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1. Introduction

The stochastic discount factor (SDF) has been the center of asset pricing for decades. Knowledge of

the SDF enables investors to price any assets in financial markets. Thus, understanding the distribution of

the SDF is the key for understanding risk and return in asset pricing. In their seminal work, Hansen and

Jagannathan (1991) focus on the second moment of the distribution of the SDF and derive a lower bound

on the variance of the SDF. The bound was designed to discriminate among asset pricing models and has an

intuitive interpretation in terms of the Sharpe ratio of risky assets. Schneider and Trojani (2017a) exploit

the Hansen and Jagannathan (1991) approach to recover the (almost) model-free conditional minimum

variance projection of the pricing kernel on various tradeable realized moments of market returns and show

that the recovered conditional moments of the market return predict future market returns. Almeida and

Garcia (2017) use discrepancy functions to derive unconditional restrictions on the moments of SDFs. This

paper makes both theoretical and empirical contributions to asset pricing.

First, in theory, I argue that the conditional distribution of the SDF is of great help in understanding

risk and return in financial markets. The conditional distribution of the SDF can be summarized by the

first four conditional moments of the SDF: mean, variance, skewness, and kurtosis. While the mean of the

SDF is observable (via the risk-free rate), the variance, skewness, and kurtosis of the SDF are not directly

observable. We should expect that conditional SDF moments, somehow, pick information about risk factors

embedded in the SDF. Thus, to improve our understanding of the relation between SDF moment risks and

return in lights of a modern SDF approach, one may ask few questions. First, what is the function that

maps SDF moments into risk factors? Alternatively, what is the function that maps risk factors into SDF

moments? Second, should this function always exist? Third, why should moments of the SDF be priced in

the cross-section of equity data? Throughout the paper, I maintain an arbitrage-free economy assumption

and provide a theoretical motivation that is aimed to answer those questions. I show that stocks with high

sensitivity to the SDF variance (kurtosis) exhibit, on average, high return, while stocks with high sensitivity

to the SDF skewness have on average low return.

I theoretically derive closed-form expressions of the conditional physical moments of the SDF in a

model-free environment, provided that the relative risk aversion under Constant Relative Risk Aversion

(CRRA) preferences is known. The model-free environment refers to not making time-series assumptions
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about economic fundamentals, returns, or the SDF’s distribution. I further derive conditional moments of

the SDF when preferences depart from CRRA preferences. The first advantage of the conditional moment

expressions is that the moments can be estimated in real-time without relying on a time-series of past

return observations. The conditional moments of the SDF can be obtained at any time provided that there

is a cross-section of option prices. The second advantage is that it provides a framework to investigate the

implications of the real-time distribution of the SDF for the market return and equities. The third advantage

is that the framework can be used to understand real-time distribution of the SDF across different maturities.

I also derive the real-time risk-neutral distribution of the SDF by providing closed-form expressions of the

risk-neutral variance, skewness, and kurtosis of the SDF in a model-free environment. This is important

since the wedge between the real-time physical distribution of the SDF and the risk-neutral distribution

of the SDF can be interpreted as a risk premium. The approach in this paper allows for computing SDF-

based moments risk premium. I further use the real-time distribution of the SDF to derive closed-form

expressions of conditional expected excess returns and conditional Sharpe ratios of hedging strategies that

generate returns that are positively correlated with the SDF.

Second, I use option prices to quantify at each date the real-time conditional physical distribution of

the SDF across different maturities. The conditional moments of the SDF are forward-looking. They are

computed every day using one day of option price data. The maturities of interest range from 30 days to

365 days. For a reasonable relative risk aversion parameter of 2, I find that the conditional physical variance

of the SDF is time-varying, is highly volatile during crisis periods, is skewed, and exhibits fat tails at each

maturity. The mean of the 365-day conditional variance of the SDF is 0.45, with a standard deviation of

0.28. This translates into an unconditional SDF variance of 0.53 and approximate volatility (square root of

the variance) of 72.69%.

Further, the conditional skewness of the SDF under the physical measure is time-varying, is often

positive, and exhibits fat tails, regardless of the option maturity used. While investment assets are often

negatively skewed, one should expect insurance assets, such as the SDF, to be positively skewed. Also,

the conditional kurtosis of the SDF under the physical measure is time-varying and is more pronounced in

crisis periods than in normal times. I also find that the variance of the SDF, under the risk-neutral measure,

is time-varying and exhibits peaks during crisis periods. The mean of the 365-day risk-neutral variance of

the SDF is 0.57, with a standard deviation of 0.43. This translates into an unconditional variance of the
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SDF of 0.75 and an approximate unconditional volatility of 86.88%. Thus, the volatility of the SDF under

the risk-neutral measure is often higher than the physical volatility of the SDF. While the skewness of the

SDF under the physical measure is often positive, the skewness of the SDF under the risk-neutral measure

is often negative. I explore why the SDF risk-neutral skewness is often negative by decomposing the SDF

risk-neutral skewness as a function of the SDF physical moments. I find that the negative sign of the SDF

risk neutral-skewness can be explained by the physical volatility of the SDF. I further find that the kurtosis

of the SDF under the physical measure is often higher than the kurtosis of the SDF under the risk-neutral

measure.

Next, I investigate whether the real-time distribution of the SDF predicts the excess market return in-

sample and out-of-sample. I find that the variance, skewness, and kurtosis of the SDF predict the excess

market return when options with maturity equal to or higher than 122 days are used to compute the condi-

tional moments. The results are robust after controlling for risk-neutral moments of simple market returns.

The wedge between the physical distribution of the SDF and the risk-neutral distribution of the SDF also

significantly predicts the market excess return when options with maturity equal to or more than 122 days

are used to characterize the distribution of the SDF. The adjusted in-sample R-square and out-of-sample

R-square are very similar and range from 3% to a maximum of 14% when the maturity of option used

varies from 122 days to 365 days. Results are robust after controlling for both the market variance risk

premium and the Left Risk-Neutral Jump Variation measures. I further investigate the pricing implications

of SDF variance, skewness, and kurtosis for the cross-section of stock returns, by using estimates of the

moments of the SDF extracted from index options. I use the two-pass and three-pass methodologies to

infer the price of risk of the SDF moments. I focus on portfolios formed on stock characteristics. These

portfolios are available on Kenneth French’s website.

I first use the two-pass regression methodology to infer the price of risks, and I report the Fama and

MacBeth (1973) t-ratio under correctly specified models, the Shanken (1992) t-ratio, the Jagannathan and

Wang (1998) t-ratio under correctly specified models that account for the EIV problem, and the Kan,

Robotti, and Shanken (2013) misspecification robust t-ratios. Results indicate that the prices of the SDF

variance, skewness, and kurtosis are significant after controlling for the Fama and French (2016) factors,

high order moments of the market returns, variance risk premium, and Left Risk-Neutral Jump Variation

measures. When I use 100 portfolios formed on size and book-to-market, the price of the SDF variance
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and SDF kurtosis is positive, while the price of the SDF skewness is negative. This is consistent with the

theoretical predictions. This shows that book-to-market portfolios that have high exposure to the SDF kur-

tosis and variance exhibit high return on average, while book-to-market portfolios that have high exposure

to the SDF skewness have a low return on average. However, when I use 100 portfolios formed on size and

operating profitability, the price of the variance of the SDF is positive at short maturities (from 30 days to

90 days) and negative for higher maturities (from 122 days to 365 days). The price of the SDF skewness

is positive, regardless of the option maturity used. The sign of the price of SDF skewness (kurtosis) is not

consistent with the theoretical predictions. I further use the two-pass regression methodology to investigate

the implications of the SDF-based moment risk premium, defined as the difference between the SDF under

the physical and risk-neutral measures, for the cross-section of equities. I find that the price of SDF-based

moment risk premium is significant, regardless of the option maturity used to compute the conditional

moments.

To further explore the pricing of the SDF-based moments and SDF-based moment risk premium in

the cross section of returns, I use the recent three-pass regression methodology proposed by Giglio and

Xiu (2017) to infer the price of risk by combining many portfolios based on various characteristics. The

advantage of the three-pass approach is that it permits inferring the price of risk when the number of assets

is large. Giglio and Xiu (2017) argue that standard methods to estimate risk premia are biased in the

presence of omitted priced factors correlated with the observed factors. Their methodology accounts for

potential measurement error in the observed factors and detects when observed factors are spurious or even

useless. I find that the prices of the SDF variance, skewness, and kurtosis are all statistically significant

and positive after controlling for the Fama and French (2016) factors. Stocks with high exposure to the

conditional moments of the SDF exhibit high return on average. With the three-pass regression, the price

of the SDF variance (kurtosis) is consistent with the theoretical prediction, while the price of the SDF

skewness is not. I also use the three-pass regression to investigate the implications of the SDF-based

moment risk premium for the cross-section of returns. The price of risks of the SDF variance premium

is negative and highly significant at all maturities. The price of risks of the SDF skewness premium and

SDF kurtosis premium factors is positive, and significant at all maturities. These findings are robust to

controlling for the Fama and French (2016) factors.

Overall, the sign of the price of the SDF variance (kurtosis) is consistent with the theoretical predictions
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while the sign of the price of the SDF skewness is not.

The remainder of the paper is organized as follows. Section 2 theoretically motivates the use of SDF

moments in asset pricing, Section 3 presents the methodological framework to derive SDF moments in a

model-free economy. Section 4 estimates the conditional moments of the SDF. Section 5 shows that the

real-time distribution of the SDF predicts the excess market return. Section 6 uses the two-pass methodol-

ogy to infer the price of SDF moments. Section 7 uses the three-pass regression methodology to estimate

the price of risks of SDF moments. Section 8 concludes the paper.

2. Theoretical Motivation for Using SDF Moments in Asset Pricing

A growing number of articles have used the market return variance, skewness, and kurtosis to predict

and explain the cross-section of returns (Bali and Murray (2013), Bali, Cakici, and Whitelaw (2011),

Chang, Christoffersen, and Jacobs (2013), and Amaya, Christoffersen, Jacobs, and Vasquez (2015)). Kelly

and Jiang (2014) show that tail risk has strong predictive power for aggregate market returns and also

explain the cross-section of returns. Bollerslev and Todorov (2011) and Bollerslev, Todorov, and Xu (2015)

show how information extracted from options can be used to forecast future market return. An, Bali, Ang,

and Cakici (2014) show that option-based factors are priced in the cross-section of stocks.

I take an alternative route and argue that because the SDF is important in pricing assets, its distribution

contains a rich set of information that could advance our quest of better understanding risk and returns.

Thus, we should expect that conditional SDF moments will have to pick, somehow, information about risk

factors embedded in the SDF. In light of this, one may ask key questions. First, what is the function that

maps SDF moments into risk factors? Alternatively, what is the function that maps risk factors into SDF

moments? Second, should this function always exist? Third, why should moments of the SDF be priced

in the cross-section of equity data? I attempt to provide answers to those questions, and also improve our

understanding of the relation between SDF moment risks and return in lights of a modern SDF approach.

Throughout the paper, I maintain an arbitrage-free economy assumption.

Assumption 1 Assume an arbitrage-free economy that guaranties the existence of a SDF and the existence

of the risk-neutral measure.
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Definition 1 The model-free environment is defined as an environment where no time-series assumptions

are made about economic fundamentals, returns, or the SDF’s distribution.

In a one-period model, I consider a representative agent who maximizes expected utility subject to his

or her budget constraint. In this section, I omit the time subscript to allow for simplicity. The SDF (up

to a constant) has the form m = u
′
[RM], where u [.] represents the utility function and u

′
[x] > 0. A SDF

uniquely function of the market return can be interpreted as the projection of the true SDF on the market

return. I also assume that the second-, third-, and fourth-order derivatives of the utility exist with u
′′
[x]< 0,

u
′′′
[x]> 0, and u

′′′′
[x]< 0 (see Dittmar (2002) and Harvey and Siddique (2000)). Further, I denote by M (2),

M (3), M (4), the second, third, and fourth physical moments of the SDF. Physical moments of the SDF are

defined as

M (n) = E((m−E(m))n) , (1)

where E(.) is the expectation operator under the physical measure. Similarly, I denote by M ∗(2), M ∗(3),

M ∗(4), the second, third, and fourth risk-neutral moments of the SDF,

M ∗(n) = E∗ ((m−E∗ (m))n) , (2)

where E∗ (.) is the expectation operator under the risk neutral measure. The goal of this theoretical mo-

tivation is not to derived the exact closed-form solution of expected return on the market or individual

stocks. The goal is to show via an approximation how moments of the SDF can be used as priced factors

that explain expected excess return on assets. In this section, I use Taylor expansion-series to theoreti-

cally motivate the relation between the SDF moments and expected returns. While the approach of Taylor

expansion-series is used to show the link between expected excess returns and SDF-based moments, it is

important to notice that the closed-form solutions of SDF moments derived in the next section are well-

defined and do not rely on Taylor expansion-series. They are computed using various specifications of

investor preferences.

Result 1 Denote by υ = u
′−1 the inverse of u

′
. The third-order Taylor expansion series of the inverse of
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the marginal utility, υ [.], allows approximating the expected excess market return as

E(RM−R f ) = A1M (2)+A2M (3)+A3M (4), (3)

with

Ak =−R f
1
k!

{
∂kυ [y]

∂ky

}
y=E(m)

, (4)

where the terms ∂kυ[y]
∂ky for k = 1,2,3, are given by expressions below

∂υ [y]
∂y

=
1

u′′ [υ [y]]
,

∂2υ [y]
∂2y

=− u
′′′
[υ [y]]

(u′′ [υ [y]])3 , and
∂3υ [y]

∂3y
=

3
(

u
′′′
[υ [y]]

)2
−u

′′′′
[υ [y]]u

′′
[υ [y]]

(u′′ [υ [y]])5 , (5)

where ∂υ[y]
∂y < 0, and ∂2υ[y]

∂2y > 0. Additionally, ∂3υ[y]
∂3y < 0 if the absolute prudence −u

′′′
[x]

u′′ [x]
is a decreasing

function of x.

Proof. See the Appendix.

Result 1 does not depend on a particular form of the utility function and it clearly shows that the ex-

pected excess market return is related to the moments of the SDF. The expected excess market return is

a “weigthed” average of the SDF moments, where the weights are defined by the parameters Aks. The

parameters Aks can be interpreted as the price of the SDF-based moments risk factors. To illustrate impli-

cations of Result 1 in a context of specific forms of investor utilities, I consider three well-known utility

specifications.

Example 1 Assume that investors have a linear marginal utility that corresponds to a linear SDF in terms

of the market return. u
′
[x] = a−bx where u

′′
[x] =−b. Here, the coefficient b is positive. It can be shown

that ∂ku[x]
∂kx = 0 for k > 2. As a result, υ [y] = a

b −
1
b y and Ak = 0 for k > 1. In this case, the expected excess

market return is only related to the second moment of the SDF, where the second moment of the SDF (up

to a constant term) is equal to the market variance. ♣

Example 2 Assume that investors have a quadratic marginal utility that corresponds to the quadratic model

of Harvey and Siddique (2000) with u
′
[x] = a− bx+ cx2. In this model, it is assumed that u

′′
[x] < 0 and

u
′′′
[x] > 0. Thus, ∂ku[x]

∂kx = 0 for k > 3. The expected excess market return is of the form (3), where the
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coefficients Aks are defined by (4), and υ [.] is the inverse of the marginal utility u
′
[x] = c+bx+ax2, with

a > 0 and b+2ax < 0. With the quadratic utility function, it follows from (5) that ∂υ[y]
∂y < 0, ∂2υ[y]

∂2y > 0, and
∂3υ[y]

∂3y < 0. Thus, in this model, A1 > 0, A2 < 0, and A3 > 0. ♣

Example 3 Assume that investors have a CRRA utility. The marginal utility is u
′
[x] = x−α where α is

the relative risk aversion parameter. It follows from (5) that ∂υ[y]
∂y < 0, ∂2υ[y]

∂2y > 0, and ∂3υ[y]
∂3y < 0. Thus,

the expected excess market return has the form (3), where the coefficients A1 > 0, A2 < 0, and A3 > 0. In

Examples 2 and 3, the expected excess return on the market is a function of the SDF second, third and

fourth moments. The key difference between the expected return specification in both examples is that

moments of the SDFs and the coefficients Ak are specific to the marginal utility used. ♣

To further motivate why SDF moments are key determinants of the expected excess return on individual

assets, I first show the following result.

