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This paper discusses a computational approach to optimization problems with objective criteria consisting

of the expectation of order statistics. We propose a branch-and-cut algorithm relying on a series of functional

approximations and discretization techniques which allows us to optimally solve problems consisting of two

sums of potentially correlated and normally distributed random variables. Through an extensive experimental

evaluation on a synthetic benchmark set we show the effectiveness of the algorithm in identifying high-quality

solutions that are far superior to a basic heuristic; in particular, the results show that the superiority of the

exact approach grows in high-variance settings. In order to evaluate the effectiveness on a real-world data

set, we apply the methodology to choosing entries in daily fantasy football, and exhibit how the algorithm

can be used to win thousands of dollars on sports-betting platform DraftKings.
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1. Introduction

Decision making under uncertainty has been a major focus in the optimization literature (Dantzig

1955, Charnes and Cooper 1959, Birge and Louveaux 1997, Sahinidis 2004). Coping with uncertain

constraints and/or objective function terms results in complex optimization problems that require

advanced modeling and solution procedures such as robust optimization (Ben-Tal and Nemirovski

1997, 2002, Bertsimas and Sim 2004, 2006) and scenario-based optimization (Higle and Sen 1991,

Birge and Louveaux 1988, Shapiro and Homem-de Mello 1998, Carøe and Tind 1998, Kleywegt

et al. 2002, Sherali and Zhu 2006, Gade et al. 2014), among others.

In this paper we explore computational approaches to problems with objective criteria consisting

of the expectations of order statistics. Given a set of m random variables X1, . . . ,Xm, the kth order

statistic Y(k) is the kth lowest value assumed by these variables. We consider a class of stochastic

binary optimization problems where we seek to maximize the expectation of Y(k) given that each

of the random variables is a sum of random variables whose selection depends on the choice of

binary variables, i.e., each component random variable Xi is defined by the selection in a vector of

decisions variables denoted by x. To the best knowledge of the authors, such an objective function

has not been studied in the optimization literature.

Order statistics play a critical role in a variety of settings, and there is a rich literature dedicated

to their study. Some applications in which order statistics play a critical role include:

• Auctions: In auctions, the prices bidders pay are frequently determined by the first or second

higher bidder (Brown and Brown 1986, Kaplan and Zamir 2012).

• Insurance: Insurance companies study order statistics (Ramachandran 1982, Dimitrova et al.

2018), for example in determining policies for joint-life insurance.

• Systems: It is common practice to create systems that are robust to components failing, for

example in wireless communication networks (Yang and Alouini 2011).

• Risk Management: Risk management frequently requires the study of order statistics

(Koutras and Koutras 2018)
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• Manufacturing: The lifetime of an item can be modeled through order statistics (Ahmadi

et al. 2015)

Due to the practical importance of order statistics and the need from practitioners to understand

their underlying distributions, the statistics literature contains myriad papers dedicated to the

subject (the interested reader can refer to these books (David and Nagaraja 2004, Arnold et al.

2008, Ahsanullah and Nevzorov 2005, Arnold and Balakrishnan 2012)). However, full distribu-

tional knowledge is limited to restrictive cases—in particular, this often requires the independent

and identically distributed (iid) assumption. For example, if each component random variable is

uniformly distributed and they are iid, then the order statistics follow beta distributions. Alter-

natively, if each component random variable is exponential and they are iid, then the minimum

is also exponentially distributed, and the maximum follows the Gumbel distribution. In the pres-

ence of correlation between the random variables and/or differences in their distribution, limited

distribution knowledge is known, in general. Due to the lack of exact distributional knowledge,

some research has been published on bounds for the expected value order statistics for random

variables that are correlated. Beyond this, little is known beyond bounds for general distributions

(Bertsimas et al. 2006).

Perhaps due to problem complexity, even under the iid assumption, no papers have published

exact approaches to problems with objective functions modeled as the optimization of order statis-

tics on the expectation of random variables. In such a problem, the random variables themselves

are functions of the decision variables, thereby resulting in a problem where the expectation of

the order statistics is determined by the decision vector. Our paper proposes the first approach to

solving such a problem exactly.

Due to the generality of such a problem, we focus on the case of two random variables, each of

which is the sum of normal random variables that are arbitrarily correlated, with the sum selected

through binary decision variables. In general, the exact distribution of order statistics for correlated

random variables is complex and unknown, with papers dedicated to exploring bounds even just for
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their expectations (Ross 2010, D’Eramo et al. 2016). For the normal distribution specifically and

for only two random variables, closed-form expressions for the expectation of both order statistics

(the maximum and the minimum) are known (Nadarajah and Kotz (2008a)). The expression is

nonlinear, in that it requires the evaluation of the p.d.f. and c.d.f. of a nonlinear function of the

expectations, variables, and correlation.

When making decisions in order to optimize order statistics, we are therefore presented with a

hard combinatorial optimization problem with a highly non-linear objective function, consisting of

the square root of a quadratic function, that is the component of integral and rational equations. In

order to solve the problem, we explore reformulations which allow us to compute tight relaxations

that are enforced through cuts in a branch-and-cut framework.

The algorithm is applied to two problem sets. The first is a large synthetic benchmark set

designed to evaluate how the proposed algorithm scales and how the solutions obtained favor

against a natural heuristic approach. Our thorough experimental evaluation on this benchmark set

indicates that the algorithm scales well and that the solutions obtained are far superior to what the

heuristic identifies, especially in scenarios where the variances of the random variables are large.

Decision making under uncertainty is improved by learning parameters from real-world data.

Therefore, we do not limit our approach to the domain of synthetic instances, but rather apply it

to daily fantasy sports (DFS), where participants select entries of players in actual sporting events

subject to roster and budget constraints. In order to choose optimal lineups in these DFS contests,

one requires expected value estimates for each player in the game associated with a contest and

estimates on the covariances of the player scores. There are myriad websites providing projected

points for players, but lacking are refined estimates for the correlations between player scores. In

this paper, we suggest two different methods for estimating player-by-player covariance of scores,

and use all of those parameter estimates to optimize picks in selected contests.

We explore this application in Section 7, showing that our models can achieve selections in sports

betting pools with skewed payout structures that could win thousands of dollars. The algorithm
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using our preferred correlation method would have resulted in $5,000 profit on less than a $10,000

initial investment. The literature on applying advanced optimization to sports betting applications

has been the topic of several papers (Brown and Minor 2014, Clair and Letscher 2007, Bergman

and Imbrogno 2017, Kaplan and Garstka 2001), and in particular some papers have arose that

study daily fantasy sports (Hunter et al. 2016, Urbaczewski and Elmore 2018), but to the best of

our knowledge, this is the first paper to study the showdown competition format available on the

popular DFS betting platform DraftKings; showdown contests only include the players in a single

NFL game, with entries consisting of 6 players.

We note here that our problem applied to DFS is related to the static stochastic knapsack

problem, as items and their sizes are known a priori but their rewards are unknown. Literature on

the problem is typically focused on scenarios where both rewards and sizes are stochastic (Dean

et al. (2008)). In our problem, rewards are actually correlated; Ma (2018) explored an LP relaxation

of the problem to derive an approximation algorithm for the problem. Note that the stochastic

knapsack problem with correlated rewards and sizes given in binary can be shown to be PSPACE-

hard (Dean et al. (2004)). To the best of our knowledge, settings of the stochastic knapsack problem

with several knapsacks with correlations between rewards of items assigned to different containers

has not been addressed in the literature yet.

In summary, our contributions are as follows:

• A first-ever exact algorithm for finding optimal decisions to problems with criteria specified

by order statistics applied to expectations of random variables;

• An introduction of daily fantasy showdown contests to the literature;

• A nearest-neighbor algorithm for estimating covariance of points scored by different NFL

players in DFS; and

• A thorough experimental evaluation which highlights the quality of solutions that can be

obtained by our methodology in comparison with a basic heuristic, including a detailed report of

results obtained on applying the methodology to real-world betting on the 2018 NFL season.
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The remainder of the paper is organized as follows. In Section 2 we formally define the class of

stochastic optimization problems we study. In Section 3 we describe complexity results. Section 4

provides details of a novel basic branch-and-cut algorithm. Section 5 presents various additional

techniques to improve the basic method, thus leading to a significantly improved algorithm. Sec-

tions 6 and 7 detail a thorough experimental evaluation, both on synthetic instances and DFS

showdown contests. Finally, we conclude in Section 8 with ideas for how this work can be expanded.

2. Problem Description

In this paper we study the problem

max
x∈Ω⊆{0,1}n

E
[
Y(k)(x)

]
(P)

where Y(k)(x) is the kth order statistic among m random variables X1(x),. . . ,Xm(x), each of which

is functionally dependent on decision variables x which are assumed to be binary and restricted to

a set Ω. E(·) is the expected value, and so the objective is to maximize the expectation of the kth

order statistic. The kth order statistic is the kth smallest value in a statistical sample among a

collection of random variables. And so, for a fixed k, the problem seeks to make choices of x so that

we maximize the expectation of the kth smallest of the random variables X1(x),. . . ,Xm(x) over all

possible samples. In particular, for k =m, we seek to maximize the expectation of the largest of

the variables.

