
∥∥∥

≤
∥∥∥(Λ/λj)

1/2 (sj1 − 〈sj1, ej1〉ej1)
∥∥∥+ |〈sj1, ej1〉|

√
λ−1
j eᵀj1Λej1

=
∥∥∥(Λ/λj)

1/2 (sj1 − 〈sj1, ej1〉ej1)
∥∥∥+Op(1).

Plugging this into (B.143), we have∥∥∥(Λ/λj)
1/2 (sj1 − 〈sj1, ej1〉ej1)

∥∥∥ .p λ
−1/2
j (T−1/2N1/2 + 1) + T−1/2, (B.144)

which in turn leads to
∥∥(Λ/λj)

1/2sj1
∥∥ .p 1 as by assumption λ

−1/2
j (T−1/2N1/2 + 1)→ 0. Similarly, we can

analyze corresponding terms in (B.139), and obtain

‖sj1 − 〈sj1, ej1〉ej1‖ .p T
−1/2

∥∥∥(Λ/λj)
1/2sj1

∥∥∥+ λ
−1/2
j (T−1/2N1/2 + 1) .p λ

−1/2
j (T−1/2N1/2 + 1) + T−1/2.

From (B.136), we have

‖sj2‖ ≤

∥∥∥∥∥ Ũ2√
Tλj

∥∥∥∥∥
∥∥∥∥∥∥
(
λj

λ̂j

) 1
2

∥∥∥∥∥∥ ‖ξj‖ .p λ
−1/2
j (T−1/2N1/2 + 1). (B.145)

This concludes the proof.

Lemma 13. Under the assumptions of Theorem 4(a), we have

(i)

∥∥∥∥∥ ξᵀi Ūᵀςj√
T λ̂j

∥∥∥∥∥ .p
1
T + N+T

Tλi
+ N+T

Tλj
.

(ii)

∥∥∥∥ V̄ Ūᵀςi

T
√
λ̂i

∥∥∥∥ .p
1
T + N+T

Tλi
,

∣∣∣∣ ςᵀi ū√λ̂i
∣∣∣∣ .p

1
T + N+T

Tλi
.

(iv)

∥∥∥∥ ςᵀi Ū√
T λ̂i

∥∥∥∥ .p
1√
λi

+ N+T
Tλi

.
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Proof. (i) From (B.135), we have

ξᵀi Ū
ᵀςj√
T λ̂j

=
ςᵀi R̄Ū

ᵀςj

T

√
λ̂iλ̂j

.

Using the orthogonal matrix Γ and the notations in Lemma 11 and Lemma 12, we have

ςᵀi R̄Ū
ᵀςj = sᵀi

(
ΓβV̄ + Ũ

)
Ũᵀsj =sᵀi1

(
Λ

1
2 V̄ + Ũ1

)
Ũᵀ

1 sj1 + sᵀi2Ũ2Ũ
ᵀ
1 sj1

+ sᵀi1

(
Λ

1
2 V̄ + Ũ1

)
Ũᵀ

2 sj2 + sᵀi2Ũ2Ũ
ᵀ
2 sj2

=K1 +K2 +K3 +K4.

Recall that from Lemma 12, we have
∥∥(Λ/λj)

1/2sj1
∥∥ .p 1. Using this result and Lemma 1, we analyze these

four terms one by one. For the first term, we have

‖K1‖ ≤
∥∥∥sᵀi1Λ

1
2

∥∥∥∥∥∥V̄ Ũᵀ
1

∥∥∥ ‖sj1‖+ ‖si1‖
∥∥∥Ũ1Ũ

ᵀ
1

∥∥∥ ‖sj1‖ .p

√
λiT + T.

For the second term, we have

‖K2‖ ≤ ‖si2‖
∥∥∥Ũ2

∥∥∥∥∥∥Ũ1

∥∥∥ .p

√
N + T

Tλi

(√
N +

√
T
)√

T .p λ
−1/2
i (N + T ).

For the third term, we have

‖K3‖ ≤
(∥∥∥sᵀi1Λ

1
2

∥∥∥∥∥V̄ ∥∥+
∥∥∥Ũ1

∥∥∥)∥∥∥Ũ2

∥∥∥ ‖sj2‖ .p

√
λiT

(√
N +

√
T
)√N + T

Tλj
= λ

−1/2
j λ

1/2
i (N + T ).

For the last term, we have

‖K4‖ ≤
∥∥∥Ũ2Ũ

ᵀ
2

∥∥∥ ‖si2‖ ‖sj2‖ .p λ
−1/2
i λ

−1/2
j T−1(N + T )2.

Using above equations and Lemma 11, we get∥∥∥∥∥∥ξ
ᵀ
i Ū

ᵀςj√
T λ̂j

∥∥∥∥∥∥ =

∥∥∥∥∥∥ ς
ᵀ
i R̄Ū

ᵀςj

T

√
λ̂iλ̂j

∥∥∥∥∥∥ .p
1

T
+
N + T

Tλi
+
N + T

Tλj
.

(ii) Using Ūᵀςi = Ũᵀ
1 si1 + Ũᵀ

2 si2 and (B.142), we have

∥∥V̄ Ūᵀςi
∥∥ ≤ ∥∥∥V̄ Ũᵀ

1 si1

∥∥∥+
∥∥∥V̄ Ũᵀ

2 si2

∥∥∥ ≤ ∥∥∥V̄ Ũᵀ
1

∥∥∥+
∥∥V̄ ∥∥∥∥Ū∥∥ ‖si2‖ .p

√
T +

N + T√
λi

.