Result 2 Denote by υ = u
′−1 the inverse of u

′
. Assume that the first-, second- and third-order derivatives

of υ [.] exist, and consider the following returns:

R(i)
M =

Ri
M

Et
(
mRi

M

) for i = 2,3, and 4, (6)

where RM is the market gross return. The third-order Taylor-expansion series of the inverse of the marginal

utility, υ [.], allows approximating the expected excess return of (6) as

E
(
Ri

M
)
−E∗

(
Ri

M
)
=−R f

(
φ
(i)
1 M (2)+φ

(i)
2 M (3)+φ

(i)
3 M (4)

)
for i = 2,3,4.

The preference-based coefficients φ
(i)
1 , φ

(i)
2 , and φ

(i)
3 for i = 2, 3, and 3 are defined below

φ
(i)
1 =

∂

(
(υ [y])i

)
∂y


y=E(m)

, φ
(i)
2 =

∂2
(
(υ [y])i

)
∂2y


y=E(m)

, φ
(i)
3 =

∂3
(
(υ [y])i

)
∂3y


y=E(m)

. (7)

Proof. See the Appendix.

Result 2 shows that the risk premium on the square and cubic market return is also a “weighted”

average of SDF moments where the weights are also defined by investor preferences. φ
(i)
1 is negative since
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∂υ[y]
∂y < 0. The parameter φ

(i)
2 is positive since ∂2υ[y]

∂2y > 0. The parameter φ
(i)
3 is negative if ∂3υ[y]

∂3y < 0. Since

φ
(i)
1 is negative, the second moment of the SDF is positively related to the risk premium E

(
R2

M
)
−E∗

(
R2

M
)
,

E
(
R3

M

)
−E∗

(
R3

M

)
, and E

(
R4

M
)
−E∗

(
R4

M
)
. Christoffersen, Fournier, Jacobs, and Karoui (2017) provide,

in the cross-section of return, empirical evidence that the price of coskewness risk, E
(
R2

M
)
−E∗

(
R2

M
)
,

is significant and negative, while the price cokurtosis risk, E
(
R3

M

)
−E∗

(
R3

M

)
, is significant and positive.

This confirms that the second moment of the SDF is positively priced in the cross-section of returns.

Also, since φ
(i)
2 is positive, the third moment of the SDF M (3) is negatively related to the risk premium

E
(
R2

M
)
−E∗

(
R2

M
)
, E
(
R3

M

)
−E∗

(
R3

M

)
, and E

(
R4

M
)
−E∗

(
R4

M
)
. This supports a negative price of risk of the

third moment of the SDF. The fourth moment of the SDF is positively priced in the cross-section of return

if φ
( j)
3 is negative. Note that in Harvey and Siddique (2000) and Dittmar (2002), asset-pricing models, the

square market return and the cubic market return have been used as priced factors to explain the cross-

section of returns. Hence, Result 2 suggests that SDF moments can be used as key determinant of the

expected excess return. Result 3 further shows that there is a function that maps SDF moments into priced

factors.

Result 3 Denote by υ = u
′−1 the inverse of u

′
. Assume that the first-, second- and third-order derivatives

of υ [.] exist, and denote by rM = RM−E(RM). Up to a third-order Taylor expansion series, the moments

of the SDF can be approximated as

M (i) =−ψ
(i)
1 E(m)((E(RM)−R f ))+

1
2

ψ
(i)
2 E(m)

(
E∗
(
r2

M
)
−E

(
r2

M
))

+
1
3!

ψ
(i)
3 E(m)

(
E∗
(
r3

M
)
−E

(
r3

M
))

,

where

ψ
(i)
1 =

{
∂ψ(i) [x]

∂x

}
x=E(m)

, ψ
(i)
2 =

{
∂2ψ(i) [x]

∂2x

}
x=E(m)

, ψ
(i)
3 =

{
∂3ψ(i) [x]

∂3x

}
x=E(m)

and ψ(i) [x] =
(

u
′
(x)−E(m)

)i−1
.

Proof. See the Appendix.

Result 3 shows that the moments of the SDF contain information about various risk premia. The SDF

moments are the weighted averages of different risk premia, where the weights are functions of preference

parameters. The advantage on focusing on the SDF moments is that they summarize all risk premia into a
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single number. The relative importance of each risk premia is determined by the preference-based weights

ψ
(i)
k for k = 1,2,3. While Result 3 applies to any utility function, it is obtained by using a third-order Taylor

expansion series. In the case of a CRRA utility, all high-order derivatives of ψ(i) [x] exist. This allows going

beyond the third-order Taylor expansion series. Result 4 shows the function that maps SDF moments into

various risk premium when investors have a CRRA utility.

Result 4 When investors have a CRRA utility, the SDF moments can be decomposed as

M (i) =
∞

∑
k=1

1
k!

ψ
(i)
k (E(m))

(
E∗
(

rk
M

)
−E

(
rk

M

))
,

where rM = RM−E(RM) and

ψ
(i)
k =

{
∂kψ(i) [x]

∂kx

}
x=E(m)

,

with

ψ
(i) [x] =

(
x−α−E(m)

)i−1
.

Proof. See the Appendix.

Result 4 shows that the moment of the SDF is a preference-based weighted average of all risk premia.

SDF moments summarize into a single number the information contained in all risk premia. Moving

to individual stocks, Result 5 shows how the expected excess return on any individual securities is also

determined by the moments of the SDF.

Result 5 Denote by υ = u
′−1 the inverse of u

′
. Assume that the first-, second- and third-order derivatives

of υ [.] exist, then, up to the third-order Taylor expansion series of υ [.], the expected excess return on

individual securities can be approximated as

E(Ri−R f ) = β
(2)
i M (2)+β

(3)
i M (3)+β

(4)
i M (4),

where the beta coefficients β
(2)
i , β

(3)
i , and β

(3)
i represent the sensitivity of the return on the risky assets to

the SDF moments.

Proof. See the Appendix.
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Since the expected excess return can also be written as

E(Ri−R f ) =−
1

E(m)
cov(Ri,m) ,

one could write

E(Ri−R f ) =−
1

E(m)

cov(Ri,m)

M (2) M (2).

One could ask whether moments higher than the variance are related to the expected excess return. The

covariance term discounted by the variance of the SDF, cov(Ri,m)

M (2) , is not independent of the variance of the

SDF. Thus, it is difficult to discuss how any increase in the variance of the SDF affects the expected excess

return. The same concern arises if I write the expected excess return as follows

E(Ri−R f ) =−
1

E(m)

cov(Ri,m)

M (3) M (3) =− 1
E(m)

cov(Ri,m)

M (4) M (4). (8)

Expression (8) cannot be used to assess whether an increase (decrease) in the third and fourth moments

of the SDF affects the expected excess return: Both risk quantities, cov(Ri,m)

M (3) and cov(Ri,m)

M (4) , depend on the

third and fourth moments of the SDF respectively. Further, by choosing a factor f that has no link with

the expected excess return, I could write E(Ri−R f ) =− 1
E(m)

cov(Ri,m)
f f . This could be misleading because

it allows to link the expected excess to a factor that might not be related to expected excess return. My

approach has the advantage, in an arbitrage-free economy that guaranties the existence of a SDF and the

existence of the risk-neutral measure, to link the moments of the SDFs to the expected excess return, and

it shows whether SDF moments positively or negatively affect the expected excess return via preference

parameters.

My paper is among a set of few papers that have shown how to recover, from option prices, time-

varying physical moments. Schneider and Trojani (2015, 2016) use the Bregman divergence theory to

trade higher-moment risks based on S&P 500 options and futures. Schneider and Trojani (2015) relate

skewness risk to fear indexes similar to the one proposed by Bollerslev and Todorov (2011). Schneider and

Trojani (2017b) propose a family of divergence swaps and obtain prices of risk for the variance, skewness

and, the kurtosis of S&P 500 returns in an arbitrage-free economy. Martin and Wagner (2016) derive a

formula for the expected return on individual stock as functions of the risk-neutral variance of the market
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and the stock’s excess risk-neutral variance relative to the average stock. Gormsen and Jensen (2018)

use the methodology in Martin (2017) to show how the market’s higher order moments can be estimated

ex ante. Kadan and Tang (2018) derives a bound on the expected individual stock returns. The closest

paper to mine is Schneider and Trojani (2017a). They recover, under mild assumptions, the model-free

conditional minimum variance projection of the pricing kernel on various trade-able realized moments

of market returns. Similar to higher-order tradeable risks presented in Schneider and Trojani (2015, 2016,

2017), Results (1)-(4) show that there is a function that maps SDF moments into high-order tradeable risks.

In section 3.1, I provide a methodology to recover all physical and risk-neutral moments of the SDF

when the marginal utility is known. Section 3.2 also extends the methodology to compute conditional

moments when preferences depart from CRRA preferences. In Sections 5 and 7, I assess how the infor-

mation content of the SDF moments can be used to forecast the excess market return, and, also explain the

cross-section of returns.

3. A Theory for Computing SDF Moments

I assume that the distribution of the SDF is characterized by the mean, variance, skewness, and kurto-

sis.1 The mean of the SDF is the inverse of the return on the risk-free asset, which is observable from the

return on Treasury bills. While the mean of the SDF is observable, the variance, skewness, and kurtosis

of the SDF are not observable. The information contained in the distribution of the SDF is embedded in

the variance, skewness, and kurtosis of the SDF. I define mt→T as the SDF from time t to T , and physical

conditional moments of the SDF as

M (n)
t [T ] = Et ((mt→T −Et (mt→T ))

n) , (9)

where n > 1. Et (.) stands for the conditional expectation operator under the physical measure. M (2)
t [T ],

M (3)
t [T ], and M (4)

t [T ] represent the second, third, and fourth moment of the SDF. I refer to the moments

as the variance, skewness, and kurtosis of the SDF.

1I focus on the second, third, and fourth moment of the SDF. However, the methodology presented here applies to any moment
of the SDF.
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Result 6 Under Assumption 1, the conditional physical moments of the SDF can be computed in a model-

free environment by using the relationship

M (n+1)
t [T ] =

1
R f ,t→T

(
N ∗(n)

t [T ]−M (n)
t [T ]

)
, (10)

with

N ∗(n)
t [T ] = E∗t ((mt→T −Et (mt→T ))

n) , (11)

where the asterisks denote quantities calculated with risk-neutral probabilities. R f ,t→T is the return on the

risk-free asset from time t to T .

Proof. See Appendix A.

Result 6 shows that, when the SDF is a nonlinear function of the return of the market portfolio, the

conditional physical moments of the SDF can be computed from option prices. The recursive expression

(10) shows that the n+1 th conditional moment of the SDF is the discounted value of the difference between

physical and a risk-neutral conditional moments of the SDF. The conditional physical moments of the SDF

can be computed, at any time t, using option prices without making any assumption about the distribution

of the return on the market portfolio. It has the advantage that it relates the SDF conditional moments

to the risk-neutral distribution. The conditional physical moments of the SDF can be measured in real-

time without making any time-series assumption about the underlying market process or relying on past

observations. I look further at the risk-neutral distribution of the SDF by providing closed-form expressions

of the risk-neutral moments of the SDF. To do so, I define the risk-neutral moments as

M ∗
t
(n) [T ] = E∗t ((mt→T −E∗t (mt→T ))

n) . (12)

This allows gauging whether the physical distribution of the SDF and the risk-neutral distribution of SDF

contain a different set of information that can be used to understand asset prices. The wedge between

the two distributions can be characterized by the difference between risk-neutral moments of the SDF and

physical moments of the SDF. This difference is interpreted in this paper as the SDF-based moment risk
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premium. More precisely, I define the SDF-based moment risk premium as

M R P (n)
[T ] = M (n)

t [T ]−M ∗
t
(n)[T ]. (13)

In an unlikely case in which the SDF is linear in terms of the market return, this difference is proportional

(up to a constant) to the market variance risk premium, market skewness risk premium, and market kurtosis

risk premium when n = 2, 3, or 4, respectively. Further, one can note that the difference between the non-

central physical and risk-neutral moments of the SDF is an important determinant of the expected excess

return of the SDF-based moment returns defined as

R (n)
t→T =

mn−1
t→T

Et
(
mt→T ×mn−1

t→T

) for n > 0, (14)

where R (1)
t→T corresponds to the return on the risk-free asset, R (2)

t→T corresponds to the return on the SDF

security (defined in Hansen and Jagannathan (1991, page 234)). The returns defined in equation (14) are

positively correlated with the SDF. The positive correlation of the return suggests that the non-central

risk-neutral moments of SDFs, E∗t
[
mn−1

t→T

]
, are always higher than their corresponding physical ones,

Et
[
mn−1

t→T

]
.2 Thus, the returns defined in (14) correspond to returns of hedging strategies. These returns pay

more in bad times (e.g, crisis periods). As a result of their positive correlation with the SDF, the expected

values of returns defined in (14) are lower than the return on the risk-free asset. Hence, the corresponding

expected excess returns are negative.

Result 7 The expected excess returns on SDF moments defined in (14) are

Et

(
R (n)

t→T −R f ,t→T

)
= R f ,t→T

Et
(
mn−1

t→T

)
−E∗t

(
mn−1

t→T

)
E∗t
(
mn−1

t→T

) for n > 1, (15)

where

Et
(
mn−1

t→T

)
=

1
R f ,t→T

E∗t
(
mn−2

t→T

)
. (16)

2This is verified empirically in Figure 5, where the conditional expected excess return defined in expression (15) is always
negative.
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The conditional Sharpe ratios are

SRt [T ] =
Et

(
R (n)

t→T −R f ,t→T

)
√
VARt

(
R (n)

t→T −R f ,t→T

) for n > 1 (17)

where

VARt

(
R (n)

t→T −R f ,t→T

)
=

R f ,t→TE∗t
(
m2n−3

t→T

)
−
(
E∗t
(
mn−2

t→T

))2(
E∗t
(
mn−1

t→T

))2 . (18)

Proof. See Appendix A.

In Sections 3.1 and 3.2, I derive closed-form expressions of the SDF conditional moments, conditional

expected excess return on SDF moments, and conditional Sharpe ratios. I first start by employing the

CRRA preference. To mitigate concerns about the choice of the utility function, I thereafter follow a more

general approach in Section 3.2 and extend my analysis to the case in which the representative investor has

a general utility function that departs from the CRRA utility. The methodological approach proposed here

can be applied to any utility function. The closed-form solutions of SDF moments are computed using

various specifications of investor preferences, hence they do not rely on Taylor expansion-series.

3.1. Moments Under CRRA Preferences

I consider a representative agent with a CRRA utility and a risk aversion parameter α

u [x] =
x1−α−1

1−α
(19)

and show that, with the knowledge of the relative risk aversion, I can recover the real-time distribution

of the SDF. In this section, the representative agent maximizes her expected utility subject to her budget

constraint,

max
Wt→T=Wt(R f ,t→T+ω⊥t (Rt→T−R f ,t→T))

Et (u [WT ]) ,

15



where Wt is the initial wealth and Wt→T represents the representative agent terminal wealth. Rt→T is the

return vector on risky assets. With a CRRA utility, u
′
[x] = x−α, the SDF has the form

mt→T =
1

R f ,t→T

(Wt→T/Wt)
−α

Et
(
(Wt→T/Wt)

−α
) .

In the rest of the paper, I make a common assumption that the return on aggregate wealth Wt→T/Wt is the

return on the market portfolio that is, RM,t→T = Wt→T/Wt . I do not impose any restriction on the initial

wealth Wt , in particular, Wt needs not to be equal to 1. I denote

µt =
1

R f ,t→TEt
[
(Wt→T/Wt)

−α
]

and express the SDF as

mt→T = µt (RMt→T )
−α . (20)

Next, I show how to obtain a closed-form expression of the constant parameter µt . From the identity (20),

the constant parameter µt can alternatively be expressed as µt = mtRα
Mt→T . I then apply the conditional

expectation operator to µt under the physical measure,

µt = Et (mt→T Rα
Mt→T ) = (Et (mt→T ))Et

(
mt→T

Et (mt→T )
Rα

Mt→T

)
, (21)

and show that, provided that Et (mt→T ) =
1

R f ,t→T
, the constant simplifies to

µt =
δt

R f ,t→T
with δt = E∗t (Rα

Mt→T ) , (22)

where R f ,t→T is the return for holding a government bond from time t to T . I consider the case in which the

market return is the return on the S&P 500 index. Thus, I define the market return as RMt→T = ST
St

, where

St is the price of the S&P 500 index. Result 8 provides a closed-form expression of N ∗(n)
t [T ] which allows

to compute the physical conditional moments of the SDF (see equation (10)).