This class of optimization problems is challenging to solve in its full generality, and we study

a specific case in this paper, where k =m= 2. Namely, suppose there are p items I = {1, . . . , p},

and each item i has a normally distributed profit Zi ∼N (µi, σ
2
i ), with mean µi and variance σ2

i .

Two sets S1,S2 ⊆ I are to be selected for two bins. The selection of sets must satisfy a collection

of constraints R that can be specific for the individual bins, or based on joint conditions. We

assume that the constraints are uniform from bin to bin. The profit of a bin S is a random variable

defined as z(S) :=
∑

i∈S Zi. We study the optimization problem of selecting items satisfying R and
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maximizing the 2nd order statistic, i.e., the expected value of the bin achieving the maximum total

profit; namely,

max
S1,S2⊆I

{E
(
max{z(S1), z(S2)}

)
: S1,S2 satisfy constraints R}.

We further assume that the random variables have arbitrary correlation between them. We use Σ

to denote the associated covariance matrix, where ρi,j is the correlation between Zi and Zj, so that

the i, jth entry of Σ, the covariance of Zi and Zj, is cov(Zi,Zj) = ρi,jσiσj.

With these assumptions, we can now formulate our problem as follows. For i = 1,2 and j =

1, . . . , p, let xi,j be a binary variable indicating the selection of item j for bin i, and X(x) =

{X1(x),X2(x)} be a set of random variables determined by

Xi(x) =

p∑
j=1

Zjxi,j, ∀i∈ {1,2},

that is, eachXi(x) is a sum of random variables, where each binary variable xi,j indicates whether Zj

is selected and should be considered in the sum for set i.

Since each Zj is normally distributed, Xi(x) is normally distributed. Moreover, for any choice

of x ∈ {0,1}2×p, one can calculate the mean and variance of X1(x) and X2(x), as well as their

covariance (and correlation). In particular:

E [Xi(x)] =

p∑
j=1

µjxi,j ∀i∈ {1,2} (1)

σ2 (Xi(x)) =

p∑
j=1

σ2
jxi,j + 2

∑
1≤j1<j2≤p

cov(Zj1 ,Zj2)xi,j1xi,j2 ∀i∈ {1,2} (2)

cov (X1(x),X2(x)) =

p∑
j1=1

p∑
j2=1

cov (Zj1 ,Zj2)x1,j1x2,j2 . (3)

We formulate our problem in the space of the x-variables as:

max
x∈Ω

E
[
Y(2)(x)

]
= max

x∈Ω
E [max{X1(x),X2(x)}] , (4)

where Ω is the subset of binary vectors which satisfy the constraints in R. We assume for the

remainder of the paper that the constraints in R are linear in the x-variables.
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Nadarajah and Kotz (2008b) provide a closed form (non-analytical) expression for the maximum

of two dependent normal random variables. Let φ(·) and Φ(·) be the probability density function

(p.d.f.) and the cumulative distribution function (c.d.f.), respectively, of standard normal random

variables; i.e., for w ∈ (−∞,∞),

φ(w) =
1√
2π
e
w2

2

Φ(w) =

∫ w

−∞
φ(u)du.

To handle edge cases in evaluating the c.d.f. at rational expression w= a
b

with b= 0, we let

Φ(w) =



0, a < 0

1
2
, a= 0

1, a > 0.

We can now write a expression for E
(
Y(2)(x)

)
as:

E
[
Y(2)(x)

]
=E [X1(x)] ·Φ

(
E [X1(x)]−E [X2(x)]

θ(x)

)
+ (5)

E [X2(x)] ·Φ
(
E [X2(x)]−E [X1(x)]

θ(x)

)
+

θ(x) ·φ
(
E [X1(x)]−E [X2(x)]

θ(x)

)
,

where

θ(x) =
√
σ2(X1(x)) +σ2(X2(x))− 2cov (X1(x),X2(x)). (6)

As we can see from Equality 5, due to the (possible) dependency among the random variables

X1(x) and X2(x), the expectation of their maximum is a highly nonlinear function.

The main methodological contribution of the paper is an exact mathematical programming

algorithm for tackling this highly complex optimization problem. A motivating example is daily

fantasy football, as described in the introduction, where the sets correspond to the entries that a

participant can choose from, and the index set [p] of Zj variables are the players available for each
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entry. Linear constraints enforce that a viable entry is selected (e.g., based on number of players

in each position and budget constraints).

In order to understand the general applicability of the algorithms developed and how they

scale with problem size and varied problem characteristics, we investigate the application of the

algorithms to synthetic scenarios of the problem where knapsack constraints limit the number of

items selected for each bin. We experimentally evaluate cases when the items selected are allowed

to be selected for both bins or for only one; i.e, with and without the constraints

x1,j +x2,j ≤ 1, j = 1, . . . , p. (7)

We note that even though our approach is tailored to the case in which k=m= 2, the proposed

algorithms and results can be easily extended to the case in which k = 1, i.e., the objective seeks

to maximize the minimum between X1(x) and X2(x).

3. Computational complexity

The following result shows that the variant of problem P we study is NP-hard.

Theorem 1. P with k=m= 2 is NP hard.

Proof. The result follows from a reduction from the minimum cut problem on a graph with

positive and negative weights; the problem is known to be NP-hard in the general case (McCormick

et al. (2003)). Let G= (V,E) be an undirected graph with integer weights we of arbitrary sign on

each edge e ∈E. A (S,T )-cut of G is a 2-partition of V , and its weight w(S,T ) is the sum of the

edges crossing the cut, i.e., w(S,T ) =
∑

e:e∩S,e∩T 6=∅
we. The minimum weight cut is a cut of minimum

weight. As a decision problem, the problem can be posed as follows: given a constant K, does there

exist a (S,T )-cut of G such that w(S,T )≤K.

We create an instance of P as follows. Assuming there are p vertices in G, every vertex j ∈ V

is associated with an item j with a normally distributed profit Zj ∼N(0,1), for j = 1, . . . , p. The

covariance between Zj1 and Zj2 is cov(Zj1 ,Zj2) =
w{j1,j2}
4M+1

, where M =
∑

e∈E |we|. As a result,

we have that
∑p

j1=1

∑p
j2=1
j2 6=j1

cov(Zj1 ,Zj2)≤ 2M
4M+1

< 1
2

and |σ2
j1
| ≥
∑

j2 6=j1 |cov(Zj1 ,Zj2)| for all j1 =
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1, . . . , p. One can then construct a symmetric and diagonally dominant (and, consequently, positive

semi-definite) matrix Σ whose columns and rows are indexed by variables Zj. It follows that Σ is a

valid covariance matrix. Finally, let Ω = {0,1}2×p, i.e., the set of feasible solutions is unconstrained.

By construction, E[X1(x)] =E[X2(x)] = 0, so the expression for E[Y(2)(x)] reduces to:

E[Y(2)(x)] = θ(x)
1√
2π
.

As p≥ 1 and all variances are equal to 1, it follows that at optimality θ(x)≥ 1 (this value is achieved

if we assign one item to the first set and leave the second set empty), so any x that maximizes

θ(x)2 also maximizes θ(x). Therefore, the optimization of E[Y(2)(x)] in our case is equivalent to

max
x∈Ω

θ2(x) =
(
σ2(X1(x)) +σ2(X2(x))− 2cov(X1(x) +X2(x))

)
.

By expanding the terms of the last expression, we obtain

θ(x)2 =

p∑
j=1

σ2(Zj)x1,j + 2

p−1∑
j1=1

p∑
j2=j1+1

cov(Zj1 ,Zj2)x1,j1x1,j2

+

p∑
j=1

σ2(Zj)x2,j + 2

p−1∑
j1=1

p∑
j2=j1+1

cov(Zj1 ,Zj2)x2,j1x2,j2

− 2

p∑
j1=1

p∑
j2=1

cov(Zj1 ,Zj2)x1,j1x2,j2 .

Because all variances are equal to 1, we have

θ(x)2 =

p∑
j=1

x1,j + 2

p−1∑
j1=1

p∑
j2=j1+1

cov(Zj1 ,Zj2)x1,j1x1,j2

+

p∑
j=1

x2,j + 2

p−1∑
j1=1

p∑
j2=j1+1

cov(Zj1 ,Zj2)x2,j1x2,j2

− 2

p∑
j=1

x1,jx2,j − 2

p∑
j1=1

p∑
j2=1
j2 6=j1

cov(Zj1 ,Zj2)x1,j1x2,j2 ,

(8)

Claim 1 In any optimal solution for maxx∈Ω θ(x)2, x1,j +x2,j = 1 for j = 1, . . . , p.
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Proof First, by reorganizing the terms in 8, we obtain

θ(x)2 =

p∑
j=1

x1,j +

p∑
j=1

x2,j − 2

p∑
j=1

x1,jx2,j

+ 2

{
p−1∑
j1=1

p∑
j2=j1+1

cov(Zj1 ,Zj2)x1,j1x1,j2 +

p−1∑
j1=1

p∑
j2=j1+1

cov(Zj1 ,Zj2)x2,j1x2,j2

−
p∑

j1=1

p∑
j2=1
j2 6=j1

cov(Zj1 ,Zj2)x1,j1x2,j2

 .