Then, with Lemma 11, we have
∥∥∥T−1λ̂

−1/2
i V̄ Ūᵀςi

∥∥∥ .p T
−1 + λ−1

i (T−1N + 1).

Replace V̄ in the above proof by ιᵀT , we can get
∥∥∥λ̂−1/2

i ūᵀςi

∥∥∥ .p T
−1 + λ−1

i (T−1N + 1).

79



(iii) Using Ūᵀςi = Ũᵀ
1 si1 + Ũᵀ

2 si2 and (B.142), we have

∥∥ςᵀi Ū∥∥ ≤ ∥∥∥sᵀi1Ũ1

∥∥∥+
∥∥∥sᵀi2Ũ2

∥∥∥ ≤ ∥∥∥Ũ1

∥∥∥+
∥∥Ū∥∥ .p

√
T +

N + T√
Tλi

.

Applying Lemma 11 again completes the proof.

Lemma 14. Under the assumptions of Theorem 4(a), H̃1, H̃2 defined by (B.75) satisfy

(i)
∥∥∥H̃1

∥∥∥ .p 1,
∥∥∥H̃2

∥∥∥ .p 1.

(ii)
∥∥∥H̃ᵀ

1 H̃2 − Ip̃
∥∥∥ .p T

−1 + λ−1
p (T−1N + 1).

(iii)
∥∥∥H̃1 − H̃2

∥∥∥ .p T
−1/2 + λ−1

p (T−1N + 1).

Proof. (i) Using the definition of H̃1 in (B.75) and Lemma 1, we have

∥∥∥h̃k1

∥∥∥ =

∥∥∥∥ V̄ ξk√T
∥∥∥∥ ≤ T−1/2

∥∥V̄ ∥∥ .p 1,

which leads to
∥∥∥H̃1

∥∥∥ .p 1.

Using Γςk = (sᵀk1, s
ᵀ
k2)ᵀ, the SVD of β in (B.133), the definition of H̃2 in (B.75), Lemma 11 and Lemma

12(iii), we have

∥∥∥h̃k2

∥∥∥ =

∥∥∥∥∥∥ β
ᵀςk√
λ̂k

∥∥∥∥∥∥ =

∥∥∥∥∥∥Λ1/2sk1√
λ̂k

∥∥∥∥∥∥ .p 1, (B.146)

which leads to
∥∥∥H̃2

∥∥∥ .p 1.

(ii) By (B.135) and Lemma 2, for l, k ≤ p, we have

δlk = ξᵀl ξk =
ξᵀl V̄

ᵀβᵀςk√
T λ̂k

+
ξᵀl Ū

ᵀςk√
T λ̂k

= h̃ᵀl1h̃k2 +
ξᵀl Ū

ᵀςk√
T λ̂k

.

By Lemma 13(i), we have ∣∣∣h̃ᵀl1h̃k2 − δlk
∣∣∣ .p

1

T
+

N + T

T min{λl, λk}
≤ 1

T
+
N + T

Tλp
,

and thus
∥∥∥H̃ᵀ

1 H̃2 − Ip
∥∥∥ .p T

−1 + λ−1
p (T−1N + 1).

(iii) Using (B.135), we have

V̄ ξk =
V̄ V̄ ᵀβᵀ√
T λ̂k

ςk +
V̄ Ūᵀςk√
T λ̂k

.
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With the definition of hk1 and hk2, it becomes

h̃k1 =
V̄ V̄ ᵀ

T
h̃k2 +

V̄ Ūᵀςk

T

√
λ̂k

. (B.147)

With
∥∥∥h̃k2

∥∥∥ .p 1, Lemma 1 and Lemma 13(ii), (B.147) leads to

∥∥∥h̃k1 − h̃k2

∥∥∥ ≤ ∥∥T−1V̄ V̄ ᵀ − Ip
∥∥∥∥∥h̃k2

∥∥∥+

∥∥∥∥∥∥ V̄ Ū
ᵀςk

T

√
λ̂k

∥∥∥∥∥∥ .p T
−1/2 + λ−1

p (T−1N + 1),

which concludes the proof of (iii).

Lemma 15. Under Assumption A.12, we have

∥∥∥r̄ − Σ̂b
∥∥∥
∞

.p

√
logN

T
, ‖bᵀ(r̄ − E(rt))‖ .p

1√
T
.

Proof. For the first inequality, we have

∥∥∥r̄ − Σ̂b
∥∥∥
∞
≤ ‖r̄ − E(r)‖∞ +

∥∥∥Σb− Σ̂b
∥∥∥
∞

.p

√
logN

T
,

where we use large deviation inequalities in Assumption A.11:

‖r̄ − E(rt)‖∞ .p

√
logN

T
, and

∥∥∥Σb− Σ̂b
∥∥∥
∞

=

∥∥∥∥ 1

T
R̄R̄ᵀb− Cov(rt, r

ᵀ
t b)

∥∥∥∥
∞

.p

√
logN

T
.

The second inequality follows immediately from Assumption A.11:

‖bᵀ(r̄ − E(rt))‖ =

∣∣∣∣∣ 1

T

T∑
t=1

mt − E(mt)

∣∣∣∣∣ .p
1√
T
.
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