Result 8 The n th conditional physical moment of the SDF is given by (10), with

N ∗(n)
t [T ] =

(δt −1)n

Rn
f ,t→T

+
nα(δt −1)n−1

δt (1−R f ,t→T )

Rn
f ,t→T

+
1

Rn−1
f ,t→T

(∫
∞

St

hSS [K]Ct [K]dK +
∫ St

0
hSS [K]Pt [K]dK

)
,
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where

hSS [K] = n(n−1)δ
2
t α

2 1
S2

t

(
δt

(
K
St

)−α

−1

)n−2(
K
St

)−2(1+α)

+nδtα(α+1)
1
S2

t

(
δt

(
K
St

)−α

−1

)n−1(
K
St

)−(α+2)

and

δt = 1+α(R f ,t→T −1)+α(α−1)R f ,t→T
1
S2

t

(∫
∞

St

(
K
St

)α−2

Ct [K]dK +
∫ St

0

(
K
St

)α−2

Pt [K]dK

)
.

Proof. See Appendix A.

Result 8 shows that, at any time t, the conditional physical moments of the SDF (see equation (10)) can

be computed using option prices without making any time-series assumption about the distribution of the

return on the market portfolio. It has the advantage of relating the SDF conditional moments to a directly

observable quantity, but the disadvantage is that it requires the knowledge of the risk aversion. Provided

that the risk aversion parameter is known, conditional physical moments of the SDF can be measured in

real time without relying on past observations. I further derive the conditional risk-neutral moments of the

SDF.

Result 9 The n th conditional risk-neutral moment of the SDF is

M ∗(n)
t [T ] =

δn
t

Rn
f ,t→T

E∗t ( f [ST ]) , (23)

where

E∗t ( f [ST ]) = (1−ζt)
n−nα(1−ζt)

n−1 (R f ,t→T −1)+R f ,t→T

(∫
∞

St

fSS [K]Ct [K]dK +
∫ St

0
fSS [K]Pt [K]dK

)
,

with

fSS [K] =
nα

S2
t
(α+1)

(
K
St

)−α−2
((

K
St

)−α

−ζt

)n−1

+
n(n−1)(α2)

S2
t

(
K
St

)−2α−2
((

K
St

)−α

−ζt

)n−2
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and

ζt = 1−α(R f ,t→T −1)+R f ,t→T
α(1+α)

S2
t

(∫
∞

St

(
K
St

)−α−2

Ct [K]dK +
∫ St

0

(
K
St

)−α−2

Pt [K]dK

)
(24)

Proof. See Appendix A.

Focusing on the time-varying conditional moments allows us to learn about the time-varying distribu-

tion of the SDF. In an unconditional setting, Hansen and Jagannathan (1991) provide a simple methodology

to derive a lower bound on the variance of the SDF. This bound has become a key reference in evaluating

asset-pricing models. Their approach requires an estimation of the minimum unconditional variance on

the SDF, and it relies on the sample moments from historical returns. However, the computation of sample

moments requires a choice of time window, making it difficult to estimate with accuracy the minimum

variance of the SDF. Bekaert and Liu (2004) propose a way to estimate the Hansen and Jagannathan min-

imum variance on the SDF that takes into account conditioning information. Snow (1991) also derives

restrictions on unconditional non-central moments of the SDF by relying on historical returns.

In asset pricing models, to obtain more reliable estimates of time-varying conditional moments of the

SDF, a time-series model can be used. However, using a time-series model raises the question of whether

the empirical results based on time-series assumptions on asset returns or economic fundamentals are robust

to the choice of time-series assumptions. Nagel and Singleton (2011) use the GMM approach to show that

many recently proposed consumption-based models of stock returns, when evaluated using an optimal set

of managed portfolios and the associated model-implied conditional moment restrictions do not capture key

features of risk premiums in equity markets. In my study, I instead estimate the time-series moments of the

SDF from daily option prices. I use the formula in Results 6–9 to compute the SDF conditional moments.

These conditional moments can be used to gauge asset pricing models, provided that the risk aversion is

known. The moments can be computed using a single day of option data, and, hence, are forward-looking

and can be computed in real time.

Next, Result 10 provides closed-form expressions of the non-central risk-neutral moments of the SDF.

The non-central moments of the SDF are necessary to compute the conditional expected excess returns and

conditional Sharpe ratios of the SDF-based moment returns defined in Result 7.
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Result 10 The conditional expected excess return on SDF moments, (15), and the corresponding condi-

tional Sharpe ratios (17) can be computed by using the following identity:

E∗t
(
mn−2

t→T

)
= 1+α(2−n)(R f ,t→T −1) (25)

+
α(2−n)(α(2−n)−1)R f ,t→T

S2
t

 ∫
∞

St

(
K
St

)α(2−n)−2
Ct [K]dK

+
∫ St

0

(
K
St

)α(2−n)−2
Pt [K]dK

 .

Proof. See Appendix A.

3.2. Conditional Moments When Preferences Depart from CRRA Preferences

3.2.1. Departure from CRRA Preferences in Expected Utility Framework

I assume that the representative agent has a utility function ϑ [.] that departs from the reference utility

u[.]. The functions u[.] and ϑ [.] are continuous and concave, and have high-order derivatives that exist (see

Eeckhoudt and Schlesinger (2006) and Deck and Schlesinger (2014) for a theoretical justification of high-

order derivatives). I use the CRRA utility as a reference utility. In the expected utility framework, results

in Result 11 hold for any reference utility u[.]. There exists a function υ = ϑ◦u−1 such that ϑ = υ◦u. With

this formulation, ϑ [.] departs from a reference utility function u[.] because υ[.] is different from the identity

function (since ϑ [.] departs from the reference utility u[.]). To derive moments of the SDF, in this setting,

I show in Appendix B that the Taylor expansion-series of υ [u [x]] around u [x] = u [St ] leads to a new SDF

as shown in Result 11.

Result 11 In an expected utility framework, assume that the representative agent has a utility function ϑ [.]

that departs from the utility u [.]. Using the Taylor expansion series of ϑ [.] around u [x] = u [St ], the SDF

has the form

mSDF
t→T = mP

t→T ×mT
t→T , (26)

where mP
t→T and mT

t→T are uncorrelated with

mP
t→T =

zMt→T

Et (zMt→T )
and mT

t→T =
1

R f ,t→T
u
′
[ST ]E∗t

(
1

u′ [ST ]

)
,
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with

zMt→T = 1+
∞

∑
k=2

(−1)k+1 ρ(k)

(k−1)!

(
u [ST ]

u [St ]
−1
)k−1

and Et [zMt→T ] =
E∗t
(

1
u′ [ST ]

)
E∗t
(

1
u′ [ST ]

z−1
Mt→T

)
and

ρ
(k) =

(
(−1)k+1 yk−1 ∂kυ [y]

∂ky
/

∂υ [y]
∂y

)
y=u[St ]

. (27)

Proof. See the Online Appendix.

Result 11 shows that, when the utility function ϑ [.] departs from the reference utility u[.], the SDF can

be decomposed into two terms. The first component, mP
t→T , of the SDF is the “ permanent ” component

of the SDF because its conditional mean equals to unity. The second component is the “ transitory” com-

ponent of the SDF. As shown in (27), ρ(2) can be interpreted as characterizing aversion of using the utility

function u[.]. The “permanent” and “transitory” components of the SDF in this setting are different from

the permanent and transitory components of the SDF in the recent literature.3 The value ρ(2) = 0 indicates

that investors use the CRRA utility. A high value of ρ(2) indicates that investors are willing to use a utility

ϑ [.] that departs (and is far) from the CRRA utility. Result 11 specializes in any reference utility function

u[.].

To be consistent with Section 3.1, I now set u[.] to be equal to the CRRA utility. When u[.] is equal

to the CRRA utility, the “ transitory” component of the SDF is identical to (20). Under this specification,

I set k = 2 and use the SDF in (26) to provide closed-form formulas to compute the conditional moments

and risk-neutral moments of the SDF. The closed-form expressions of conditional moments are found in

the Internet Appendix.

3Borovicka, Hansen, and Scheinkman (2016) use the decomposition of the SDF into a permanent and transitory components
(where the transitory component is the inverse of the return on the long-term bond) to highlight the implicit assumption in the
Ross (2015) Recovery theorem.
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3.2.2. Departure from CRRA Preferences in a Recursive Utility Framework

In Epstein and Zin (1989) recursive utility framework, provided that the market return is used as a

proxy for the return on the aggregate consumption claim, the SDF has the form

mEZ
t→T = υ

′
[ct→T ]u

′
[RMt→T ] . (28)

Assume that the SDF correctly prices the market return and the risk-free rate,

Et
[
mEZ

t→T RMt→T
]
= 1 and Et

[
mEZ

t→T
]
=

1
R f ,t 7→T

. (29)

Since consumption does not co-move contemporaneously with the stock market return (e.g., see Hall

(1978)), I assume that ct→T and RMt→T are independent. Thus, expression (29) implies

Et

[
υ
′
[ct→T ]

]
Et

[
u
′
[RMt→T ]RMt→T

]
= 1 (30)

which simplifies to

Et [mt→T RMt→T ] = 1. (31)

with

mt→T = Et

[
υ
′
[ct→T ]

]
u
′
[RMt→T ] . (32)

Now, I show that Et

[
υ
′
[ct→T ]

]
can be recovered from option prices. (28) is equivalent to

mEZ
t→T

(
u
′
[RMt→T ]

)−1
= υ

′
[ct→T ] . (33)

Thus, the expected value of expression (33) equals

Et

[
υ
′
[ct→T ]

]
= Et

[
mEZ

t→T

(
u
′
[RMt→T ]

)−1
]

= Et
[
mEZ

t→T
]

Et

[
mEZ

t→T

Et
[
mEZ

t→T

] (u
′
[RMt→T ]

)−1
]

=
1

R f ,t 7→T
E∗t

[(
u
′
[RMt→T ]

)−1
]
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Expression (32) can, therefore, be written as

mt→T = κu
′
[RMt→T ]

with

κ =
1

R f ,t 7→T
E∗t

[(
u
′
[RMt→T ]

)−1
]
.

Recall that, in Epstein and Zin (1989), u
′
[RMt→T ] has the form

u
′
[RMt→T ] = Rθ−1

Mt→T

with θ = 1−γ

1−ρ
where ρ = 1

ψ
≥ 0. Here, ψ is the Elasticity of Inter-temporal Substitution (EIS) and γ

is the relative risk aversion. Under the assumption that consumption and return are contemporaneously

independent, the SDF in Epstein and Zin recursive utility framework is of the form

mt→T = κRθ−1
Mt→T with κ =

1
R f ,t 7→T

E∗t
[
R1−θ

Mt→T

]
(34)

Thus, under the assumption that consumption and return do not co-move (see Hall (1978)), the SDF (34)

is similar to the SDF (20) which is obtained under CRRA preference with the exception that θ cannot

be interpreted as a risk aversion parameter. It depends on both risk aversion and EIS. Although models

comparison is not the purpose of this paper, the similarity of (34) and (20) can be used to derived all

moments of the SDF under the physical measure for a fixed value θ. These moments can be used to

discipline asset pricing models in a recursive utility setting when consumption and market return do not

co-move contemporaneously.

4. Estimating the SDF Conditional Moments

4.1. Data

To quantify physical and risk-neutral moments of the SDF, I use the average of the bid-and-ask quotes

on S&P 500 index options over the 1996–2015 period. The quotes are obtained from Option Metrics
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IvyDB. I also obtain closing prices of the S&P 500 index over the same time period. I then exclude quotes

that do not satisfy standard no-arbitrage conditions and follow the standard filtering approach by cleaning

the quotes.

I need a continuum of option prices to compute the integrals that appear in the SDF moments. In

practice, option prices are not observable at all strikes, so I use cubic splines to approximate the integrals.

I generate a large number of implied volatilities. More specifically, I generate implied volatilities for

moneyness levels ( K
St

) between 0.01% and 300%. Implied volatilities and moneyness levels are then used

to generate call and put prices. I use moneyness smaller than 1 to compute put prices and moneyness

larger than 1 to compute call prices. Together, call prices, put prices, and the cubic splines approximation

approach are used to approximate integrals needed to compute the SDF moments.

4.2. Choosing the Relative Risk Aversion Coefficient

I set the risk aversion parameter α = 2. The choice of this value is motivated by various studies in

the empirical literature. Friend and Blume (1975) estimate the relative risk aversion to be approximately

2. Noussair, Trautmann, and VanDeKuilen (2014) use experimental methods to estimate a relative risk

aversion of a representative individual between 0.88 and 1.43, depending on the specification of investors’

utility functions. With CRRA utility, Noussair et al. (2014, Table II, page 347) estimate the relative risk

aversion coefficient to be between 0.88 and 0.94. Recent studies have used option prices to estimate the

relative risk aversion (Aı̈t-Sahalia and Lo (2000), Jackwerth (2000), Rosenberg and Engle (2002), and Bliss

and Panigirtzoglou (2004)). Both studies recover implied risk aversion from option prices. In particular,

Rosenberg and Engle (2002) use one-month option prices, estimate the time-varying slope (risk aversion) of

the CRRA pricing kernel, and show that it varies from a minimum of 2.36 to a maximum of 12.55. Further,

Bliss and Panigirtzoglou (2004, Table V, page 429) use S&P500 option prices to estimate the relative risk

aversion parameter for a CRRA utility when the option maturity ranges from 1 to 6 weeks. They find that

the relative risk aversion estimate declines from 9.52 to 3.37 when the option maturity increases from 1 to

6 weeks. Bliss and Panigirtzoglou (2004, Table VII, page 432) also summarize in their table, estimates of

risk aversion in various studies and show that estimates of risk aversion vary from 0 to 55. I focus on option

maturities ranging from 30 days to 365 days. To my knowledge, estimates of the relative risk aversion from
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option prices for maturities ranging from 30 days to 365 days are not available in the literature.4 Choosing

different relative risk aversion values renders empirical results incomparable across option maturities. To

avoid choosing a relative risk aversion coefficient for each maturity, I assume that the relative risk aversion

is the same regardless of the option maturity used.5

4.3. Computing Conditional Physical Moments of the SDF

Figure 1 presents the conditional variance of the SDF for maturities ranging from 30 days to 365

days. The sample period is from January 4, 1996, to August 31, 2015. The variances are not annualized.

Regardless of the investment horizon, the conditional variance varies significantly through time. It peaks

during crisis periods. However, the peak is pronounced in November 2008. The 30-day SDF variance

reaches its highest value in November 2008. The variance is approximately 0.45. This translates into

67.08% monthly volatility. The corresponding annual SDF volatility on November 20, 2008, is 232%.

Table 1 reports the mean, standard deviation, skewness, kurtosis, and quantiles of the variance of the SDF,

M (2)
t [T ], for horizons ranging from 30 days to 365 days. The mean of the conditional variance over the

whole sample is 0.03 at the 30-day horizon and 0.45 at the 365-day horizon. The corresponding 30-day

annualized volatility is 60%, while the 365-day volatility is 67%. Note that the conditional variance of the

SDF increases with the investment horizon. The conditional variance is not only volatile but also exhibits

skewness and fat tails. At the 30-day horizon, it varies from a minimum of 0.01 to a maximum of 0.45

over the sample period. At the 365-day horizon, it varies from a minimum of 0.13 to a maximum of 2.88

over the sample period. The mean of the 365-day conditional variance of the SDF is 0.45, with a standard

deviation of 0.28. This translates into an unconditional variance of the SDF of 0.53 and approximate

volatility (square root of the variance) of 72.69%.

Figure 1 also presents the conditional skewness of the SDF for maturities ranging from 30 days to 365

days. Regardless of the maturity chosen, the conditional skewness varies through time and is often positive.

It is more stable in normal periods and highly volatile during crisis periods (e.g., 1997–1998 asian financial

crisis, the 2002 recession, and the 2008 financial crisis). The peak is more pronounced during the 2008

4Jackwerth (2000) estimates absolute risk aversion for maturities up to 64 days. He finds that absolute risk aversion can be
negative in some wealth states.