Let A(x) denote the sum within the brackets ({}); A(x) belongs to the interval defined by

±
p∑

j1=1

p∑
j2=1
j2 6=j1

cov(Zj1 ,Zj2),

because each covariance term appears at most twice with a positive coefficient and at most twice

with a negative coefficient. By construction,
∑p

j1=1

∑p
j2=1
j2 6=j1

cov(Zj1 ,Zj2)< 1
2
, so we have that −1<

2A(x)< 1. Therefore, any optimal solution to maxx∈Ω θ(x)2 also optimizes

max
x∈Ω

{
p∑
j=1

x1,j +

p∑
j=1

x2,j − 2

p∑
j=1

x1,jx2,j

}
,

since the absolute value of each of the coefficients in this expression is greater than or equal to 1.

Finally, note that this expression is maximized if and only if x1,j +x2,j = 1, as desired. �

It follows from Claim 1 that
∑p

j=1(x1,j +x2,j − 2x1,jx2,j) = p, a constant, so we have

max
x∈Ω

f(x) = θ(x)2 = p+ 2

{
p−1∑
j1=1

p∑
j2=j1+1

cov(Zj1 ,Zj2)x1,j1x1,j2

+

p−1∑
j1=1

p∑
j2=j1+1

cov(Zj1 ,Zj2)x2,j1x2,j2

−
p∑

j1=1

p∑
j2=1
j2 6=j1

cov(Zj1 ,Zj2)x1,j1x2,j2


s.t. x1,j +x2,j = 1 j = 1, . . . , p

xi,j ∈ {0,1} i= 1,2, j = 1, . . . , p.

(9)
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Consider the following optimization problem:

min h(x) =

p∑
j1=1

p∑
j2=1
j2 6=j1

cov(Zj1 ,Zj2)x1,j1x2,j2

s.t. x1,j +x2,j = 1 j = 1, . . . , p

xi,j ∈ {0,1} i= 1,2, j = 1, . . . , p.

(10)

Claim 2 An optimal solution to optimization problem (10) is also optimal to problem (9).

Proof Both optimization problems have the same set of feasible solutions Ω′. Let x′ and x′′ be two

feasible solutions with h(x′) < h(x′′). Showing that f(x′) > f(x′′) establishes the claim. To show

this, we first note that for any feasible solution x̃,

p−1∑
j1=1

p∑
j2=j1+1

cov(Zj1 ,Zj2)x̃1,j1 x̃1,j2 +

p−1∑
j1=1

p∑
j2=j1+1

cov(Zj1 ,Zj2)x̃2,j1 x̃2,j2

+

p∑
j1=1

p∑
j2 6=j1

cov(Zj1 ,Zj2)x̃1,j1 x̃2,j2 =

p−1∑
j1=1

p∑
j2=j1+1

cov(Zj1 ,Zj2).

(11)

This follows because for any two indices j1 6= j2, the covariance term cov(Zj1 ,Zj2) is counted in

exactly one of the three terms in the left-hand size of equation (11):

1. If x̃1,j1 = x̃1,j2 = 1→ cov(Zj1 ,Zj2) is counted only in the first term;

2. If x̃2,j1 = x̃2,j2 = 1→ cov(Zj1 ,Zj2) is counted only in the second term;

3. If x̃1,j1 = 1, x̃2,j2 = 1→ cov(Zj1 ,Zj2) is counted only in the third term; and

4. If x̃2,j1 = 1, x̃1,j2 = 1→ cov(Zj1 ,Zj2) is counted only in the third term.

Finally, because x̃1,j1 + x̃2,j1 = 1 and x̃1,j2 + x̃2,j2 = 1, it follows that the list above is exhaustive and

contains all possible assignments of j1 and j2. Therefore,

h(x′)<h(x′′) =⇒

−2h(x′)>−2h(x′′) =⇒
p−1∑
j1=1

p∑
j2=j+1+1

cov(Zj1 ,Zj2)− 2h(x′)>

p−1∑
j1=1

p∑
j2=j+1+1

cov(Zj1 ,Zj2)− 2h(x′′) =⇒

f(x′)> f(x′′),

as desired. �
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We conclude that an optimal solution to (10) is also optimal to the original problem

max
x∈Ω
{E[Y(2)(x)]}.

There is a one-to-one mapping between solutions to (10) and (S,T )-cuts of G. Namely, for a

feasible solution x′ we associate it with the (S(x′), T (x′))-cut defined by x′1,j = 1↔ j ∈ S(x′) and

x′2,j = 1↔ j ∈ T (x′). Additionally, w(S(x′), T (x′)) ≤K if and only if h(x′) ≤ K
4M+1

. This follows

because

w(S(x′), T (x′)) =
∑

j1∈S(x′)

∑
j2∈T (x;)

w{j1,j2}

=
∑

j1∈S(x′)

∑
j2∈T (x′)

(4M + 1)cov (Zj1 ,Zj2)

= (4M + 1)

p∑
j1=1

p∑
j+2=1,j2 6=j1

cov (Zj1 ,Zj2)

= (4M + 1)h(x′).

Therefore, if one can solve (10), one can also solve the family of instances of (P) presented in our

construction, thus giving an algorithm that decides exactly the minimum cut problem with positive

and negative edge weights. �

4. A Cutting-Plane Algorithm

Expression (5) is highly nonlinear, thus making the application of direct formulations combined

with off-the-shelf solvers unlikely to be satisfactory for (P) and its extensions. In this work, we

present an exact cutting-plane algorithm to solve problem (P) when k = m = 2. The main com-

ponent of our approach is a mixed-integer linear program (MIP), which we refer to as the relaxed

master problem (RMP), that provides upper bounds on the optimal objective value and is itera-

tively updated through the inclusion of cuts. Lower bounds are obtained through the evaluation

of E
(
Y(2)(x)

)
on the feasible solutions obtained from the optimization of the RMP. Section 4.1

describes our proposed cutting-plane algorithm, and Section 4.2 presents a basic formulation of

the RMP, based on a standard McCormick linearization technique.
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4.1. Algorithm Description

Our approach to solve the problem is presented in Algorithm 1. A key component of our algorithm

is the construction of a linear upper-bounding function for E
(
Y(2)(x)

)
defined over the set Ω of

feasible solutions. Namely, we wish to work with a function g(x) such that

g(x)≥E
[
Y(2)(x)

]
∀x∈Ω.

Given g(x), the relaxed master problem can be stated as

z̄ = max
x∈Ω

g(x), (RMP)

where Ω(C) represents the restriction of Ω to solutions that also satisfy a set of constraints C. Note

that z̄ provides an upper bound on the optimal objective value of problem (P).

Algorithm 1 solves problem RMP iteratively, adding no-good constraints (or simply cuts) to

a set C, which are incorporated to RMP in order to prune solutions previously explored (Balas

and Jeroslow 1972). RMP(C) denotes RMP enriched by the inclusion of (all) cuts in C, so that a

solution x for RMP(C) belongs to Ω and satisfies all constraints in C.

Our cutting-plane algorithm keeps a lower bound LB and an upper bound UB for expression (5),

which are non-decreasing and non-increasing over time, respectively. Both values are computed

(and iteratively updated) based on each incumbent solution x̂ of RMP; upper bounds are given

by g(x̂) and lower bounds follow from the exact evaluation of E
[
Y(2)(x̂)

]
. Algorithm 1 terminates

if LB becomes equal to UB or if RMP(C) becomes infeasible. Because Ω is finite set, each cut

incorporated to C removes at least one solution from Ω, and |C| increases in each iteration, it follows

that Algorithm 1 terminates with an optimal solution in a finite number of iterations.
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Algorithm 1 A Cutting-Plane Algorithm

1: Set LB=−∞, UB=∞, C = ∅, and incumbent solution x̄= 0

2: Solve RMP(C). If the problem is infeasible, then go to Step 5. Otherwise, let UB be the optimal

objective function value obtained for this problem, and record the optimal solution x̂ found.

3: Compute E
[
Y(2)(x̂)

]
using Equation (5). If E

[
Y(2)(x̂)

]
> LB, set LB = E

[
Y(2)(x̂)

]
and update

incumbent x̄= x̂.

4: If LB = UB, go to Step 5. Otherwise, add a no-good constraint to C which is violated solely

by x̂ among all solutions in Ω. Return to Step 2.

5: If LB = −∞, then terminate and conclude that the original problem is infeasible. Otherwise,

terminate with an optimal solution given by x̄.

4.2. A Standard Approach to Obtain Upper Bounds

A challenging task involved on the optimization of (P) is the evaluation of θ(x), a nonlinear

expression that appears in all terms of expression (5), including the denominators of the c.d.f.

and the p.d.f. of the normal distribution. In the following proposition, we show how to derive an

upper-bounding function for (5) which avoids technical issues involved in the evaluation of θ(x).