5In unreported results, I set the relative risk aversion to 3. Results are qualitatively similar and are available upon request.
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crisis than in the remaining sample. The 30-day conditional skewness reaches its maximum value of 0.6

in November 2008, while the 365-day conditional skewness reaches 10 during the same month. A simple

comparison of the conditional volatility dynamic to the conditional skewness dynamic in Figure 1 shows

that the conditional skewness of the SDF is more pronounced during crisis periods than in normal periods.

Table 1 also reports the mean, standard deviation, skewness, kurtosis, and quantiles of the skewness of the

SDF, M (3)
t [T ], for maturities ranging from 30 to 365 days. The mean of the conditional skewness over the

whole sample is 0.01 at the 30-day horizon and 0.40 at the 365-day horizon. The conditional skewness is

more volatile than the conditional variance; it exhibits skewness and fat tails. At the 30-day horizon, the

conditional skewness varies from a minimum of -0.07 to the highest value of 0.56 over the sample period.

At the 365-day horizon, it varies from a minimum of 0.40 to a maximum value of 9.26 over the sample

period.

Figure 1 also shows that the conditional kurtosis varies through time. Similar to the conditional skew-

ness, the conditional kurtosis is more pronounced during crisis periods than in normal periods. Table 1

also reports the mean, standard deviation, skewness, kurtosis, and quantiles of the skewness of the SDF,

M (4)
t [T ]. The mean of the conditional kurtosis over the whole sample is 0 at the 30-day horizon and in-

creases with the investment horizon. The mean is 0.65 at the 365-day horizon. At the 365-day horizon, it

varies from the lowest value of 0.65 to the highest value of 33.95 over the sample period.

I further use the SDF obtained under preferences that depart from CRRA preferences to compute the

conditional moments and check the robustness of moments obtained under CRRA preferences. To do so,

I keep the risk aversion parameter α = 2 and set the preference parameter ρ(2) = 5 and ρ(k) = 0 for k > 2.

Figure 8 of the Internet Appendix displays the conditional moments of the SDF. Results are similar to those

in Figure 1. Non-zero preference parameters ρk, when k > 2, could generate difference in the conditional

moments. Viewed all, empirical results suggest that the SDF is highly volatile and highly skewed, and it

exhibits more and fatter tails during crisis periods than in normal times.

4.4. Computing the Conditional Risk Neutral Moments of the SDF

Result 9 is used to compute the conditional risk-neutral moments of the SDF when investors have

CRRA preferences. The conditional risk-neutral variance varies significantly through time and across
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maturities. It increases with the investment horizon. A comparison of Figures 1 and 2 shows that the

conditional risk-neutral variance is often higher than the physical variance through time and across ma-

turities. This implies, on average, a negative SDF variance risk premium, as defined in Equation (13).

Table 2 displays the mean, standard deviation, skewness, kurtosis, and quantiles of the conditional risk-

neutral variance of the SDF, M ∗
t
(2) [T ]. The mean of the 365-day risk-neutral variance of the SDF is 0.57,

with a standard deviation of 0.43. This translates into an unconditional variance of the SDF of 0.75 and

approximate unconditional volatility of 86.88%.

Next, the conditional risk-neutral skewness of the SDF is negative and varies over time and across

maturities. It is more volatile during crisis periods. The table also reports the mean, standard deviation,

skewness, kurtosis, and quantiles of the conditional risk-neutral skewness of the SDF, M ∗
t
(3) [T ]. The mean

of the conditional risk-neutral skewness over the whole sample is -0.31 at the 365-day horizon. To explore

why the risk-neutral moment of the SDF is often negative, I show the following result:

Result 12 The skewness of the SDF under the risk-neutral measure can be decomposed as

M ∗(3) =
1
m

{
A0 +

1
2!

A2M (2)+
1
3!

A3M (3)+
1
4!

A4M (4)
}
, (35)

where

A0 = −
(

M (2)
)3

< 0, (36)

1
2!

A2 =

(
3

1
m2

(
M (2)

)2
−3M (2)

)
> 0,

1
3!

A3 =

(
−3

1
m

M (2)+m
)
< 0,and

1
4!

A4 = 1, (37)

where m is the mean of the SDF.

Proof. See the Appendix.

As shown in Result 12, the risk-neutral skewnesss of the SDF can be negative since the coefficients

A0 and A3 are negative. These coefficients are uniquely determined by the mean and volatility of the

SDF. Hence, the volatility of the SDF may potentially explain why the skewness of the SDF under the
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risk-neutral measure is often negative.

Figure 2 also displays the conditional risk-neutral kurtosis. The conditional risk-neutral kurtosis is

highly volatile. In the same table, I report the mean, standard deviation, skewness, kurtosis, and quantiles

of the conditional risk-neutral kurtosis of the SDF, M ∗
t
(4) [T ]. The conditional risk-neutral kurtosis is

positively skewed and exhibits fat tails.

4.5. A Look at the SDF Moments Risk Premium Dynamic

This section explores the dynamic of the SDF-based moments risk premium. Table 3 reports summary

statistics of the daily SDF variance risk premium at various horizons. The SDF variance risk premium

is often negative, is negatively skewed, exhibits fat tails, and increases in absolute value when the option

maturity increases from 30 days to 365 days. At the 30-day horizon, the mean of the SDF variance risk

premium over the whole sample is -0.37%. At the 36-day horizon, the mean of the SDF variance risk pre-

mium is -11.91%. The SDF variance risk premium is on average negative. Thus, to compensate investors

for exposure to SDF variance risk premium risk, one would expect the SDF variance risk premium to be

negatively related to expected excess return.

The concept of SDF variance premium is new. Thus, one would expect a comparison between the

market variance risk premium, commonly measured at monthly frequency, and the SDF variance risk pre-

mium. One may also expect a comparison between the Left risk-neutral Jump Variation (LJV) of Bollerslev,

Todorov, and Xu (2015) and the SDF variance risk premium. How do they compare?

Since SDF moments risk premium are computed at daily frequency, within each month, I average daily

estimates of the SDF variance risk premium to obtain monthly estimates of SDF variance risk premium.

Figure 3 shows the monthly dynamic of the SDF moments risk premium at various horizons. To facilitate

the comparison, I focus on the 30-day horizon risk premium (in Figure 4). The top graph in Figure 4 shows

the dynamic of the SDF variance risk premium, the market variance risk premium, and the LJV measures.6

At the 30-day horizon, the SDF variance risk premium and the market variance risk premium appear to be

negatively correlated. The correlation between the two measures is -0.33. The SDF variance risk premium

6The LJV measure from Bollerslev, Todorov, and Xu (2015) is computed using only options with fewer than 45 days to
expiration.
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is also negatively correlated with the LJV measure, while the correlation between the LJV measure and the

SDF variance risk premium is -0.83. Note that the correlation between the market variance risk premium

and the LJV measure is 0.1. Here, the market variance risk premium is the difference between the market

variance under the physical measure and the market variance under the risk-neutral measure.7 At the 365-

day horizon, the correlation between the SDF variance risk premium and the market variance risk premium

is approximately 0, while the correlation between the SDF variance risk premium and the LJV measure is

-0.52.

Table 3 also reports summary statistics of the daily SDF skewness risk premium at various horizons.

In contrast to the SDF variance risk premium, the SDF skewness premium is always positive, is positively

skewed, and increases with option maturity. Thus, to compensate investors for exposure to SDF skewness

risk premium, one would expect the SDF to be positively related to expected return. The SDF skewness

risk premium is more pronounced at long horizons (from 91 days to 365 days). To compare the dynamic

of the SDF skewness premium to market variance risk premium and LJV dynamic, I average within each

month, daily estimates of the SDF skewness risk premium to obtain monthly estimates of SDF skewness

risk premium. LJV and variance risk premium measures are not available at daily frequency. The middle

graph in Figure 4 also shows the dynamic of the SDF skewness risk premium. The SDF skewness risk

premium is mostly pronounced during crisis or recession periods, and it is almost zero during normal

times. At the 30-day horizon, the correlation between the monthly estimate of SDF skewness risk premium

and the market variance risk premium is 0.34, while the correlation between the LJV measure and monthly

estimates of SDF skewness risk premium is positive and equal to 0.83. Further, at the 365-day horizon, the

correlation between the SDF skewness risk premium and the market variance risk premium is -0.04, while

the correlation between the SDF skewness risk premium and the LJV measure is 0.81.

To end this section, I report in Table 3 summary statistics of the daily SDF kurtosis risk premium at

various horizons. In contrast to the SDF variance risk premium, the SDF kurtosis premium is always posi-

tive, is positively skewed, and increases with option maturity. Thus, to compensate investors for exposure

to SDF kurtosis risk premium, one would expect the SDF kurtosis risk premium to be positively related

to expected return. The SDF kurtosis risk premium is pronounced during turbulence or recession periods,

and is negligible during normal times. At the 30-day horizon, the correlation between the monthly esti-

7The monthly observations of the market variance risk premium are obtained from Hao Zhou’s website.
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mates of SDF kurtosis risk premium and monthly estimates of the variance risk premium is 0.45, while

the correlation between the LJV measure and monthly estimates of SDF kurtosis risk premium is positive

and equal to 0.80. I also find that the correlation between SDF kurtosis risk premium, market variance risk

premium and LJV measures decrease when the maturity increases. For example, at the 365-day horizon,

the correlation between the SDF kurtosis risk premium and the market variance risk premium is -0.02,

while the correlation between the SDF kurtosis risk premium and the LJV measure is 0.11.

4.6. Conditional Expected Excess Return and Conditional Sharpe Ratios

I exploit non-central conditional moments of the SDF to compute the expected excess return on SDF

moments and the Sharpe ratios. More specifically, I use closed-form expressions in Results 7 and 10 to

compute these asset-pricing quantities. Both expected excess returns and Sharpe ratios are annualized to

facilitate comparison over time and also across different maturities. Since strategies based on SDF moments

are hedging strategies, the expected excess returns on SDF moments and the corresponding Sharpe ratios

must be negative. Figure 5 presents the conditional expected excess returns Et

(
R (n)

t→T −R f ,t→T

)
, when

n = 2, 3, and 4. Results are not in percentages. Across all maturities, the expected excess returns vary

significantly through time and are pronounced during crisis periods. The conditional expected excess

return reaches its maximum of -3, -5.5, and -6.5, when n = 2, 3, and 4, respectively. Regardless of the

SDF-based return used, the annualized expected excess market return at the 365-day horizon is lower (in

absolute value) than the annualized expected excess return at the 30-day horizon. This features (in absolute

value) a downward term structure of the conditional expected excess returns on SDF moments. The average

of the conditional expected excess return on SDF-based moments shows little variation across maturities

when n = 2, 3, and 4, respectively. Thus, the term structure of the unconditional expected excess return on

SDF moments is almost flat.

To assess the trade-off between risk and return, I plot, over time and across maturities, the annualized

conditional Sharpe ratio SRt [T ] that corresponds to SDF moments when n = 2, n = 3, and n = 4. As shown

in Figure 6, the Sharpe ratios vary significantly over time and across maturities. The term structures of the

conditional Sharpe ratios are (in absolute value) upward sloping. The Sharpe ratio (in absolute value) is

high during crisis periods and low and stable during normal periods. However, the unconditional Sharpe
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ratio shows little variation across maturities. This features (almost) a flat term structure of the unconditional

Sharpe ratio of the SDF-based moment returns. Figures 9 and 10, in the Internet Appendix, present similar

results when investor preferences depart from the CRRA preferences.

5. The Real-Time Distribution of the SDF Predicts the Market Return

5.1. Conditional Moments of the SDF Predicts the Excess Market Return

I investigate whether the SDF variance, skewness, and kurtosis predict the market expected excess

return at any investment horizon. More specifically, I first run univariate regressions,

RM,t→T −R f ,t = α0 +βXt + εt→T , (38)

where Xt is either the variance, skewness, or kurtosis of the SDF. Since the SDF moments are computed

at daily frequency, I examine return predictability using daily market returns. More specifically, for a

given maturity T − t, I compute each day, the return from holding the market portfolio from t to T . For

example, the one-month moments are used to predict future monthly returns. The three-month moments

are used to predict future three-month returns. The return on the risk free security is also consistent with the

maturity used in each regression. Panel A of Table 4 reports the β coefficients for the predictive regressions.

The physical variance, skewness, or kurtosis of the SDF significantly predicts the market expected excess

return for horizons ranging from 122 days to 365 days. T-stats in brackets are computed using Hansen

and Hodrick (1980) methodology, with the number of lags equal to the time to maturity (in days). The

β coefficients are all positive. A positive slope coefficient in each predictive regression indicates that an

increase in the conditional moments of the SDF magnifies uncertainty in financial markets and, hence,

increases the market risk premium. The adjusted R-square of predictive regressions ranges from 4% (at

122 days to maturity) to approximately 10% at 365 days to maturity. The signs of the β coefficients for

the SDF variance and SDF kurtosis are consistent with Result 1 when investors have CRRA preferences

(u′[x] = x−α). However, the signs of slope coefficients when the SDF skewness is used are not consistent

with economic theory because Result 1 theoretically predicts that the slope of the SDF skewness is negative,

provided that u′′[x]< 0 and u′′′[x]> 0.
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I further investigate why, in the predictive regression results, the slope of the skewness of the SDF is

positive. I have used the CRRA utility to derive the SDF moments. With a CRRA utility, u
′′
[x] =−αx−α−1

and u
′′′
[x] = α(α+1)x−α−2 > 0. Hence, the slope coefficient A1 associated with the SDF volatility must

be positive, while the slope coefficient A2 associated with the SDF skewness must be negative (see Result

1). The empirical results from the predictive regression show that the positive slope coefficients asso-

ciated to both SDF volatility and SDF skewness imply that 1
u′′ [x]
≤ 0 and − u

′′′
[x]

(u′′ [x])
3 ≤ 0, which implies

that u
′′′
[x] ≤ 0. This is inconsistent with the CRRA preference and is puzzling. These puzzling results

can potentially be explained by the risk aversion puzzle documented in Jackwerth (2000) and Aı̈t-Sahalia

and Lo (2000). To explore this issue carefully, I observe that a decreasing absolute risk aversion func-

tion implies that the first derivative of the absolute risk aversion AR [x] = −u
′′
[x]

u′ [x]
must be negative. Thus,

AR′ [x] = −
u
′′′
[x]u

′
[x]−

(
u
′′
[x]
)2

(u′ [x])
2 ≤ 0. Since the empirical results from the predictive regressions imply that

u
′′
[υ [E(m)]] ≤ 0 and u

′′′
[υ [E(m)]] ≤ 0, AR′ [υ [E(m)]] =

u
′′′
[υ[E(m)]]u

′
[υ[E(m)]]−

(
u
′′
[υ[E(m)]]

)2

(u′ [υ[E(m)]])
2 ≥ 0 holds em-

pirically, and, hence, the absolute risk aversion function is increasing in the neighborhood of x = υ [E(m)].

This is consistent with the risk aversion puzzle documented in Jackwerth (2000) and Aı̈t-Sahalia and Lo

(2000). Jackwerth (2000) and Aı̈t-Sahalia and Lo (2000) document that the absolute risk aversion function

is negative in some wealth states and is also increasing in some wealth states.

I further follow Goyal and Welch (2008) and Campbell and Thompson (2008) and compute the out-

of-sample performance of the forecasts. I compare the out-of-sample R2
OOS statistic to the in-sample R2

statistic. I compute the out-of-sample R-square as

R2
OOS = 1−

T
∑

t=1
ε2

t

T
∑

t=1
η2

t

, (39)

where εt is the residual of the predictive regression (38) and ηt = rt − rt , where rt is the dependent vari-

able (left-hand side variable of (38)), and rt is the historical average of the dependent variable estimated

through period t− 1. The out-of-sample R-squares are comparable with in-sample R-squares. This sup-

ports the prediction that the SDF variance significantly predicts the excess market return in-sample and

out-of-sample.
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The skewness of the SDF produces slightly higher out-of-sample R-squares than the variance or kur-

tosis of the SDF. For the purpose of comparison, Panel B of Table 4 displays similar results when investor

preferences depart from CRRA preferences. To compare the predictive results to results obtained when

simple risk-neutral moments of the market return are used as predictors, I run the univariate regression

(38), where Xt is either the variance, skewness, or kurtosis of the simple return RM,t→T . More precisely,

Xt =VAR∗t (RM,t→T ), SKEW∗t (RM,t→T ), or KURT∗t (RM,t→T ). Closed form expressions of these moments

are available in Appendix C of the Internet Appendix. Results are reported in Table 5. Also shown in Table

5, the variance, skewness, and kurtosis of the simple return RM,t→T are weak predictors of the excess mar-

ket return. Note that, in his framework, Martin (2017) uses a sample of option prices from 1996 to 2012

and finds that the simple risk-neutral variance VAR∗t (RM,t→T ) predicts the excess market return with the

highest out-of-sample R-square of 4.86% obtained at 6 months horizon.8 Bollerslev, Tauchen, and Zhou

(2009) show that the market variance risk premium predicts the market excess return at short horizons.

Further Bollerslev, Todorov, and Xu (2015) compute a Left Risk-Neutral Jump Variation (LJV) measure

at weekly frequency and use it to assess return predictability at monthly frequency. Monthly LJV mea-

sures are computed by averaging the within-month weekly values of LJV estimates. At monthly frequency,

they show that much of the return predictability attributed to the variance risk premium may be attributed

to time variation in the part of the variance risk premium associated with their LJV measure. Recently,

Martin (2017, Table A.3) excludes the period from August 1, 2008, to July 31, 2009, and finds that market

variance risk premium does not significantly predict the market excess return at any horizon once this crisis

period is excluded. Motivated by these findings, I use the moments of simple returns as control variables

in the predictive regression. Table 6 displays the result of the bivariate regressions. Results suggest that the

predictive results are robust to the inclusion of the risk-neutral variance, skewness, and kurtosis of simple

returns.

5.2. SDF-Based Moments Risk Premium Predicts the Market Return

In this section, I investigate whether the SDF-based moment risk premium defined in (13) predicts the

market return at daily frequency. I run the univariate regression (38), where Xt represents the SDF-based

8Gormsen and Jensen (2018) use Martin (2017) approach to estimate ex ante market higher order moments. Martin and Wagner
(2016) derive a formula that expresses the expected return on a stock in terms of the risk-neutral variance of the market and the
stock’s excess risk-neutral variance relative to the average stock.
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variance risk premium, the SDF-based skewness risk premium, or the SDF-based kurtosis risk premium.

Results are displayed in Table 7. Panel A presents the results when the CRRA preference is used, while

Panel B presents the results when preferences that depart from CRRA preferences are used. As shown

in Panel A, the SDF-based variance premium significantly predicts the excess market return for horizons

ranging from 122 to 365 days with a negative slope and an adjusted R-squared ranging from 3.91% to

13.67%. Since the SDF variance risk premium is on average negative (see Table 3), the negative slope

coefficient indicates that the SDF variance risk premium positively contributes to the expected excess

market return. The out-of-sample R-squares (in the range of 3.84% to 13.61%) are slightly lower but

comparable to the adjusted in-sample R-squares. The SDF-based skewness premium significantly predicts

the excess market return for the same horizons with a positive slope and an adjusted R-square that varies

from a minimum of 2.86% to a maximum of 8.33%. Because the SDF skewness risk premium is, on

average, positive (see Table 3), one should expect the SDF risk premium to be positively related to the

expected excess market return. The SDF-based kurtosis premium also predicts the excess market return

with a positive slope. Since the SDF kurtosis risk premium is on average positive (see Table 3), one must

expect the SDF kurtosis risk premium to be positively related to expected return. Panel B presents similar

results.

I further checked the robustness of the results by running a bivariate regression of the form (38), where

the risk-neutral variance, skewness, and kurtosis of simple returns are used as control variables. Results are

reported in Table 8. Three remarks are in order. First, when Xt =
{

M R P (2)
t [T ] , VAR∗t (RM,t→T )

}
, the

SDF-based variance risk premium significantly predicts the excess return with a negative slope for horizons

ranging from 152 days to 365 days, while the variance of the simple return is insignificant, regardless of

the investment horizon. Second, when Xt =
{

M R P (3)
t [T ] , SKEW∗t (RM,t→T )

}
, the SDF-based skewness

risk premium significantly predicts the excess return for horizons ranging from 122 days to 365 days. In

contrast, the skewness of the simple return significantly predicts excess returns only at very short horizons

(30 days and 60 days). Third, when Xt =
{

M R P (4)
t [T ] , KURT∗t (RM,t→T )

}
, the SDF-based kurtosis risk

premium significantly predicts the excess return at all horizons except for the 91-day horizon. Viewed all,

results are robust to the inclusion of risk-neutral moments of simple returns.
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5.3. Controlling for Variance Risk Premium and the Left Risk-Neutral Jump Variation Measures

As mentioned in Section 4.5, the variance risk premium (VRP) and the Left Risk-Neutral Jump Vari-

ation (LJV) measures are available at monthly frequency. To control for these measures in the predictive

regressions, I use the average of daily SDF moments risk premium within a month as a measure of monthly

SDF moments risk premium. I then use the monthly estimates of SDF moments risk premium together

with VRP (LJV) measure as predictor variables. The main goal of this exercise is to check whether SDF

moments risk premium still predict the market excess return at different investment horizons after control-

ling for VRP and LJV measures. I examine return predictability using monthly market returns. For a given

maturity T − t, each month, I compute the return for holding the market portfolio from t to T . For example,

the one-month moments are used to predict future monthly returns. The three-month moments are used to

predict future three-month returns.

Table 9 reports results of the multivariate regression when SDF moments risk premium and LJV mea-

sures are used. The SDF moments risk premium remain significant for most maturities. The SDF variance

risk premium is significant at 5% level for 30 days maturity and also when the maturity varies from 152

days to 365 days (with t-stat, in absolute value, above 2.8). At the same time, LJV is only significant at

365 days to maturity (with a t-stat of 2). Further, the SDF skewness risk premium is significant at 60, 273

and 365 days to maturity (with t-stat, in absolute value, above 2), while the LJV measure is significant at

60 days and 91 days to maturity with t-stats (in absolute value) above 3. The SDF kurtosis risk premium is

also significant for most maturities except for 122 and 152 days.

Table 10 (11) reports results of the multivariate regression when, together, SDF moments risk premium

and VRP (VRP-LJV) measures are used as predictor variables. The SDF moments risk premium are

significant for maturity ranging from 122 days to 365 days to maturity with minimum t-stats, in absolute

value, above 2.

6. Real-Time Distribution of the SDF Explains the Cross-Section of Returns

In this section, I use SDF moments computed under CRRA preference with α = 2 and examine the

cross-sectional relation between the SDF moments and returns by using the Fama and MacBeth (1973) two-
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pass cross-sectional methodology. My focus is on daily returns since conditional moments are computed

at daily frequency. To do so, I consider portfolio sets available on the Kenneth French website. I first use

the 100 Fama and French portfolios formed on size and book-to-market. Second, I use the 100 Fama and

French portfolios formed on size and operating profitability. Third, in the Internet Appendix, I use the 25

Fama and French portfolios formed on size and book-to-market. All returns under consideration are daily

returns since conditional moments are computed at daily frequency. The sample period corresponds to the

sample period used to compute the SDF moments (i.e., from January 1996 to August 2015).

I present the time-series averages of the slope coefficients from the regressions of portfolio returns on

the SDF variance, skewness, and kurtosis. I use two sets of control variables. First, I use the Fama and

French (2016) factors: MKT, SMB, HML, RMW, and CMA. MKT is the market excess return. SMB is

the average return on nine small stock portfolios minus the average return on nine big stock portfolios.

HML is the average return on two value portfolios minus the average return on two growth portfolios.

RMW is the average return on two robust operating profitability portfolios minus the average return on

two weak operating profitability portfolios. CMA is the average return on two conservative investment

portfolios minus the average return on two aggressive investment portfolios. See Fama and French (2016)

for a complete description of how the factors are constructed.

Second, since SDF moments are computed from option prices, I use well-know control variables com-

puted using option prices: Risk neutral moments of the market returns, variance risk premium (VRP), and

Left Risk-Neutral Jump Variation measures (LJV). The average slopes provide standard Fama-MacBeth

tests for determining which explanatory variables, on average, have non-zero price of risk.

6.1. SDF Conditional Moments Explain the Cross-Section of Returns

I use the following specification to estimate the price of risks. I have omitted the time subscript for

simplicity:

E [Ri]−R f = λ0 +λMKT β
i
MKT +λM (2)β

i
M (2) +λM (3)β

i
M (3) +λM (4)β

i
M (4) (40)

+λSMBβ
i
SMB +λHMLβ

i
HML +λRMW β

i
RMW +λCMAβ

i
CMA.
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Results 1-5 suggest that, in theory, the price of the second moment λM (2) is positive, the price of the third

moment λM (3) is negative, and the price of the fourth moment λM (4) is positive. Below, I use various sorted

portfolios to assess the significance of the price of risk of SDF moments. I also investigate whether the sign

of the price of risks are consistent with the theoretical results in Results 1–5 when investors have CRRA

utility.

6.1.1. Results for 100 Portfolios Formed on Size and Book-to-Market

Table 12 presents the estimation results of the beta pricing model (40). The estimates of the price of

SDF variance risk, λM (2) , are all positive and significant regardless to the t-ratio used. The price of SDF

variance risk varies from 0.531 at 30-day maturity to 0.095 at 365-day maturity.

I report the Fama and MacBeth (1973) t-ratio under correctly specified models (tFM), the Shanken

(1992) t-ratio (tS), the Jagannathan and Wang (1998) t-ratio under correctly specified models that account

for the EIV problem (tJW ), and the Kan, Robotti, and Shanken (2013) misspecification-robust t-ratios (tKRS).

The table also presents the sample cross-sectional R2 of the beta pricing model (40), the p-value for the test

of H0 : R2 = 1 (labeled p(R2 = 1)), the p-value for the test of H0 : R2 = 0 (labeled p(R2 = 0)), the p-value

of Wald test under the null hypothesis that all prices of risk are equal to zero ( p(W )), and the standard error

of R̂2 under the assumption that 0 < R2 < 1 (labeled se(R̂2)).

The estimates of the price of SDF skewness risk, λM (3) , are all statistically significant and negative at

all maturities. This is consistent with the theoretical predictions in Results 1–5. The price of risk varies

from -0.275 at 30-day maturity to -0.085 at 365-day maturity. Also, the estimates of the price of SDF

kurtosis risk, λM (4) , are all significant. The price of risks are all positive except for that of 30-day maturity.

The price of risk of the Fama and French factors, SMB, HML, and CMA is not significant at all maturities.

In contrast, the price of the RMW factor is positive and statistically significant. The adjusted R2 ranges

from 66.5% (at 30-day maturity) to 81.8% (at 365-day maturity). When I use only the Fama and French 5

factors, the adjusted R2 is 1.1%. This also shows a significant improvement of the beta pricing model (40)

over the Fama and French five factor model.
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6.1.2. Results for 100 Portfolios Formed on Size and Operating Profitability

Table 13 presents the estimation results of the beta pricing model (40). Regardless of the t-ratio used

to gauge the significance of the price of risks, the estimates of the price of SDF volatility risk, λM (2) are all

significant. At short maturities (from 30 days to 91 days), the price of the SDF volatility is positive. It is

negative for maturities ranging from 122 days to 273 days. It becomes again positive at 365-day maturity.

At short maturities, stocks with high exposure to the SDF volatility earn high return on average.

The estimates of the price of SDF skewness risk, λM (3) , are all statistically significant and positive

at all maturities. The price of risks vary from 0.659 at 30-day maturity to 0.029 at 365-day maturity.

Regardless of option maturity used, stocks with high exposure to the SDF skewness earn high return on

average. The estimates of the price of SDF kurtosis risk, λM (4) , are all statistically significant and negative

at all maturities. The price of risks vary from -0.773 at 30-day maturity to -0.008 at 365-day maturity.

This features, in absolute value, a decreasing term structure of the price of SDF kurtosis risk. The price

of risk of recent commonly used factors SMB, HML, RMW, and CMA is not significant at all maturities.

Regarding the pricing performance of the beta pricing model (40), the adjusted R2 ranges from 31.8% (at

30-day maturity) to 62.5% (at 365-day maturity). In contrast, when I use only the five Fama and French

factors, the adjusted R2 is 2.5%. This shows a significant improvement of the beta pricing model (40) over

the Fama and French five factor model. Although, the price of risks are significant, their signs are not often

consistent with the theoretical predictions in Results 1–5.

6.2. Conditional SDF-Based Moments Premium Explain the Cross-Section of Returns

Section 6.1.2 provides empirical evidence that SDF moments are priced in the cross-section of returns.

While SDF moments are important in explaining expected excess returns, one may ask whether SDF mo-

ments risk premium also explain the cross-section of returns. Section 4.5 provides ample evidence that

the SDF variance risk premium is often negative while the SDF skewness (kurtosis) risk premium is often

positive. Thus, provided that investors receive compensation by investing in stocks with exposure to SDF

moment risks, exposure to SDF moments risk premium positively contributes to the expected excess return

on stocks if the price of the SDF variance risk premium is negative while the price of the SDF skewness

(kurtosis) risk premium is positive. To empirically verify this argument, I estimate the price of risks by
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using the SDF-based moments risk premium in the following specification:

E [Ri]−R f = λ0 +λMKT β
i
MKT +λM R P (2)β

i
M R P (2) +λM R P (3)β

i
M R P (3) +λM R P (4)β

i
M R P (4) (41)

+λSMBβ
i
SMB +λHMLβ

i
HML +λRMW β

i
RMW +λCMAβ

i
CMA.

6.2.1. Results for 100 Portfolios Formed on Size and Book-to-Market

Table 14 displays the estimation results of the beta pricing model (41). The estimates of the price of the

SDF second moment risk premium, λM R P (2) , are all significant, regardless of the t-ratio used. The price

of risks are all positive except for the 30-day horizon. The estimates of the price of SDF third moment

risk premium, λM R P (3) , are positive and statistically significant at all horizons. The price of risk decreases

from 0.699 (at 30-day horizon) to 0.012 (at 365-day horizon). Regardless of the t-ratio used, the estimates

of the price of SDF fourth moment risk premium λM R P (4) are significant from 30-day horizon to 122-day

horizon. The sign of the price of risk is negative at the 30-day and 60-day horizon and positive for the

remaining maturities.

The price of risk of commonly used factors SMB, HML, and CMA is not significant at all maturities.

However, RMW is marginally significant when the Shanken (1992) t-ratio is used. Regarding the pricing

performance of the beta pricing model (41), the adjusted R2 ranges from 44.6% (at 30-day maturity) to

81.6% (at 365-day maturity). When I use only the five Fama and French, the adjusted R2 is 1.09%. This

shows a significant improvement of the beta pricing model (41) over the Fama and French five factor model.

6.2.2. Results for 100 Portfolios Formed on Size and Operating Profitability

Table 15 presents the estimation results of the beta pricing model (41). The estimates of the price of

the SDF second moment risk premium, λM R P (2) , are negative and significant at all horizons. At a short

horizon (30 days), the price is -1.09. It decreases (in absolute value) when the maturity increases and

reaches -0.019 at the 365-day horizon.

The estimates of the price of SDF third moment risk premium, λM R P (3) , are statistically significant.

There are positive at short horizons and close to zero for horizons that are in the range of 152 days to 365
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days. At the 30-day horizon, the price is 0.171. At the 365-day horizon, the price is 0.002. The estimates of

the price of SDF fourth moment risk premium, λM R P (4) , are all statistically significant and negative at all

maturities except for the 365-day to maturity. The price decreases in absolute value from -1.430 at 30-day

to -0.017 at the 273-day and reaches 0.002 at the 365-day horizon.

The price of risk of commonly used factors SMB, HML, RMW, and CMA is not significant at all

maturities. Regarding the pricing performance of the beta pricing model (41), the R2 ranges from 27.4%

(at 30-day maturity) to 61.9% (at 365-day maturity). In contrast, when I use only the Fama and French five

factors, the adjusted R2, 2.48%, shows a significant improvement of the beta pricing model (41) over the

Fama and French five factor model.