In order to simplify notation, we assume w.l.o.g. throughout the manuscript that E [X1(x)] ≥

E [X2(x)]; we also use δ(x) =E [X1(x)]−E [X2(x)] to simplify a recurring expression in the text.

Proposition 1. For every x∈Ω,

E
[
Y(2)(x)

]
≤E [X1(x)] +

1√
2π

(
1 + θ(x)2

)
. (12)

Proof From the symmetry around 0 of the c.d.f. of the standard normal distribution, we have

Φ(a) + Φ(−a) = P [X ≤ a] +P [X ≤−a] = P [X ≤ a] + 1−P [X ≥−a] = 1

for any a∈R. Therefore, it follows that

Φ

(
δ(x)

θ(x)

)
+ Φ

(
−δ(x)

θ(x)

)
= 1.
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As Φ is a c.d.f. and, therefore, non-negative, and as E [X1(x)]≥E [X2(x)] by assumption, we have

E [X1(x)]≥Φ

(
δ(x)

θ(x)

)
E [X1(x)] + Φ

(
−δ(x)

θ(x)

)
E [X2(x)] , (13)

because the multipliers form a convex combination, so we have an upper bounding expression for

the first two terms of E
[
Y(2)(x̂)

]
.

In order to find an upper bound for θ(x) ·φ
(
δ(x)

θ(x)

)
, first note that φ

(
δ(x)

θ(x)

)
≤ φ(0) = 1√

2π
, because

the p.d.f. of the standard normal random variable is maximized at its mean 0. Additionally,

because θ(x)≥ 0, θ(x)≤ 1 + θ(x)2 for every x, so we have

1√
2π

(
1 + θ(x)2

)
≥ θ(x) ·φ

(
δ(x)

θ(x)

)
. (14)

Finally, Inequality (12) follows from the addition of Inequality (13) with Inequality (14):

E
[
Y(2)(x)

]
=E[X1(x)] ·Φ

(
δ(x)

θ(x)

)
+E[X2(x)] ·Φ

(
−δ(x)

θ(x)

)
+ θ(x) ·φ

(
δ(x)

θ(x)

)
≤E[X1(x)] +

1√
2π

(
1 + θ(x)2

)
. �

By using the right-hand side expression of Inequality (12) as the objective function of RMP, one

needs to evaluate θ(x)2 rather than θ(x), thus avoiding the square root operator. θ(x)2 is given by

θ(x)2 = σ2(X1(x)) +σ2(X2(x))− 2cov (X1(x),X2(x)) . (15)

A direct formulation of this expression, based solely on variables x, would have quadratic terms.

However, this issue can be directly (and exactly) addressed via a McCormick linearization tech-

nique (McCormick 1976), in which linear constraints and binary variables are incorporated to the

formulation in order to replace quadratic terms.

We now present a mixed-integer linear programming formulation of RMP, based on the results

of Proposition 1 and on the McCormick linearization technique.

RMP: max u1 +
1√
2π

(1 + s) (16a)

s.t. u1 =

p∑
j=1

µjx1,j; u2 =

p∑
j=1

µjx2,j; u1 ≥ u2 (16b)
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s=
2∑
i=1

(
p∑
j=1

σ2
jxi,j + 2

∑
1≤j1<j2≤p

cov(Zj1 ,Zj2)vi,j1,j2

)
− 2

p∑
j1=1

p∑
j2=1

cov (Zj1 ,Zj2) rj1,j2 (16c)

vi,j1,j2 ≤ xi,j1 ; vi,j1,j2 ≤ xi,j2 ∀j1, j2 ∈ {1, . . . , p} , i∈ {1,2} (16d)

vi,j1,j2 ≥ xi,j1 +xi,j2 − 1 ∀j1, j2 ∈ {1, . . . , p} , i∈ {1,2} (16e)

rj1,j2 ≤ x1,j1 ; rj1,j2 ≤ x2,j2 ∀j1, j2 ∈ {1, . . . , p} (16f)

rj1,j2 ≥ x1,j1 +x2,j2 − 1 ∀j1, j2 ∈ {1, . . . , p} (16g)

vi,j1,j2 ∈ {0,1} ∀j1, j2 ∈ {1, . . . , p} , i∈ {1,2} (16h)

rj1,j2 ∈ {0,1} ∀j1, j2 ∈ {1, . . . , p} (16i)

x∈Ω. (16j)

Variables u1 and u2 denote E [X1(x)] and E [X2(x)], respectively, and s represents θ(x)2. Binary

variable vi,j1,j2 takes a value of 1 iff xi,j1 = xi,j2 = 1, i.e., items j1, j2 are selected for set i. Similarly,

rj1,j2 is a binary variable that equals 1 iff x1,j1 = x2,j2 = 1, i.e., items j1, j2 are selected for sets 1 and

2, respectively. The objective function (16a) maximizes g(x) as defined in Proposition 1. Constraints

(16b) define the u-variables according to equation (1) and impose the symmetry breaking condition

u1 ≥ u2, so that u1 = max(E [X1(x)] ,E [X2(x)]). Constraint (16c) imposes s = θ(x)2 as described

by equation (15), where σ2(X1(x)), σ2(X2(x)), and cov (X1(x),X2(x)) are computed according

to equations (2) and (3), respectively. Constraints (16d)–(16g) are the McCormick linearization

constraints. Constraints (16h)–(16i) require v-variables and r-variables to be binary. Constraint

(16j) requires the x-variables to be feasible to the original problem. We later refer to Ψ as the

space defined by constraints (16b)–(16j).

5. Strengthened Formulation

We describe next SRMP, a strengthened version of the restricted master problem formulation

presented previously. SRMP employs a more accurate bounding function for E
(
Y(2)(x)

)
, based on a

joint discretization of θ(x)2 and δ(x). The estimated values are coupled via supervalid inequalities,

thus further enhancing the computational performance of SRMP.
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5.1. Framework

SRMP relies on the following proposition, which is valid for any functions uθ(x), lθ(x), and uδ(x)

such that 0≤ lθ(x)≤ θ(x)≤ uθ(x) and uδ(x)≥ δ(x):

Proposition 2. For every x∈Ω,

E [X1(x)] ·Φ
(
uδ(x)

lθ(x)

)
+E [X2(x)]

(
1−Φ

(
uδ(x)

lθ(x)

))
+

1√
2π
uθ(x)≥E

[
Y(2)(x)

]
. (17)

Proof This follows because

E[Y(2)(x)]≤E [X1(x)] ·Φ
(
δ(x)

θ(x)

)
+E [X2(x)] ·Φ

(
−δ(x)

θ(x)

)
+

1√
2π
θ(x)

≤E [X1(x)] ·Φ
(
δ(x)

θ(x)

)
+E [X2(x)]

(
1−Φ

(
δ(x)

θ(x)

))
+

1√
2π
uθ(x)

≤E [X1(x)] ·Φ
(
uδ(x)

lθ(x)

)
+E [X2(x)]

(
1−Φ

(
uδ(x)

lθ(x)

))
+

1√
2π
uθ(x).

The first inequality follows because the p.d.f. of a standard normal is bounded by 1√
2π

. The second

inequality follows because uθ(x) ≥ θ(x) and because a standard normal is symmetric around 0.

With respect to the last inequality, first note that, for any constants a, b with a≥ b, aλ1 +b(1−λ1)≤

aλ2 + b(1 − λ2), for any values 0 ≤ λ1 ≤ λ2 ≤ 1; intuitively, this holds because the largest term

gains a larger weight on a convex combination when λ1 is replaced for λ2. This implies the second

inequality, since the c.d.f. is non-decreasing on its domain and δ(x)

θ(x)
≤ uδ(x)

lθ(x)
. �

Suppose we are given d continuous (and not necessarily disjoint) intervals
{

[θ2
q , θ

2
q+1]

}d
q=1

for

which θ(x)2 ∈ [θ2
1, θ

2
d+1] and l continuous (and also not necessarily disjoint) intervals {[δk, δk+1]}lk=1

for which δ(x)∈ [δ1, δl+1], for any x∈Ω . Furthermore, suppose that for q= 1, . . . , d, θq and θq are

upper and lower bounds, respectively, of θ(x) for θ(x)2 ∈ [θ2
q , θ

2
q+1]. Using these intervals, we can

construct the following SRMP, where binary variables wq, q= 1, . . . , d, and yk, k= 1, . . . , l, indicate

which interval θ(x)2 and δ(x) belong to, respectively:

max u′+
1√
2π
s′ (18)

s.t.
d∑
q=1

wq = 1 (19)
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θ2
qwq ≤ s≤ θ2

q+1 + θ2
d+1(1−wq) q= 1, . . . , d (20)

s′ =
d∑
q=1

θqwq (21)

l∑
k=1

yk = 1 (22)

δkyk ≤ u1−u2 ≤ δk+1 + δl+1(1− yk) k= 1, . . . , l (23)

u′ ≤ u1 ·Φ
(
δk+1

θq

)
+u2

(
1−Φ

(
δk+1

θq

))
+M (2−wq − yk) q= 1, . . . , d, k= 1, . . . , l (24)

(x, v, r, u1, u2, s)∈Ψ (25)

wq ∈ {0,1}, yk ∈ {0,1} q= 1, . . . , d, k= 1, . . . , l. (26)

Constraints (19) and (22) ensure that one interval is chosen for θ(x)2 and δ(x), respectively. Con-

straint (25) ensures that s equates to θ(x)2, and so Constraint (20) relates the wq variables with s.

Constraints (21) then sets s′ equal to the upper bound of θ(x) for the interval that θ(x)2 belongs

to; note that s′ is unrestricted in the model. Constraints (23) select the right interval for δ(x),

noting that u1 and u2 are defined by the constraints in Ψ. Constraints (24) are only active for the

selected intervals and enforce u′ to be bounded by a linear combination of u1 and u2, defined by the

evaluation of the c.d.f. at appropriately chosen constants associated with the intervals that θ(x)2

and δ(x) lie in; M is a sufficiently large value. Constraints (26) defines the domains of the variables

appropriately. Finally, note that the objective function is also directly affected by the discretization,

as its terms are pre-computed for the given set of discretization intervals.

We describe next the strategies to define the discretization intervals and compute the corre-

sponding upper and lower bounds on θ(x) and δ(x).

5.2. Discretization of θ(x)2

A trivial upper bound for θ(x)2 is given by 4 maxx∈Ω σ
2(X1(x)). This is because, for any x∈Ω,

σ2(X1(x))≤max
x∈Ω

σ2(X1(x));

σ2(X2(x))≤max
x∈Ω

σ2(X1(x)); and

cov(X1(x),X2(x)) = ρ(X1(x),X2(x))σ(X1(x))σ(X2(x)) ≥ (−1)max
x∈Ω

σ2(X1(x))
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Note that the simple upper bound of θ2
d = 4maxx∈Ω σ

2(X1(x)) can be tightened by solving

max{s | (x, v, r, u1, u2, s) ∈Ψ}; from Theorem 1, though, it follows that this problem is NP-hard.

Additionally, our computational evaluations show that the resulting MIP is indeed challenging, so

our strategy consists of solving the MIP for a limited amount of time in order to obtain a relatively

refined upper bound θ̂2, which is used in our discretization strategy.

We define d intervals for θ(x)2 as follows: θ2
1 = 0, θ2

2 = 1, and θ2
q = θ2

q−1 + θ̂2−1
d−1

for q= 3, . . . , d+ 1.

Note that for x ∈ Ω, 0 ≤ θ(x)2 ≤ θ2
d+1 = θ̂2 and θ2

q ≤ θ(x)2 ≤ θ2
q+1 for some q = 1, ..., d+ 1, so this

discretization is valid. Given these intervals, upper bounds for θ(x) are given by

θq =


1, q= 1

√
θ2
q+1, q= 2, . . . , d,

whereas lower bounds are given by

θq =


0, q= 1

√
θ2
q , q= 2, . . . , d.

5.3. Discretization of δ(x)

Our algorithm relies on an upper bound δ̂ for δ(x) = E [X1(x)] − E [X2(x)] for x ∈ Ω. A trivial

bound is given by δ̂= 2
∑p

j=1 |µj|; similarly to θ(x)2, though, tighter bounds may be obtained from

feasible upper bounds for the problem max{u1−u2 | (x, v, r, u1, u2, s)∈Ψ}.

Equipped with δ̂, the discretization for δ(x) is simpler than that for θ(x)2. Namely, we generate

l discretization intervals defined by δk = k−1
l
δ̂ for k = 1, . . . l+ 1. The intervals span the possible

values for δ(x), and so this is a valid discretization. Finally, upper bounds for δ(x) are obtained

directly from the upper limits of the intervals.

5.4. Strengthening Inequalities for the RMP

We show next how estimates on δ(x) and θ(x) can be coupled via supervalid inequalities (SVIs),

which potentially eliminate integer solutions without removing all the optimal ones (Israeli and

Wood 2002). We propose SVIs of the form

δ(x)∈ [δk, δk+1] =⇒ θ(x)≥ θkmin ∀k= 1, . . . , l, (27)
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where θkmin establishes a lower bound on θ(x) assuming that δ(x) belongs to the interval [δk, δk+1].

We leverage current knowledge about the problem by considering the satisfaction of a global lower

bound zLB for (5) when computing values for θkmin. We obtain lower bound zLB using a simple

heuristic procedure described in the computational experiments section.

Propositions 3 and 4 establish the results needed to obtain valid values for θkmin. Proposition

3 shows how to obtain a lower bound on θ(x) assuming that δ(x) is equal to some constant δ.

Proposition 4 shows how to extend this result to the case in which δ(x) belongs to a given interval.

Both propositions use value µ̄= maxx∈Ω E[X1(x)], which typically can be quickly computed.

Proposition 3. For a given value δ and lower bound zLB, let Ω(δ, zLB) be the set of solutions x

such that E
[
Y(2)(x)

]
≥ zLB and δ(x) = δ. A lower bound θmin(δ) for minx∈Ω(δ,zLB) θ(x) can be

obtained through the solution of the following optimization problem:

LBP (δ) : θmin(δ, zLB) = min
θ≥0

{
θ | ū+ θ ·φ

(
δ

θ

)
≥ zLB

}
. (28)

Proof For any x∈Ωδ, we have that

E [X1(x)] ·Φ
(

δ

θ(x)

)
+E [X2(x)] ·Φ

(
−δ
θ(x)

)
+ θ(x) ·φ

(
δ

θ(x)

)
≥ zLB.

As ū≥maxx∈Ω E[X1(x)], we have

E [X1(x)] ·Φ
(

δ

θ(x)

)
+E [X2(x)] ·Φ

(
−δ
θ(x)

)
≤ ū.

As a result,

ū+ θ(x) ·φ
(

δ

θ(x)

)
≥E [X1(x)] ·Φ

(
δ

θ(x)

)
+E [X2(x)] ·Φ

(
−δ
θ(x)

)
≥ zLB

for every x ∈ Ω(δ, zLB). Therefore, the value of θ obtained from the optimization LBP (δ) is at

least as small as the value attained by any x∈Ω(δ, zLB), so the result follows. �

Proposition 4. Given two values δ1 and δ2 such that δ1 ≤ δ2 and a fixed value zLB,

θmin(δ1, z
LB)≤ θmin(δ2, z

LB).
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Proof For θ≥ 0 and fixed δ, both θ and φ
(
δ
θ

)
are continuous and non-decreasing functions of θ, so

we have that θ ·φ
(
δ
θ

)
is also a continuous and non-decreasing function of θ. Therefore, at optimality

we have θmin (δ1, z
LB) · φ

(
δ1

θmin(δ1,zLB)

)
= θmin(δ2, z

LB) · φ
(

δ2,z
LB

θmin(δ2,zLB)

)
= zLB − ū. Assume by

contradiction that θmin(δ2, z
LB)< θmin (δ1, , z

LB); in this case, φ

(
δ2,z

LB

θmin(δ2,,zLB)

)
<φ

(
δ1,z

LB

θmin(δ1,,zLB)

)
and, consequently we have that θmin(δ2, z

LB) · φ
(

δ2
θmin(δ2,zLB)

)
< θmin (δ1, z

LB) · φ
(

δ1,z
LB

θmin(δ1,zLB)

)
,

thus contradicting the optimality of θmin (δ1, z
LB). �

Corollary 1. For every x∈Ω such that E
(
Y(k)(x)

)
≥ zLB, if δ(x)∈ [a, b], θmin (a, zLB)≤ θ(x).

From Corollary 1, we obtain the following expression for the lower bounds of θkmin given δk:

θkmin = θmin
(
δk, z

LB
)
∀k= 1, . . . , l. (29)

From this, we can add the following inequality to SRMP:

s≥
(
θkmin

)2
yk, ∀k= 1, . . . , l.

This inequality provides a significant tightening of the bound by relating the possible choices of

k for yk = 1 to the best known solution. Note that, for this, one needs to find a lower bound on

E
[
Y(2)(x)

]
and solve l problems LBP (δ) at the initialization of the algorithm.

6. Numerical Evaluation

In this section we describe results of an extensive evaluation on synthetic instances. The models

and algorithms are implemented in CPLEX version 12.7.1 (ILOG 2018) through the Java API

using the best bound exploration strategy in the solver. We utilize Python 3.6 to generate the

random instances that will be available to the interested reader. All experiments are conducted on

an Intel(R) Xeon(R) CPU E5-2680 v2 at 2.80GHz. Each execution is restricted to a single thread,

a time limit of 60 minutes, and a memory limit of 10 GB.

6.1. Generation of Synthetic Instances

We generate synthetic instances to measure runtime for understanding the scalability of the algo-

rithm and the quality of the solution obtained by our exact approach. For the latter, we are
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interested in understanding how the solutions we find compare with those produced by a simple

heuristic (which we describe below) and which instance characteristics lead to significant improve-

ment in objective function over the highest single entry solution.