6.3. Controlling for Variance Risk Premium, Left Risk-Neutral Jump Variation, and Risk-Neutral

Moments of the Market Return

Sections 6.1 and 6.2 provide evidence that SDF moments and SDF moment risk premium are priced

in the cross-section of returns after controlling for well-known stock characteristics. Since SDF moments

are computed using option prices, one may ask whether the price of SDF moments are still significant after

controlling for known measures such as variance risk premium (VRP), Left Risk-Neutral Jump Variation

(LJV), and risk-neutral moments of the market return. I use the 100 portfolios formed on size and book-to-

market to estimate the price of SDF moments risk. In this section, I use monthly returns since VRP and Left

Risk-Neutral Jump Variation (LJV) are available at monthly frequency. Market return risk-neutral moments

are computed using closed-form expressions that are available in Appendix C of the Internet Appendix.

Monthly estimates of SDF moments and market risk-neutral moments are obtained by averaging within a

month, daily estimates of SDF moments. I first estimate the price of SDF moments risk by running the

specification (42)

E [Ri]−R f = λ0 +λM (2)β
i
M (2) +λM (3)β

i
M (3) +λM (4)β

i
M (4) +λV RPβ

i
V RP. (42)

Results are reported in Table 16. The price of SDF variance, SDF skewness, and SDF kurtosis are signifi-

cant and consistent with the theoretical predictions in Results 1–5 after controlling for the market variance

risk premium. The price of the SDF variance (kurtosis) is positive, while the price of the SDF skewness is
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negative. Note that the price of the market variance risk premium is not significant. Next, I control for the

LJV measure by running the specification

E [Ri]−R f = λ0 +λM (2)β
i
M (2) +λM (3)β

i
M (3) +λM (4)β

i
M (4) +λLJV β

i
LJV (43)

and report the estimates of the prices of risk in Table 17. The price of the SDF moments are significant and

also consistent with theoretical predictions in Results 1-5. I further estimate the price of risk by controlling

for innovations in the market risk-neutral variance, skewness and kurtosis by running specifications (44)–

(46)

E [Ri]−R f = λ0 +λM (2)β
i
M (2) +λM (3)β

i
M (3) +λM (4)β

i
M (4) +λ∆VARβ

i
∆VAR. (44)

E [Ri]−R f = λ0 +λM (2)β
i
M (2) +λM (3)β

i
M (3) +λM (4)β

i
M (4) +λ∆SKEW β

i
∆SKEW . (45)

E [Ri]−R f = λ0 +λM (2)β
i
M (2) +λM (3)β

i
M (3) +λM (4)β

i
M (4) +λ∆KURT β

i
∆KURT . (46)

Results are displayed in Tables 18, 19, and 20 respectively. The price of SDF moments risk are significant

while the price of risks of innovations in the market risk-neutral variance, market risk-neutral skewness,

and market risk-neutral kurtosis are not significant.

7. Inferring the Price of Risk Using the Three-Pass Regression Approach

In this section, I use the three-pass regression approach of Giglio and Xiu (2017) to estimate the price of

SDF moments. In contrast to existing approaches, their approach allows inferring the price of risk factors

in a linear asset-pricing model, when the number of assets is large. They argue that standard methods

to estimate risk premia are biased in the presence of omitted priced factors correlated with the observed

factors. Their methodology accounts for potential measurement error in the observed factors and detects

when observed factors are spurious or even useless. I use a large set of standard portfolios of U.S. equities.

It includes 460 portfolios at daily frequency: 100 portfolios sorted by size and book-to-market ratio, 100

portfolios sorted by size and profitability, 100 portfolios sorted by size and investment, 25 portfolios sorted

by size and short-term reversal, 25 portfolios sorted by size and long-term reversal, 25 portfolios sorted

by size and momentum, 25 portfolios sorted by profitability and investment, 25 portfolios sorted by book
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and investment, 25 portfolios sorted by book-to-market and profitability, and 10 industry portfolios. See

Kenneth French’s website.

I use SDF moments computed under CRRA preference with α = 2 and first estimate the price of risks

of the beta pricing model (40). Table 21 presents the estimates of the price of risk for each factor. The

Giglio and Xiu (2017) t-ratios are reported. The price of the variance, skewness, and kurtosis of the SDF is

positive and statistically significant at any horizon with t-ratios higher than three. Further, the price of risk

of all factors increases with the maturity. This features an upward sloping term structure of the price of risk

of the SDF moments. I further estimate the price of SDF moments risk, in presence of the Hou, Xue, and

Zhang (2015) factors by running the specification9

E [Ri]−R f = λ0 +λMKT β
i
MKT +λM (2)β

i
M (2) +λM (3)β

i
M (3) +λM (4)β

i
M (4) (47)

+λMEβ
i
ME +λI/Aβ

i
I/A +λROEβ

i
ROE ,

where ME is the difference between the return on a portfolio of small size stocks and the return on a

portfolio of big size stocks, I/A is the difference between the return on a portfolio of low investment stocks

and the return on a portfolio of high investment stocks, and ROE is the difference between the return on

a portfolio of high profitability stocks and the return on a portfolio of low profitability stocks. Table 22

reports the results. The prices of the SDF variance, SDF skewness, and SDF kurtosis are all significant and

positive, with a t-ratio above three. All prices of risk increase with the option maturity used. This features

an upward term structure of the price of the SDF moments. Second, I estimate the price of risks of the

beta pricing model (41). Table 23 presents the estimates of the price of risk for each factor. The prices of

risks of the SDF variance premium are negative and highly significant at all maturities with t-ratios higher

than three. Note that the SDF variance premium, as opposed to the SDF variance, defined in (13) is often

negative. See the summary statistics of both the physical and risk-neutral variances of the SDF in Tables

1 and 2, respectively. In absolute value, the price of risks are upward sloping. The prices of risks of the

SDF skewness premium and SDF kurtosis premium factors are all positive, significant (with a t-stat above

three) and increase with the investment horizon, featuring an upward slopping term structure of the price of

risks. Note that the summary statistics of both the physical and risk-neutral skewness of the SDF in Tables

9I am grateful to Kewei Hou and Lu Zhang for providing the ME, I/A, and ROE factors.
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1 and 2 indicate that the SDF-based skewness risk premium is often positive. Similarly, Table 3 shows

that the SDF-based kurtosis risk premium is often positive as well. The Fama and French (2016) factors

SMB, HML, and RMW are not significant, while the CMA factor is marginally significant with a t-ratio of

approximately 1.74.

Overall the sign of the price of the SDF variance and kurtosis are consistent with the predictions of

Results 1–5 while the price of the SDF skewness is not consistent with Results 1–5. Note that, I obtain a

similar finding with the predictive regressions in Section 5.

I further estimate the price of risk by running specification

E [Ri]−R f = λ0 +λMKT β
i
MKT +λM R P (2)β

i
M R P (2) +λM R P (3)β

i
M R P (3) +λM R P (4)β

i
M R P (4) (48)

+λMEβ
i
ME +λI/Aβ

i
I/A +λROEβ

i
ROE .

Results are presented in Table 24. The estimates of the price of the SDF moment risk premium are signifi-

cant at all horizons and are comparable to those obtained in Table 23.

8. Conclusion

I investigate whether the real-time distribution of the SDF contains a rich set of information that helps

understand risk and return in the stock market. First, I theoretically derive closed-form expressions of the

conditional physical moments and the conditional risk-neutral moments of the SDF under CRRA prefer-

ences and also under preferences that depart from CRRA preferences. The conditional moments can be

recovered in real time from a cross-section of option prices, provided that the risk aversion is known. I

further use the moments of the SDF to derive conditional expected excess return and conditional Sharpe

ratios of SDF-based hedging strategies that yield returns that are positively correlated with the SDF.

Second, I empirically estimate the conditional moments of the SDF. For maturities in range of one

month up to one year, the conditional moments of the SDF are time-varying and highly volatile, and

exhibit fat tails. The magnitude of the conditional expected excess return and conditional Sharpe ratios

of SDF-based hedging strategies varies significantly over time and is economically large in crisis periods.

I show that the conditional moments of the SDF strongly predict the excess market return in sample and
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out-of-sample when the maturity of options used varies from four months to twelve months.

I further investigate the implications of the real-time conditional distribution of the SDF for the cross-

section of returns. The theory suggests that stocks with high sensitivity to the SDF variance (kurtosis)

exhibit on average high return, while stocks with high sensitivity to the SDF skewness exhibit on average

low return. To verify this empirically, I first use the two-pass cross-sectional methodology to infer the price

of the SDF variance, SDF skewness, and SDF kurtosis. I use various Fama and French sorted portfolios

based on characteristics, and show that SDF moments are priced in the cross-section of returns after con-

trolling for the Fama and French five factor model, risk neutral moments of the market return, variance

risk premium, and the Left Risk-Neutral Variation measures. The price of SDF variance, SDF skewness,

and SDF kurtosis risks are highly significant with t-ratios that are often above three. I find that the price of

the SDF variance (kurtosis) is often positive when the two-pass methodology is applied. This shows that

stocks with high exposure to SDF variance exhibit high returns on average. Consistent with the theoretical

predictions, I also find that the price of the SDF skewness is negative. In contrast, when I use portfolios

formed on size and operating profitability, the sign of the SDF moments risks are not often consistent with

the theory. I further show that the SDF-based moment risk premium, defined as the difference between the

physical and risk-neutral moments of the SDF, are priced in the cross-section of returns.

Finally, I use the three-pass cross-sectional regression methodology to infer the price of SDF moments

from a large set of standard portfolios of U.S. equities and find that the prices of SDF variance, skewness,

and kurtosis are all positive. While the price of the SDF variance (kurtosis) is consistent with the theory,

the price of the SDF skewness is not consistent with the theoretical predictions.
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A. Appendix

Proof of Result 1. Denote by υ = u
′−1 the inverse of u

′
. Since υ is the inverse function of u,

υ [m] = RM. The third-order Taylor expansion series of υ [m] around m = E(m) produces

RM = υ [m] = υ [m]+
3

∑
k=1

1
k!

(m−m)k
{

∂kυ [y]
∂ky

}
y=m

. (A1)

The expected excess market return is, therefore,

E(RM−R f ) =−R fCOV(m,RM) . (A2)

Thus, I replace (A1) in (A2) and show that the expected excess market return is given by

E(RM−R f ) = A1M (2)+A2M (3)+A3M (4), (A3)

where

Ak =−R f
1
k!

{
∂kυ [y]

∂ky

}
y=m

. (A4)

To derive the first-, second- and third-order derivative of υ, note that

υ

[
u
′
[x]
]
= x. (A5)

The first-order derivative of (A5) with respect to x is

∂υ

[
u
′
[x]
]

∂(u′ [x])

∂

(
u
′
[x]
)

∂x
= 1,

which simplifies to
∂υ

[
u
′
[x]
]

∂(u′ [x])
u
′′
[x] = 1.

Hence, denoting y = u
′
[x], it follows that

∂υ [y]
∂y

=
1

u′′ [υ [y]]
< 0. (A6)
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Now, take, the first derivative of (A6) with respect to y:

∂2υ [y]
∂2y

=− u
′′′
(υ [y])

(u′′ (υ [y]))3 > 0. (A7)

Next, take the first derivative of (A7) with respect to y:

∂3υ [y]
∂3y

=
3
(

u
′′′
[υ [y]]

)2
−u

′′′′
(υ [y])u

′′
[υ [y]]

(u′′ [υ [y]])5 .

The absolute prudence is defined as

−u
′′′
[x]

u′′ [x]
,

A decreasing absolute prudence implies

(
u
′′′
[x]
)2
−u

′′′′
[x]u

′′
[x]

(u′′ [x])2 ≤ 0,

Observe that

∂3υ [y]
∂3y

=
3
(

u
′′′
[υ [y]]

)2
−u

′′′′
[υ [y]]u

′′
[υ [y]]

(u′′ [υ [y]])5

=
2
(

u
′′′
[υ [y]]

)2

(u′′ [υ [y]])5︸ ︷︷ ︸
≤0

− 1

(u′′ [υ [y]])3︸ ︷︷ ︸
≤0

(
u
′′′′
[υ [y]]u

′′
[υ [y]]−

(
u
′′′
[υ [y]]

)2
)

(u′′ [υ [y]])2︸ ︷︷ ︸
≤0

.

Hence,
∂3υ [y]

∂3y
≤ 0,

Proof of Result 2. The expected excess return on an individual asset is

Et (Ri−R f ) =−R fCOV(Ri,m) . (A8)
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A third-order Taylor expansion series of the SDF, m = u
′
[RM], around E(RM) gives

m = B0 +B1RM +B2R2
M +B3R3

M.

Next, I replace the SDF in (A8) and decompose the expected excess return as

E(Ri−R f ) = B̃1COV(Ri,RM)+ B̃2COV
(
Ri,R2

M
)
+ B̃3COV

(
Ri,R3

M
)
, (A9)

where B̃i =−R f Bi for i = 1, 2, and 3. This equation holds for any return. Consider the following return:

R( j)
M =

R j
M

Et

(
mR j

M

) for j = 2, 3 and 4. (A10)

Observe that

R( j)
M =

R j
M

(E(m))E
(

m
E(m)R

j
M

) = R f
R j

M

E∗
(

R j
M

) . (A11)

Thus,

R( j)
M −R f = R f

 R j
M

E∗
(

R j
M

) −1

 . (A12)

Next, the expected value of (A12) when j = 2,3 and 4 produces the following:

E
(

R( j)
M −R f

)
= R f

(
E
(

R j
M

)
−E∗

(
R j

M

))
E∗
(

R j
M

) . (A13)

Recall that R j
M = (υ [m]) j. Thus, the Taylor expansion series of this expression around the SDF mean

m = m gives

(υ [m]) j ' (υ [m]) j +φ
( j)
1 (m−m)+φ

( j)
2 (m−m)2 +φ

( j)
3 (m−m)3 , (A14)

where φ
( j)
1 , φ

( j)
2 , and φ

( j)
3 are defined in (7). Now, I apply the expectation operator under the physical

measure to (A14):

E
[
(υ [m]) j

]
' (υ [m]) j +φ

( j)
2 E

(
(m−m)2

)
+φ

( j)
3 E

(
(m−m)3

)
. (A15)
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Second, I apply the expectation operator under the risk-neutral measure to (A14):

E∗
(
(υ [m]) j

)
' (υ [m]) j +φ

( j)
1 E∗ ((m−m))+φ

( j)
2 E∗

(
(m−m)2

)
+φ

( j)
3 E∗

(
(m−m)3

)
. (A16)

Since RM = υ [m], the difference between (A15) and (A16) yields

E
(

R j
M

)
−E∗

(
R j

M

)
= φ

( j)
1 (E((m−m))−E∗ ((m−m)))

+φ
( j)
2

(
E
(
(m−m)2

)
−E∗

(
(m−m)2

))
+φ

( j)
3

(
Et

(
(m−m)2

)
−E∗

(
(m−m)2

))
. (A17)

According to Result 1,

(E((m−m))−E∗ (m−m)) = − 1
m

M (2), (A18)(
E
(
(m−m)2

)
−E∗

(
(m−m)2

))
= − 1

mt
M (3), and (A19)(

E
(
(m−m)3

)
−E∗

(
(m−m)3

))
= − 1

m
M (4). (A20)

I then replace (A18)-(A20) in (A17):

E∗
(

R j
M

)
−E

(
R j

M

)
= φ

( j)
1

1
m

M (2)+φ
( j)
2

1
m

M (3)+φ
( j)
3

1
m

M (4). (A21)

This ends the proof.

Proof of Result 3. I observe that moments of the SDF M (i) for i = 2,3,4 can be expressed as

M (i) = COV
(

m,(m−m)i−1
)
,

where m is the mean of the SDF. Define

ψ
(i) [x] =

(
u
′
[x]−m

)i−1
.
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Since m = u
′
(RM), it follows that

M (i) = COV
(

m,ψ(i) [RM]
)
. (A22)

The third-order Taylor expansion series of ψi [x] around x0 = E(RM) produces the following:

ψ
(i) [x] = ψ

(i) [x0]+
1
1!

ψ
(i)
1 (x− x0)+

1
2!

ψ
(i)
2 (x− x0)

2 +
1
3!

ψ
(i)
3 (x− x0)

3 , (A23)

with

ψ
(i)
1 =

{
∂ψ(i) [x]

∂x

}
x=x0

, ψ
(i)
2 =

{
∂2ψ(i) [x]

∂2x

}
x=x0

, ψ
(i)
3 =

{
∂3ψ(i) [x]

∂3x

}
x=x0

.