The selection of items for instances of this family is restricted by knapsack constraints on the bins.

The instances composing this dataset were randomly generated, with each one being associated

with a configuration (p,w,d,α). Items have weights and each bin has a capacity on the sum

of the weights of the packed elements; both the capacity of the bins and the item weights are

constructed in a way that the number of items that can be assigned to each bin is w in expectation.

Binary parameter d indicates if items may belong to both bins or if they can be selected at most

once. Finally, α indicates an integer variance multiplier. The benchmark consists of 5 randomly

generated instances per configuration. The set of configurations consists of all combinations of p

in {15,20,25,30}, w in {2,3,4,5}, d in {0,1}, and α in {50,100,150,200,250}.

Given the parameters of the configuration, we generate each instance as follows. First, item

weights are integer values drawn independently and uniformly at random from the interval [1,19],

and the knapsack capacity per bin is set to 10w; note that items have weight 10 in expectation, so

the expected number of items that can fit in each bin is w. Profit means µi are continuous values

drawn independently and uniformly at random from the interval [15,25]. In order to generate

the covariance matrix, we use Scikit-learn functions to generate a random positive semidefinite

matrix and to find the nearest covariance (matrix Pedregosa et al. (2011)); the resulting covariance

matrix is multiplied by α.

6.2. Runtime Analysis and Effect of Strengthened Formulation

We evaluate the impact of the strengthened formulation presented in Section 5 over the basic version

of the algorithm presented in Section 4.2, which we refer to as A and A0, respectively. The metrics

we use for comparison are runtime and ending solution quality. The analysis provides significant

evidence that the machinery developed in Section 5 is required for scalable implementation of the

branch-and-cut algorithm since A improves substantially over A0 on both metrics.
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Figure 1 Performance profile comparing runtimes of the different problem classes tested.

Figure 1 is a performance profile depicting runtimes and ending optimality gaps (measured as

percent difference of ending lower bound from upper bound) of A and A0, both allowing (d= 0) and

disallowing (d= 1) items from being selected for both bins. Each line corresponds to an algorithm

and a value of d. In the left portion of the plot, the height of the line is the number of instances

solved by the corresponding time on the x-axis; in the right portion, the height of the line is the

number of instances with optimality gap less than or equal to the corresponding value on the x-axis.

In particular, the lines are all non-decreasing, and the higher the line the better the performance.

The figure readily exhibits substantial performance enhancement in A over A0, regardless of d.

For d= 0, A solves 160 of the 400 instances versus only 27 for A0; for d= 1, A solves 147 and A0

solves 41. The ending gaps are also substantially tighter for A; averaged for all instances and over

all runs with d= 0 and d= 1, the optimality gap is 4% for A and 84% for A0. Figure 1 therefore

provides clear evidence of the efficiency of A.

It is also interesting to see which problem characteristics result in harder instances. The scatter

plot in Figure 2 depicts the runtime of A and A0 for d= 0 (left) and d= 1 (right). Each point has

coordinates given by the runtime of A and A0, with dots being sized proportionally to the number

of items, m, and colored by the knapsack size, w. Note that we only depict those instances with

w ∈ {2,3,4}, omitting those with w = 5 for clarity. The plot shows that, as w and m increase, it

becomes critical to utilize A. A0 generally only solves instances with w= 2 and the overhead of its

use only contributes to longer runtimes for the easiest instances.
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Figure 2 Scatter plots comparing runtimes for A and A0

(a) Instances with d= 0. (b) Instances with d= 1.

6.3. Comparison with a Heuristic

We discuss now the improvements brought by the strengthened formulation over a natural heuristic

approach that consists of selecting bins S1 and S2 to be the highest and second-highest expected

profit bins. Note that the problem of maximizing the expected profit for a single bin reduces to

a traditional deterministic knapsack problem. Our heuristic first solves this knapsack problem to

determine S1, i.e., the highest expected profit bin. To find S2, we add a no-good cut that prevents

S1 to be selected again resulting in the second-highest expected profit bin. Note that if d= 0, then

the no-good cut ensures that S1 and S2 differ in at least one item, as items are allowed to belong

to both bins. If d= 1, then the no-good cut ensures that none of the items in S1 are selected in S2.

The running time of the heuristic is negligible (i.e., less than 1 second), so we restrict the com-

parison to the quality of the solutions; namely, we investigate the relative gains of the strengthened

formulation over the heuristic. The comparison is always between the solution obtained by the

heuristic and the best feasible solution found by the algorithm before the time or the memory limit

was exceeded.

Figure 3 shows the results in an aggregate way, displaying the proportion of instances for which

the percent gap is a given constant or less. In particular, a point (x, y) on the line reports the

proportion of instances y for which the percent improvement over the heuristic is at most x.

Improvements over the heuristic were approximately 6.7%, going up to over 30% in some scenarios.
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Figure 3 Proportion of instances with percent improvement over heuristic.
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The plots composing Figure 4 present a more refined analysis, where the results are decomposed

according to some of the parameters defining the underlying instances. Figure 4(b) shows that

the variance multiplier has a significant impact on solution quality. Namely, whereas the average

improvement is slightly below 2% for α= 50, the value grows to almost 12% for α= 250. Our results

also show that performance improvements are positively correlated with repetition of items, as we

can see in Figure 4(a). Namely, if items can be assigned to both bins, the average improvement is

approximately 5.2%; conversely, the value goes up to 8.1% if repetitions are forbidden. Finally, the

plots associated with the number of items and the knapsack constraint were similar to Figure 3,

i.e., these parameters did not have a significant impact on performance improvements.

In Figure 5, we present the differences in the expected profit of the bins selected by the two

different approaches. Let Sh1 and Sh2 be the sets selected by the heuristic for bin 1 and 2, respectively,

and Se1 and Se2 be the bins selected by the exact approach. Recall that by construction z(Sh1 )≥ z(Sh2 )

and z(Se1) ≥ z(Se2). Each point in the plot represents one instance, with its x and y coordinate

indicating z(Sh1 )− z(Se1), and z(Sh2 )− z(Se2), respectively. Note that since the heuristic selects the

two highest expected profit bins, when d= 0 we have that z(Sh1 )≥ z(Se1) and z(Sh2 )≥ z(Se2). When
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Figure 4 Proportion of instances with percent improvement over heuristics refined by instance characteristics.
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(a) Results defined by item repetition.
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Figure 5 Differences on expected profits of selected bins.
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(a) Instances decomposed by item repetition.
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(b) Instances decomposed by α.

d= 1 we still have that z(Sh1 )≥ z(Se1) but cannot establish the same for Sh2 and Se2 since items can
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only be selected in at most one bin. The relative sizes of the points depict the percent improvement

in the solution quality of the exact approach over the heuristic.

Similarly to previous plots, we investigate the distribution of these values based on the possibility

to repeat items (Figure 5(a)) and on the variance multiplier (Figure 5(b)). Lack of repetition is

correlated with larger difference on the second bin, whereas repetitions may increase the difference

on the first. Also, larger variance multipliers lead to larger differences on the expected profit of

both bins. These results suggest the existence of correlation at some level between differences in

the expected profits of selected items and solution quality. Our results show that these values are

indeed slightly correlated: differences in profit for the first bin selected have a correlation of 0.35

with solution quality improvement and differences in the second bin have a correlation of 0.18.

Perhaps the most interesting takeaway from Figure 5 is how different the optimal entries are from

the heuristic, exhibiting how important using an exact approach can be for this problem. It is often

the case that z(Se1) = z(Sh1 ), but when this happens, z(Se2) is typically much smaller than z(Sh2 ). It

is also often the case that both of the entries found by the exact approach have significantly lower

individual expectations than both entries identified by the heuristic, but the expectation of their

maximum is much higher. For example, for one of the large instances composing this dataset (m=

30, w= 5, α= 250, and d= 0) both entries selected by the heuristic were considerably larger than

the respective entries generated by our algorithm (z(Sh1 )−z(Se1) = 14.59 and z(Sh2 )−z(Se2) = 41.60);

nevertheless, the improvement brought by the exact approach was over 17%, thus reinforcing the

superiority over a greedy heuristic strategy.

7. Application to Daily Fantasy Football

Fantasy sports are games in which participants serve as “general managers” of imaginary “rosters”

made up of real players from a professional sport. The players’ real performance during game

play translates into fantasy points, and fantasy sports participants compete against each other

by accumulating those points. The companies running fantasy sports contests set a price for all

eligible players and allow participants to select a roster while remaining under a specified spending
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limit, or salary cap; eligible players are those participating in games covered by the specific daily

fantasy contest.

In daily fantasy football (DFF), fantasy contests in which participants compete are arranged

based on the starting times of each week’s slate of National Football League (NFL) games, and only

players in those games are eligible for inclusion on a fantasy roster. Further, not all players in the

NFL games are eligible for fantasy rosters because the fantasy scoring system only rewards points

for specific tasks. Namely, only the offensive “skill position” players (wide receivers, running backs,

and tight ends), quarterbacks, and kickers are eligible as single players; the other players are grouped

and selected collectively as “team” defenses. Generally the individual players receive fantasy points

for gaining yardage and scoring points in the actual game (via touchdowns, extra points, two-point

conversions, and field goals) and the team defense earns fantasy points by preventing the opposing

team from scoring or by having its members scoring game points itself.

DraftKings is one of the two major DFF providers. Three different types of football contests

are offered: showdowns, classics, and tiers. Showdown contests only include the players in a single

NFL game; entries consist of 6 players, regardless of position, with one designated as captain who

costs 1.5 times the normal salary and earns 1.5 times the normal fantasy points. Classic contests

include players in at least two and up to any number of NFL games and entries consist of 9 players:

1 quarterback, 2 running backs, 3 wide receivers, 1 tight end, 1 team defense, and 1 “flex” position

that can be filled by a running back, wide receiver, or tight end. Tier contests feature no player

salaries; rather, participants select a lineup by choosing a single player, regardless of position, from

each of 6 pre-set “tiers” of players. Finally, across all contests, eligible lineups must include players

from at least two different NFL teams. We focus on showdown contests in this paper.

It is helpful to reiterate the terminology used in the preceding paragraphs. Specifically, player

refers to a professional athlete who is eligible for selection on a fantasy roster, team refers to

the actual team the athlete plays for on the field, game refers to the actual athletic competition,

contest refers to a competition on the DraftKings platform that costs money to enter and pays out
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monetary prizes to highest scoring entries, entry or roster refers to a given selection of players that

forms a full fantasy roster and is submitted for a given contest, entry fee is the cost paid to submit

one entry in a given contest, payout is the amount rewarded to high-scoring entries that differs

across contests, and participant refers to the person who selects at least one entry. Each player

may appear no more than once on a given entry, and different contests allow different number of

entries per participant (some as high as 150). We focus here on smaller, high-entry-fee contests

that limit each participant to no more than 2 or 3 entries.

The last important point to understand about DFF contests in the payout structure. It is heavily

skewed toward the top performers in each contest. Generally the top 1/4 of entries place in the

money. The very top entry receives approximately 1/4 of all entry fees, and the payouts fall quickly

after that, although exact amounts can depend on the contest. The last set of payouts is usually

1.5 times the entry fee.

7.1. Problem definition

We model the two-entry selection problem in a showdown contest as a special case of Problem P.

Let p′ be the number of players, and p = 2p′. The first p′ players represent standard versions of

the players (“flex” in the lingo used by DraftKings), whereas the next p represent their “cap-

tain” versions, in a common order. Players are therefore represented by items in P, with selection

costs representing salaries and associated stochastic profit representing expected fantasy points; let

{I1,I2} be the partition of I containing the players from the first and second team, respectively.

For i∈ {1,2} and j ∈ [p], binary variable xi,j indicates the selection of player j for roster i; that

is, rosters correspond to the bins. The following constraints apply to each roster:

• Exactly 5 flex players and 1 captain must be selected:

p′∑
j=1

xi,j = 5,

p∑
j=p′+1

xi,j = 1, i= 1,2.

• The same player cannot be selected both for a flex and the captain positions:

xi,j +xi,j+p′ ≤ 1, i= 1,2, j = 1, . . . , p′.
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• At least one player from each team appears on each roster:

∑
j∈Ii

xi,j ≥ 1, i= 1,2.

Finally, all decisions are binary, so xi,j ∈ {0,1} completes the constraint set.

There are additional constraints that we add, which implement standard “stacking” rules. These

rules help reduce the search space by eliminating certain combinations of players that generally

perform do or do not perform well with one another. Specifically, we implement the following rules

for any entries selected:

1. if a QB is selected as captain, the defense from either team is not selected; and

2. if a WR or TE is selected as captain, always pick a QB on his team.

7.2. Parameter Estimation

There are several parameters that need to be estimated—in particular, ∀j ∈ [p], parameters µj

and σj defining the normal distribution for the points scored by player j; and, ∀j1, j2 ∈ [p], the

covariance ρj1,j2 of the performance of players j1 and j2. We discuss each in turn.

7.2.1. Expected Value Estimation Due to the growth of the industry of fantasy sports,

estimated DFS points for a player is the topic of many non-academic articles and websites (e.g.,

rotogrinders.com). Tremendous resources are put into calculating reliable and accurate estimates

for how a player will perform. Although there is potentially room to improve upon published

estimates, for this paper we use estimated player data from fantasydata.com, which is updated

frequently for upcoming games and contains historical NFL game data since 2014 of projected

fantasy points for players, actual fantasy points for players, and player salaries on the DraftKings

platform, all for a monthly fee. The projected points estimates used for this paper are the final

fantasydata.com estimates set just before game time (changes may occur due to weather, injury

updates, or a myriad of other reasons). This data therefore provides µj, for j = 1, . . . p′, and, because

E(1.5X) = 1.5E(X), we have µj = 1.5µj−p′ , for j ≥ p′+ 1.

rotogrinders.com
fantasydata.com
fantasydata.com
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7.2.2. Variance Estimation We used the data from fantasydata.com in order to learn vari-

ances for player scores using two different methods. The first method uses all the projected points

data for games played from 2014-2017 as the training set. First, for each position, we partition

the data into quintiles. Then, for the 2018 data, we slot each player j into his respective position-

specific quintile of projected points, and use the variance of the actual points scored by the players

in that quintile in 2014-2017 as the estimate for the variance of that player’s actual score. For

example, if a running back is projected to score 20.5 fantasy points in a game, and that falls in the

top quintile for running backs, we set his actual score variance as the computed variance of the

actual scores of all top-quintile running backs from 2014-2017.

The second method employs a k-nearest-neighbor-like algorithm; again, we use 2014-2017 as our

training set. For a player j, his variance is estimated as the variance of the actual scores of the 50

players that share a common position with player j in the data for 2014-2017 and whose expected

value is as close as possible (in terms of squared difference) to player j. For example, if a running

back is projected to score 20.5 fantasy points, we select the 50 running backs in the training set

with projected fantasy score as close as possible to 20.5, and use the actual fantasy scores of those

50 players to calculate the variance of that player’s fantasy score.

7.2.3. Correlation Estimation Due to the nature of the sport itself and the way fantasy

scoring works, players on the same (or opposing) teams often have correlated scoring. For example,

if a quarterback throws a touchdown to a wide receiver, both players receive a number of fantasy

points (and the opposing defense would possibly lose some). But since that quarterback had to

have completed the pass to someone, fantasy points for individual players do not exist in a vacuum.

Rather, we would expect that players at certain positions would have significantly correlated scores

with teammates, and even opponents, at other positions. Therefore, given the heavily skewed

payoff structure of most DraftKings showdown contests, when trying to maximize the expected

value of the maximum score of the entries, participants must take into account these correlations.

The daily fantasy sports betting community is well aware of this strategy of choosing teammates

fantasydata.com
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(or opponents) whose scores should correlate by design; it is called “stacking.” It should also

be noted that opponents may see their actual scores correlate even if the players are not on

the field at the same time due to the nature of the game of football. For example, the actual

scores of the quarterbacks on opposing teams (who are never on the field at the same time) are

positively correlated because higher scoring NFL games tend to generate more fantasy points for

the quarterbacks. As one quarterback scores fantasy points, the other team tends to throw more

to try and catch up, and this tends to raise the opponent quarterback’s fantasy scores as a result.

We estimate the correlation of players j1 and j2 in similar ways to our single player variance

estimates. Since we are only reporting results for showdown contests, all available player pairs are

either on the same or opposing teams.

In the first method, we slot all teammate pairs of players j1 and j2 into which of the 25 possible

quintile-quintile buckets the pair falls. For example, if a quarterback projects for 30 points (first

quintile) and his wide receiver projects for 15 points (second quintile), we find all 1st quintile-

2nd quintile quarterback-wide receiver pairs in the training set, and use the correlations of those

actual player scores as our parameter estimate for ρj1,j2 . The same technique is applied to estimate

correlations of pairs of players on opposing teams.

In the second method, we estimate ρj1,j2 (for players on the same team) by finding the 50 pairs

of players and games in the training set for which the players are teammates and played the same

positions as j1 and j2 and have expected value as close as possible to that of j1 and j2, and use

the sample correlation of their actual game scores to estimate their correlation. For example, if

a quarterback and wide receiver pair are on the same team and are expected to score 30 and 15

points, respectively, we find the 50 instances in the training set of quarterback and wide receiver

teammates with the sum of squared differences from 30 and 15 in expected values as low as possible.

We calculate the corresponding correlation of actual scores on this subset of players, and use that

as the parameter estimate. We do the same for players on opposing teams. One can then set the

correlation to 0 if the significance of the Person’s correlation test is above some threshold β.
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Using either estimation technique, there are instances in which the correlation identifies values

that are incompatible, because of the way the estimation is done and the actual scores achieved

by certain player pairs. Formally, the estimated covariance matrix Σ for a multivariate normal

distribution must be positive semi-definite (PSD). Correlation estimates, multiplied by the cor-

responding standard deviations, are found only to provide an estimate for Σ, and the estimation

procedure described above often yields correlations for which Σ is not PSD. There are several

ways to correct for this. One is to use packages available in common statistical software to adjust

the covariances, like the function cov nearest in Python’s statsmodels module. Another is to

dampen the correlations by a fixed constant (i.e., set ρj1,j2 :=
ρj1,j2
α

, with α> 0, for all j1,j2). Yet

another way is to apply the PSD condition and, whenever a solution is found for which θ < 0,

redefine θ := 0. Throughout the season of betting several procedures were tested.