Together, (A23) and (A22) produce

M (i) = COV
(

m,
1
1!

ψ
(i)
1 (x− x0)+

1
2!

ψ
(i)
2 (x− x0)

2 +
1
3!

ψ
(i)
3 (x− x0)

3
)

= ψ
(i)
1 COV(m,(x− x0))+

1
2

ψ
(i)
2 COV

(
m,(x− x0)

2
)
+

1
3!

ψ
(i)
3 COV

(
m,(x− x0)

3
)
.

Note that

x− x0 = RM−E [RM] = rM.

Hence,

M (i) = ψ
(i)
1 COV(m,rM)+

1
2

ψ
(i)
2 COV

(
m,r2

M
)
+

1
3!

ψ
(i)
3 COV

(
m,r3

M
)

= ψ
(i)
1 (E(mrM)−E(m)E(rM))+

1
2

ψ
(i)
2

(
E
(
mr2

M
)
−E(m)E

(
r2

M
))

+
1
3!

ψ
(i)
3

(
E
(
mr3

M
)
−E(m)E

(
r3

M
))

= ψ
(i)
1 E [m] (E∗ (rM)−E(rM))+

1
2

ψ
(i)
2 E(m)

(
E∗
(
r2

M
)
−E

(
r2

M
))

+
1
3!

ψ
(i)
3 E(m)

(
E∗
(
r3

M
)
−E

(
r3

M
))

.

Proof of Result 4. In case of a CRRA utility,
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u
′
[x] = x−α and ψ(i) [x] = (x−α−m)

i−1. The SDF (up to a constant) is m = R−α

M , and

M (i) = COV
(

m,(m−m)i−1
)

= COV
(

m,
(
R−α

M −m
)i−1

)
= COV

(
m,ψ(i) [RM]

)
. (A24)

The third-order Taylor expansion series of ψi [x] around x0 = E(RM) produces the following:

ψ
(i) [x] = ψ

(i) [x0]+
∞

∑
k=1

1
k!

ψ
(i)
k (x− x0)

k , (A25)

with

ψ
(i)
k =

{
∂kψ(i) [x]

∂kx

}
x=x0

.

Together (A24) and (A25) produce

M (i) = COV

(
m,

∞

∑
k=1

1
k!

ψ
(i)
k (x− x0)

k

)

Note that

x− x0 = RM−E [RM] = rM,

Hence,

M (i) =
∞

∑
k=1

ψ
(i)
k COV

(
m,rk

M

)
,

I denote by rM = RM−E(RM), thus, the moments of the SDF can be decomposed as

M (i) =
∞

∑
k=1

ψ
(i)
k

(
E
(

mrk
M

)
−E(m)E

(
rk

M

))
=

∞

∑
k=1

ψ
(i)
k (E(m))

(
E
(

m
E(m)

rk
M

)
−E

(
rk

M

))
=

∞

∑
k=1

ψ
(i)
k (E(m))

(
E∗
(

rk
M

)
−E

(
rk

M

))
.

This ends the proof.

Proof of Result 5. By applying (A9) to the market return and also to the two returns in (A10), the
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expected excess return on any individual security can alternatively be written as

E(Ri−R f ) = βi,1 (E(RM−R f ))+βi,2

(
E
(

R(2)
M −R f

))
+βi,3

(
E
(

R(3)
M −R f

))
. (A26)

From Result 1, recall that

E(RM−R f ) = A1M (2)+A2M (2)+A3M (4). (A27)

Together, (A21) and (A13) allow for writing the following:

E
(

R(2)
M −R f

)
= γ1

(
−φ

(2)
1

1
m

M (2)−φ
(2)
2

1
m

M (3)−φ
(2)
3

1
m

M (4)
)

and (A28)

E
(

R(3)
M −R f

)
= γ2t

(
−φ

(3)
1

1
m

M (2)−φ
(3)
2

1
m

M (3)−φ
(3)
3

1
m

M (4)
)
, (A29)

with

γ1 =
R f

E∗
(
R2

M

) and γ2 =
R f

E∗
(
R3

M

) .
Now, I replace (A27), (A28), and (A29) in the expected excess return decomposition (A26) and show that

E(Ri−R f ) = β
(2)
i M (2)+β

(3)
i M (3)+β

(4)
i M (4),

where

β
(2)
i = βi,1A1−

γ1

m
βi,2φ

(2)
1 −

γ2

m
βi,3φ

(3)
1

β
(3)
i = βi,1A2−

γ1

m
βi,2φ

(2)
2 −

γ2

m
βi,3φ

(3)
2 , and

β
(4)
i = βi,1A3−

γ1

m
βi,2φ

(2)
3 −

γ2

m
βi,3φ

(3)
3 .

Proof of Result 12. I first observe that

M ∗(3) = E∗
(
(m−E∗ (m))3

)
,

= E
(

m
E [m]

(m−E∗ (m))3
)
,

=
1

E(m)
E
(

m(m−E∗ (m))3
)
.
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Taylor expansion series of m(m−E∗ (m))3 around m = E(m) = m gives

m(m−E∗ (m))3 = A0 +
1
1!

A1 (m−m)+
1
2!

A2 (m−m)2 +
1
3!

A3 (m−m)3 +
1
4!

A4 (m−m)4 ,

where

A0 = m(m−E∗ (m))3 , (A30)

A1 = (m−E∗ (m))3 +3m(m−E∗ (m))2 ,

A2 = 6(m−E∗ (m))2 +6m(m−E∗ (m)) , and

A3 = 18(m−E∗ (m))+6m,

A4 = 24. (A31)

Hence,

E
(

m(m−E∗ (m))3
)
= A0 +

1
2!

A2M (2)+
1
3!

A3M (3)+
1
4!

A4M (4).

Next, the following inequalities hold:

A0 = −
(

M (2)
)3

< 0, (A32)

1
2!

A2 =

(
3

1
m2

(
M (2)

)2
−3M (2)

)
> 0,

1
3!

A3 =

(
−3

1
m

M (2)+m
)
< 0, and

1
4!

A4 = 1. (A33)

Finally, the risk-neutral skewness can be expressed as a function of all physical moments of the SDF:

M ∗(3) =
1
m

{
A0 +

1
2!

A2M (2)+
1
3!

A3M (3)+
1
4!

A4M (4)
}
. (A34)

Assume that the skewness of the SDF is positive. Is the risk neutral skewness of the SDF also positive?

Expression (A34) shows that the negative coefficients A0 and A3 are functions of the second moment of

the SDF. Thus a volatile second moment of the SDF potentially explains why the skewness of the SDF can

be negative.

55



B. Appendix

Proof of Result 6. I start by recognizing the following identity:

M (n+1)
t [T ] = Et ((mt→T −Et (mt→T ))(mt→T −Et (mt→T ))

n)

= (Et (mt→T ))Et

(
mt→T

Et (mt→T )
(mt→T −Et (mt→T ))

n
)
− (Et (mt→T ))Et ((mt→T −Et (mt→T ))

n)

= (Et (mt→T ))
(

M ∗(n)
t [T ]−M (n)

t [T ]
)
,

with

N ∗(n)
t [T ] = Et

(
mt→T

(Et (mt→T ))
(mt→T −Et (mt→T ))

n
)
= E∗t ((mt→T −Et [mt→T ])

n) . (B1)

Proof of Result 7. The expected return on the SDF moments are

Et

(
R (n)

t→T

)
=

Et
(
mn−1

t→T

)
Et
(
mt→T ×mn−1

t→T

) = Et
(
mn−1

t→T

)
(Et (mt→T ))E∗t

(
mn−1

t→T

) ,
and the expected excess returns are

Et

(
R (n)

t→T −R f ,t→T

)
= R f ,t→T

(
Et
(
mn−1

t→T

)
E∗t
(
mn−1

t→T

) −1

)

= R f ,t→T
Et
(
mn−1

t→T

)
−E∗t

(
mn−1

t→T

)
E∗t
(
mn−1

t→T

)
= R f ,t→T

1
R f ,t→T

E∗t
(
mn−2

t→T

)
−E∗t

(
mn−1

t→T

)
E∗t
(
mn−1

t→T

) ,

where

Et
(
mn−1

t→T

)
=

1
R f ,t→T

E∗t
(
mn−2

t→T

)
.

We have (
R (n)

t→T

)2
=

(
mn−1

t→T

)2(
Et
(
mt→T ×mn−1

t→T

))2 =

(
mn−1

t→T

)2

(Et (mt→T ))
2 (E∗t (mn−1

t→T

))2 (B2)

and (
R (n)

t→T

)2
=

(
mn−1

t→T

)2(
Et
(
mt→T ×mn−1

t→T

))2 =

(
mn−1

t→T

)2

(Et (mt→T ))
2 (E∗t (mn−1

t→T

))2 . (B3)
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Thus,

Et

((
R (n)

t→T

)2
)

=
Et

(
m2(n−1)

t→T

)
(Et (mt→T ))

2 (E∗t (mn−1
t→T

))2

=
Et

(
mt→T m2(n−1)−1

t→T

)
(Et (mt→T ))

2 (E∗t (mn−1
t→T

))2

=
(Et (mt→T ))Et

(
mt→T

(Et(mt→T ))
m2(n−1)−1

t→T

)
(Et (mt→T ))

2 (E∗t (mn−1
t→T

))2

= R f ,t→T
E∗t
(
m2n−3

t→T

)(
E∗t
(
mn−1

t→T

))2 .

and

Et

((
R (n)

t→T

)2
)
= R f ,t→T

E∗t
(
m2n−3

t→T

)(
E∗t
(
mn−1

t→T

))2 ,

since

Et

(
R (n)

t→T

)
=

E∗t
(
mn−2

t→T

)(
E∗t
(
mn−1

t→T

))2 .

Replace both expressions in the Sharpe ratio expression to yield the result.

Proof of Result 8. I apply (I-A5) to g [RMt→T ] = Rα
Mt→T with x = RMt→T and take the expectation

under the risk-neutral measure to get

E∗t (Rα
Mt→T ) = 1+α(R f ,t→T −1)+

α(α−1)
S2

t
R f ,t→T

(∫
∞

St

(
K
St

)α−2

Ct [K]dK +
∫ St

0

(
K
St

)α−2

Pt [K]dK

)
.

The SDF is, therefore,

mt→T =
δt

R f ,t
R−α

Mt→T with δt = E∗t (Rα
Mt→T ) .

Note that

1
R f ,t→T

E∗t ((mt→T −Et (mt→T ))
n) =

1
R f ,t→T

E∗t
((

E∗t (Rα
Mt→T )

R f ,t→T
R−α

Mt→T −
1

R f ,t→T

)n)
=

1
Rn+1

f ,t→T
E∗t
((

E∗t (Rα
Mt→T )

Rα
Mt→T

−1
)n)

.
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Since RMt→T = ST
St

, I denote

h [ST ] =

(
δt

(
ST

St

)−α

−1

)n

with δt = E∗t (Rα
Mt→T )

and derive the following expressions:

h [ST ] =

(
δt

(
ST

St

)−α

−1

)n

, hS [St ] =

(
∂h [ST ]

∂ST

)
ST=St

, and hSS [K] =

(
∂2h [ST ]

∂2ST

)
ST=K

. (B4)

Thus,

h [St ] = (δt −1)n ,

hS [St ] = −nα(δt −1)n−1
δt

1
St
, and

hSS [K] = n(n−1)δ
2
t α

2 1
S2

t

(
δt

(
K
St

)−α

−1

)n−2(
K
St

)−2(1+α)

+nδtα(α+1)
1
S2

t

(
δt

(
K
St

)−α

−1

)n−1(
K
St

)−(α+2)

.

Since

h [ST ] = h [St ]+ (ST −St)hS [St ]+
∫

∞

St

hSS [K] (ST −K)+ dK +
∫ St

0
hSS [K] (K−ST )

+ dK,

I take the expected value under the risk-neutral measure of h [ST ] and obtain the following expression:

E∗t (h [ST ]) = h [St ]+ (R f ,t→T −1)SthS [St ]+R f ,t→T

{∫
∞

St

hSS [K]Ct [K]dK +
∫ St

0
hSS [K]Pt [K]dK

}
.

Hence,

N ∗(n)
t [T ] = E∗t ((mt→T −Et (mT ))

n) =
1

Rn
f ,t→T

E∗t (h [ST ]) . (B5)

This ends the proof.

Proof of Result 9. I recall that the SDF is of the form

mt→T =
δt

R f ,t→T

(
ST

St

)−α

.

The n th risk-neutral moment is M ∗(n)
t [T ] = E∗t ((mt→T −E∗t (mt→T ))

n). This risk-neutral moment can be
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expanded as follows:

M ∗(n)
t [T ] =

(
δt

R f ,t→T

)n

E∗t

(((
ST

St

)−α

−ζt

)n)

=

(
δt

R f ,t→T

)n

f [ST ] ,

where

f [ST ] =

((
ST

St

)−α

−ζt

)n

ζt = E∗t

((
ST

St

)−α
)
.

I use the spanning formula (I-A5) in Internet Appendix B to decompose f [ST ] as

f [ST ] = (1−ζt)
n +(ST −St) fS [St ]+

∫
∞

St

fSS [K] (ST −K)+ dK +
∫ St

0
fSS [K] (K−ST )

+ dK.

Hence,

E∗t ( f [ST ]) = (1−ζt)
n +(R f ,t→T −1)St fS [St ]+R f ,t→T

{∫
∞

St

fSS [K]Ct [K]dK +
∫ St

0
fSS [K]Pt [K]dK

}
,

where

fS [ST ] =−
nα

St

(
ST

St

)−α−1
((

ST

St

)−α

−ζt

)n−1

, fS [St ] =−
nα

St
(1−ζt)

n−1 ,

and

fSS [ST ] =
nα

S2
t
(α+1)

(
ST

St

)−α−2
((

ST

St

)−α

−ζt

)n−1

+
n(n−1)(α2)

S2
t

(
ST

St

)−2α−2
((

ST

St

)−α

−ζt

)n−2

.

The same approach can be use to show that

ζt = 1−α(R f ,t→T −1)+R f ,t→T
α(1+α)

S2
t

{∫
∞

St

(
K
St

)−α−2

Ct [K]dK +
∫ St

0

(
K
St

)−α−2

Pt [K]dK

}
.
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Proof of Result 10. Note that

mn−2
t→T =

δ
n−2
t

Rn−2
f ,t→T

Rα(2−n)
M,t→T =

δ
n−2
t

Rn−2
f ,t→T

(
ST

St

)α(2−n)

. (B6)

I use the spanning formula (I-A5) in the Internet Appendix B to show the following:

(
ST

St

)α(2−n)

= 1+α(2−n)
(

ST

St
−1
)
+

α(2−n)(α(2−n)−1)
S2

t


∫

∞

St

(
K
St

)α(2−n)−2
(ST −K)+ dK

+
∫ St

0

(
K
St

)α(2−n)−2
(K−ST )

+ dK


I then take the conditional expectation under the risk-neutral measure to get

E∗t

((
ST

St

)α(2−n)
)

= 1+α(2−n)(R f ,t→T −1)+
α(2−n)(α(2−n)−1)R f ,t→T

S2
t


∫

∞

St

(
K
St

)α(2−n)−2
Ct [K]dK

+
∫ St

0

(
K
St

)α(2−n)−2
Pt [K]dK

 .
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Table 1
Conditional Moments of the SDF under CRRA Preferences This table reports the mean, standard
deviation, skewness, kurtosis, and quantiles of the SDF variance, skewness, and kurtosis at various horizons
(reported in days).