7.3. Results

In Tables 1 through 3, we report results that would have been obtained on 16 showdown contests

from the 2018 season by our exact algorithm using statsmodels to fix the covariance matrices

and the different variance / correlation estimation procedures defined above; these contests were

selected because we actually bet on them in DraftKings and therefore have their results. The

actual entries we selected and used for betting vary slightly from those reported here due to evolving

techniques for estimating parameters over the course of the season—we report a uniform technique

in the paper to ensure reproducibility. Our actual results turned an even larger $6,900 profit.

The content of the first seven columns of Tables 1 through 3 is clear from their titles: the first

column indicates the game and the date when it took place; the second indicates the total number

of entries; the third indicates the price paid by participants per entry; the fourth and fifth indicates

the results by showing the winnings and the profit obtained by the algorithm, respectively; columns

six and seven indicate the best score and the minimum score for entries in the money; columns

eight and nine contain the expected values of the first and the second entry, respectively; and,

finally, columns ten and eleven represent the actual scores of the selected entries.
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Because 2-entry showdown contests are not very common on the DraftKings platform, we

included a number of 3-entry contests on this list, though we only ever enter 2 entries for those

contests. As baseline, we used entries generated by a simple heuristic that would select a first entry

with maximum expected value and a second entry that differs from the first by at least one player

and maximizes the expected value.

Table 1 shows results obtained using the “tiered” method (hereafter, C1), Table 2 shows results

obtained using the nearest-neighbor method (hereafter, C2, using β = 0.25 and cov nearest for

correcting Σ, i.e., setting to 0 any correlation whose p-value is above 0.25), and Table 3 shows the

results for the heuristic. Each of the tables include the NFL teams involved and date of the game,

total number of entries in the contest, total entry fee for our 2 entries, total winnings for both of

our entries, profit for the game, score of the top finishing entry, minimum payout score (i.e., the

cutoff score for winning any money back), expected value of our first entry, expected value of our

second entry, actual value of our first entry, and actual value of our second entry. The actual value

appears in bold if it would have finished “in the money” in that particular contest. The first seven

columns are repeated in all three tables. Finally, the total entry fees, winnings, and profit for each

method are computed in the last row of each table. Note however that the money won shown in

Tables 1 through 3 is an approximation in the sense that if our 2 entries from the algorithms in this

paper were actually included in the contests, two other entries that were in the contest necessarily

would have been excluded since all contests fill up to capacity. If, for example, the two “eliminated”

entries were top scoring ones, the payoffs for the remaining entries, and ours, would necessarily be

the same or larger. There is no way to account for this game of elimination in a reasonable way,

so we report results as if our entries were simply added to the contest without changing any other

details about other entries, payout structure, etc.

There are two important initial takeaways in Tables 1 through 3. First, the contests differ in

cost and entries considerably, though the most common version of this contest features 100 total

entries at a cost of $444 per entry. Second, the scores needed to win, or even place in the money,
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differ tremendously by game. Namely, higher-scoring NFL games result in more fantasy points for

the involved players; for instance, in the game Vikings vs. Rams on 9-27, which finished with a

score of 38-31, the minimum payout score would have been the winner score in every single other

contest shown. Because of the vast discrepancy in contest results, it is difficult to say a priori what

score is going to be necessary to win or place in a given contest.

The comparison of overall results across the three methods reveals the power of our algorithm.

The heuristic ends up losing nearly 50% of the money wagered; our optimal algorithm with C1 loses

approximately 10%, which is the cut that DraftKings takes for running the contests; finally, our

optimal algorithm with C2 shows a positive return of over 50%. There were two games whose con-

tests featured different profits for the three methods shown: Redskins vs. Saints on 10-8 and

Broncos vs. Chiefs on 10-1. There were two games whose contests featured positive profit for

all three methods shown: Giants vs. Falcons on 10-22 and Falcons vs. Saints on 11-22;

for them, both entries selected by the heuristic and C2 methods won money. Although both entries

finishing “in the money” might seem at first glance to be a great outcome, we actually view it in

the context of C2 as a missed opportunity. In general, small differentials between the actual scores

of our entries represents a failure of the covariance matrix to manifest itself in the game played on

the field, and it usually results in us losing money on the contest. Because of the skewed payout

structure of the DraftKings contests, we would prefer our entries to completely play off of each

other. One entry finishing in first place and the other in last place would be a more profitable

outcome than both finishing above the minimum payout score but below the top few spots. For

more detail, look at the contest for the Giants vs. Falcons on 10-22 game in Table 2. There,

our entries would have placed 5th and 19th (the top 23 entries were “in the money”). We would

gladly have traded down from the 19th spot out of the money to move up just a few more points

with our 5th place finishing entry. Just 6.5 more actual points for entry 1 would have earned a

$3,000 payoff, and 9.8 more would have earned first place and a $10,000 payoff.

In nearly all contests, across all three specifications, the winner score is significantly higher than

the expected value scores (the only major exception being the contest featuring the Falcons vs.
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Saints on 11-22). The players on the winning entry, as a whole, significantly outperform their

projections in nearly every contest. Something akin to the heuristic method is what we expect

many participants in these contests are using as their DFF strategy. Although it unsurprisingly

outperforms our single entries in both C1 and C2 in expected value, its actual results leave a lot

to be desired. As we have observed in our experiments with synthetic instances, in general, the

maximum expected value entry does not necessarily belong to an optimal configuration of entries,

and it also will not necessarily result in a payout, so bettors need to exploit joint decision-making

across multiple entries in order to elevate their actual scores above the threshold needed to win

money.

Table 4 further illustrates the power of our algorithm for P. We again compare to the heuristic by

evaluating expression 5 using the solution that the heuristic obtains together with the covariance

matrices produced by methods C1 and C2. Game is the same as before, EV represents the single

highest expected value entry, AV represents the single highest actual score on our entries, and

MEVM represents the maximum of the expected value of the maximum for the two entries, i.e.,

the evaluation of the objective function at the solution obtained. Notice that while the heuristic

dominates P in EV, it falls behind in MEVM in every single game considered, for both covariance

considerations. The last row of the table considers the average values above it. On average, the

heuristic solution evaluated using C1 is 1.64 points higher in EV than P with C1, but P ends up

3.82 points higher than the heuristic in MEVM. Likewise, the heuristic solution evaluated using

C2 is 1.19 points higher in EV than P with C2, but P ends up 6.68 points higher than the heuristic

in MEVM. This shows the power of our algorithm, with the consummate benefit being the ability

to win money in DFF for multiple entry showdown contests. Finally, the MEVM for P with C2 is

6.21 points higher than the MEVM for P with C1, which explains why it was able to earn such

higher profits. This is despite the fact that the average AV for P with C1 actually outperformed

the average AV for P with C2 by 1.05 points. In other words, P with C2 better achieves the goal

of producing a really high score, at least some of the time, and often enough to win significant

money.
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8. Conclusion

In this paper, we introduced a novel class of optimization problems, which can be framed as a

stochastic packing problem where each bin is associated with a random variable whose value is

defined according to the selected items and the goal is to optimize order statistics on the expected

values of these random variables. This work focuses on studying the maximum of two random

variables, defined as the sum of other random and potentially correlated variables that follow the

normal distribution.

The paper presents results of theoretical and algorithmic relevance for the problem. Namely,

we show that the maximization of order statistics with two normally distributed variables is NP-

hard even in its simplest setting, where the assignment of items to sets is unconstrained. We also

introduce the first exact algorithm to optimize problems whose objective function are specified by

order statistics; the proposed solutions is a cutting-plane algorithm that leverages discretization

techniques and approximation results tailored for the problem.

The usefulness of the approach is obvious in settings where obtaining one extremely high outcome

is more valuable than two reasonably high outcomes. In particular, we apply the approach to the

increasingly popular betting contests known as daily fantasy sports, where the payoff structure is

heavily skewed toward top finishers and all participants are allowed to purchase multiple entries.

We show that our algorithm improves on results delivered by a reasonable heuristic that does not

explicitly consider the full spectrum of the optimization problem and instead focuses on treating

the entries separately. Combining our approach with a specific player-pair covariance structure

learned from prior data for selecting the rosters of the two entries leads to significant positive

returns for bettors.

Real-world settings of the problem, such as daily fantasy sports, allow for scenarios where three

or more sets can be selected. The resulting problems are even challenging from a mathematical

perspective, and investigating them is an exciting possibility for an extension in future work. Also,

studying discrete optimization in settings where each individual random variable follows alternative

distributions than the normal is of interest for future work.
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