Maturities Mean (%) Std dev Skew Kurt Min 1% 10% 25% 50% 75% 99% Max
(days)

M (2)
t [T ]

30 3.28 0.03 4.64 37.88 0.01 0.01 0.01 0.01 0.02 0.04 0.06 0.45
60 6.58 0.06 3.96 28.30 0.01 0.02 0.02 0.03 0.05 0.08 0.12 0.79
91 10.10 0.08 3.40 20.92 0.02 0.03 0.04 0.05 0.08 0.12 0.17 0.99
122 13.71 0.10 3.23 19.19 0.03 0.04 0.05 0.07 0.11 0.17 0.23 1.23
152 17.29 0.12 3.04 17.55 0.04 0.05 0.07 0.09 0.15 0.21 0.29 1.47
182 20.95 0.14 2.80 14.96 0.06 0.07 0.09 0.12 0.18 0.25 0.35 1.56
273 32.60 0.20 2.55 12.61 0.09 0.11 0.14 0.19 0.29 0.38 0.53 2.07
365 45.28 0.28 2.51 12.38 0.13 0.15 0.20 0.27 0.40 0.53 0.74 2.88

M (3)
t [T ]

30 0.59 0.02 13.32 246.03 -0.07 0.00 0.00 0.00 0.00 0.00 0.01 0.56
60 1.73 0.05 11.76 205.50 -0.03 0.00 0.00 0.00 0.01 0.02 0.03 1.25
91 3.36 0.08 9.11 129.83 -0.03 0.00 0.00 0.01 0.02 0.03 0.07 1.75
122 5.44 0.11 8.18 109.72 -0.04 0.00 0.00 0.01 0.03 0.05 0.11 2.46
152 7.86 0.15 7.40 92.70 -0.04 0.00 0.01 0.02 0.04 0.08 0.16 3.14
182 10.69 0.18 6.16 63.27 -0.05 0.00 0.01 0.03 0.06 0.11 0.22 3.43
273 22.47 0.35 4.84 38.54 -0.07 0.00 0.02 0.05 0.12 0.25 0.48 5.49
365 40.13 0.62 4.52 33.12 -0.08 0.00 0.03 0.09 0.22 0.44 0.87 9.29

M (4)
t [T ]

30 0.36 0.02 18.93 452.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.70
60 1.28 0.06 18.14 449.60 0.00 0.00 0.00 0.00 0.00 0.01 0.02 2.08
91 2.82 0.11 14.62 313.87 0.00 0.00 0.00 0.00 0.01 0.02 0.05 3.34
122 5.09 0.17 13.83 295.76 0.00 0.00 0.00 0.01 0.02 0.04 0.09 5.35
152 7.97 0.24 12.78 261.59 0.00 0.00 0.01 0.01 0.03 0.06 0.14 7.36
182 11.66 0.32 10.33 172.17 0.00 0.00 0.01 0.02 0.04 0.09 0.21 8.38
273 30.31 0.73 8.07 106.74 0.01 0.01 0.02 0.06 0.12 0.26 0.58 16.58
365 65.33 1.54 7.44 90.97 0.02 0.02 0.04 0.12 0.25 0.55 1.29 33.95
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Table 2
Conditional Risk-Neutral Moments of the SDF under CRRA Preferences This table reports the mean,
standard deviation, skewness, kurtosis, and quantiles of the risk-neutral SDF variance, skewness, and kur-
tosis at various horizons (reported in days).

Maturities Mean (%) Std dev Skew Kurt Min 1% 10% 25% 50% 75% 99% Max
(days)

M ∗(2)
t [T ]

30 3.66 0.04 6.65 75.69 0.01 0.01 0.01 0.02 0.03 0.04 0.07 0.80
60 7.55 0.08 5.81 60.67 0.01 0.02 0.02 0.03 0.06 0.09 0.14 1.41
91 11.79 0.11 4.71 40.62 0.02 0.03 0.04 0.06 0.09 0.14 0.21 1.76
122 16.22 0.14 4.29 34.52 0.03 0.04 0.06 0.08 0.13 0.19 0.29 2.18
152 20.68 0.17 3.88 28.66 0.04 0.05 0.08 0.11 0.17 0.24 0.36 2.45
182 25.28 0.20 3.44 22.48 0.05 0.07 0.09 0.14 0.20 0.30 0.45 2.55
273 40.26 0.30 2.82 15.26 0.08 0.11 0.14 0.22 0.32 0.48 0.73 3.30
365 57.11 0.43 2.56 12.54 0.11 0.14 0.19 0.30 0.45 0.68 1.07 4.17

M ∗(3)
t [T ]

30 0.16 0.01 7.88 223.95 -0.17 -0.02 0.00 0.00 0.00 0.00 0.01 0.28
60 0.04 0.02 -8.01 139.65 -0.49 -0.06 -0.01 0.00 0.00 0.00 0.01 0.23
91 -0.47 0.04 -10.15 161.09 -1.10 -0.17 -0.02 0.00 0.00 0.01 0.01 0.16
122 -1.41 0.08 -10.68 181.54 -2.11 -0.34 -0.03 -0.01 0.00 0.01 0.01 0.13
152 -2.74 0.12 -11.42 220.64 -3.46 -0.52 -0.06 -0.03 0.00 0.01 0.02 0.15
182 -4.53 0.16 -9.10 137.25 -3.96 -0.81 -0.09 -0.05 -0.01 0.00 0.02 0.16
273 -13.89 0.36 -6.96 74.49 -7.15 -1.95 -0.27 -0.14 -0.05 -0.01 0.02 0.16
365 -31.29 0.74 -6.53 65.30 -14.12 -4.08 -0.60 -0.28 -0.13 -0.04 0.00 0.13

M ∗(4)
t [T ]

30 0.25 0.01 14.81 275.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29
60 0.83 0.03 14.76 317.43 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.99
91 1.84 0.06 12.62 246.67 0.00 0.00 0.00 0.00 0.01 0.01 0.03 1.85
122 3.36 0.11 13.21 279.54 0.00 0.00 0.00 0.00 0.01 0.03 0.05 3.51
152 5.36 0.18 15.55 402.47 0.00 0.00 0.00 0.01 0.02 0.04 0.08 6.29
182 7.94 0.24 12.50 265.85 0.00 0.00 0.01 0.01 0.03 0.06 0.13 7.50
273 21.81 0.62 9.56 146.52 0.01 0.01 0.02 0.04 0.09 0.17 0.35 15.92
365 51.08 1.56 10.32 182.19 0.02 0.02 0.04 0.08 0.19 0.36 0.80 43.69
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Table 3
Conditional SDF Moments Premium of the SDF under CRRA Preferences This table reports the
mean, standard deviation, skewness, kurtosis, and quantiles of the SDF variance, skewness, and kurtosis at
various horizons (reported in days).

Maturities Mean (%) Std dev Skew Kurt Min 1% 10% 25% 50% 75% 99% Max
(days)

M (2)
t [T ]−M ∗(2)

t [T ]

30 -0.37 0.01 -12.07 228.77 -0.35 -0.05 -0.01 0.00 0.00 0.00 0.00 0.15
60 -0.97 0.03 -11.01 188.97 -0.63 -0.10 -0.02 -0.01 0.00 0.00 0.00 0.18
91 -1.69 0.04 -8.51 122.13 -0.77 -0.16 -0.04 -0.02 -0.01 0.00 0.00 0.26
122 -2.52 0.05 -7.14 92.70 -0.95 -0.22 -0.06 -0.03 -0.01 0.00 0.00 0.37
152 -3.39 0.06 -5.90 65.42 -0.98 -0.27 -0.08 -0.04 -0.02 0.00 0.00 0.42
182 -4.34 0.07 -4.92 48.67 -1.11 -0.34 -0.11 -0.06 -0.03 -0.01 0.00 0.46
273 -7.71 0.13 -3.00 21.40 -1.37 -0.56 -0.21 -0.11 -0.05 0.00 0.02 0.86
365 -11.91 0.20 -2.27 14.21 -2.05 -0.85 -0.35 -0.18 -0.06 0.00 0.04 1.33

M (3)
t [T ]−M ∗(3)

t [T ]

30 0.43 0.02 15.07 305.54 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.49
60 1.69 0.06 13.55 275.63 0.00 0.00 0.00 0.00 0.01 0.01 0.03 1.73
91 3.83 0.11 10.37 168.10 0.00 0.00 0.00 0.01 0.01 0.03 0.07 2.85
122 6.85 0.18 9.78 154.15 0.00 0.00 0.01 0.01 0.03 0.06 0.13 4.58
152 10.60 0.25 9.56 154.74 0.00 0.01 0.01 0.02 0.05 0.10 0.20 6.60
182 15.22 0.33 7.76 99.33 0.01 0.01 0.02 0.03 0.07 0.14 0.29 7.39
273 36.39 0.69 6.10 58.02 0.01 0.02 0.04 0.08 0.18 0.35 0.71 12.65
365 71.48 1.33 5.72 50.61 0.03 0.05 0.08 0.17 0.35 0.69 1.42 23.43

M (4)
t [T ]−M ∗(4)

t [T ]

30 0.11 0.01 22.48 641.03 -0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.40
60 0.45 0.03 20.33 525.73 -0.11 0.00 0.00 0.00 0.00 0.00 0.01 1.09
91 0.99 0.05 16.10 345.71 -0.23 0.00 0.00 0.00 0.00 0.01 0.02 1.49
122 1.73 0.07 13.89 273.08 -0.38 -0.01 0.00 0.00 0.00 0.01 0.03 1.87
152 2.62 0.09 10.19 153.12 -0.45 -0.01 0.00 0.00 0.01 0.02 0.06 1.89
182 3.73 0.11 9.24 137.86 -0.53 -0.02 0.00 0.00 0.01 0.03 0.09 2.25
273 8.53 0.19 5.03 51.50 -1.49 -0.06 0.00 0.00 0.03 0.09 0.24 2.93
365 14.32 0.36 -4.96 158.82 -9.76 -0.21 -0.02 0.00 0.06 0.18 0.48 3.71
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Table 4
Regression Results This table reports the slopes and adjusted R2 of the regression results. I run the
regression

RM,t→T −R f ,t = b0 +βXt + εt→T , (7)

where Xt represents the variance, skewness, or kurtosis of the SDF. Panel A presents the univariate results
when CRRA preferences are used and the risk aversion parameter is set to α = 2. Panel B presents the
univariate results when preferences that depart from CRRA preferences are used with α = 2, ρ(2) = 5, and
ρ(k) = 0 for k > 2. T-statistics in brackets are computed using Hansen and Hodrick (1980), with the number
of lags equal to the time to maturity in days.

Panel A
Maturity (days) 30 60 91 122 152 182 273 365

M (2)
t [T ] 0.11 0.10 0.14 0.22 0.24 0.24 0.22 0.19
t-stat [0.63] [0.46] [0.83] [2.14] [2.68] [2.61] [2.15] [2.11]

R2(%) 0.39 0.50 1.38 3.87 4.88 5.36 5.53 5.50
R2

OOS(%) 0.30 0.43 1.30 3.80 4.82 5.30 5.46 5.44

M (3)
t [T ] 0.12 0.07 0.12 0.21 0.22 0.23 0.17 0.11
t-stat [0.78] [0.38] [0.71] [2.15] [3.21] [4.64] [3.60] [2.77]

R2(%) 0.22 0.2 0.83 3.99 6.14 8.34 10.44 9.76
R2

OOS(%) 0.12 0.12 0.76 3.92 6.07 8.28 10.37 9.70

M (4)
t [T ] 0.1 0.00 0.04 0.10 0.10 0.11 0.07 0.04
t-stat [0.97] [0.04] [0.44] [2.30] [3.55] [5.25] [4.58] [3.21]

R2(%) 0.15 0.00 0.16 2.12 3.61 5.81 8.22 6.75
R2

OOS(%) 0.06 -0.08 0.08 2.05 3.55 5.76 8.15 6.69

Panel B

Maturity (days) 30 60 91 122 152 182 273 365

M (2)
t [T ] 0.11 0.10 0.14 0.22 0.24 0.24 0.22 0.19
t-stat [0.63] [0.46] [0.84] [2.15] [2.70] [2.64] [2.19] [2.14]

R2(%) 0.39 0.51 1.39 3.91 4.94 5.44 5.71 5.83
R2

OOS(%) 0.30 0.43 1.31 3.82 4.85 5.34 5.51 5.48

M (3)
t [T ] 0.12 0.07 0.12 0.21 0.22 0.23 0.17 0.11
t-stat [0.78] [0.38] [0.71] [2.15] [3.21] [4.65] [3.61] [2.78]

R2(%) 0.22 0.20 0.84 4.00 6.14 8.35 10.45 9.75
R2

OOS(%) 0.13 0.12 0.76 3.93 6.08 8.29 10.38 9.69

M (4)
t [T ] 0.10 0.00 0.04 0.10 0.10 0.11 0.07 0.04
t-stat [0.98] [0.04] [0.44] [2.31] [3.56] [5.26] [4.59] [3.22]

R2(%) 0.15 0.00 0.16 2.12 3.60 5.81 8.22 6.73
R2

OOS(%) 0.06 -0.08 0.08 2.05 3.54 5.76 8.16 6.67
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Table 5
Regression Results This table reports the slopes and adjusted R2 of the regression results. I run the
regression

RM,t→T −R f ,t = b0 +βXt + εt→T , (8)

where Xt represents the variance, skewness, or kurtosis of the simple return. T-statistics in brackets are
computed using Hansen and Hodrick (1980), with the number of lags equal to the time to maturity in days.

Maturity (days) 30 60 91 122 152 182 273 365

VAR∗t (RM,t→T ) 0.46 0.39 0.60 0.94 0.98 0.96 0.78 0.56
t-stat [0.60] [0.41] [0.79] [1.94] [2.17] [1.88] [1.42] [1.09]

R2(%) 0.36 0.40 1.15 3.11 3.62 3.66 2.92 1.88
R2

OOS(%) 0.27 0.32 1.07 3.04 3.56 3.60 2.85 1.81

SKEW∗t (RM,t→T ) -1.29 -3.84 -2.02 -0.37 -0.17 0.29 0.25 -0.34
t-stat [-1.41] [-3.31] [-1.24] [-0.22] [-0.10] [0.14] [0.16] [-0.26]

R2(%) 0.08 1.08 0.47 0.02 0.01 0.03 0.05 0.21
R2

OOS(%) -0.01 1.00 0.39 -0.05 -0.06 -0.03 -0.02 0.14

KURT∗t (RM,t→T ) 3.11 -0.73 2.20 4.57 4.64 4.68 2.55 1.00
t-stat [0.53] [-0.10] [0.47] [2.53] [4.67] [5.65] [3.37] [1.60]

R2(%) 0.09 0.01 0.24 1.96 2.82 3.95 3.57 1.43
R2

OOS(%) -0.01 -0.07 0.16 1.89 2.76 3.89 3.50 1.36
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Table 6
Regression Results This table reports the slopes and adjusted R2 of the regression results. I run the
regression

RM,t→T −R f ,t = b0 +βXt + εt→T , (9)

where Xt represents the variance, skewness or kurtosis of the simple return. T-statistics in brackets are
computed using Hansen and Hodrick (1980), with the number of lags equal to the time to maturity in days.

Maturity (days) 30 60 91 122 152 182 273 365

M (2)
t [T ] 0.21 0.46 0.54 0.92 1.19 1.32 1.24 1.10
t-stat [0.94] [1.74] [1.09] [1.41] [1.83] [2.12] [2.21] [2.18]

VAR∗t (RM,t→T ) -0.47 -1.68 -1.85 -3.32 -4.57 -5.26 -5.13 -4.76
t-stat [-0.40] [-1.64] [-1.00] [-1.11] [-1.45] [-1.64] [-1.84] [-1.88]

R2(%) 0.40 0.70 1.66 4.95 7.29 9.13 12.11 15.74
R2

OOS(%) 0.31 0.62 1.59 4.88 7.22 9.07 12.04 15.67

M (3)
t [T ] 0.12 0.02 0.11 0.22 0.24 0.25 0.20 0.15
t-stat [0.66] [0.09] [0.69] [2.14] [3.06] [4.12] [3.09] [2.58]

SKEW∗t (RM,t→T ) -0.19 -3.70 -1.81 -0.90 -1.23 -1.13 -1.35 -1.70
t-stat [-0.53] [-2.56] [-1.43] [-0.65] [-0.86] [-0.68] [-0.94] [-1.34]

R2(%) 0.22 1.09 1.21 4.13 6.47 8.70 11.66 13.87
R2

OOS(%) 0.12 1.01 1.13 4.07 6.41 8.65 11.62 13.84

M (4)
t [T ] 0.09 0.03 0.01 0.06 0.08 0.09 0.08 0.05
t-stat [7.26] [1.33] [0.57] [1.85] [2.31] [2.75] [2.76] [2.04]

KURT∗t (RM,t→T ) 0.57 -1.74 1.83 2.47 1.87 1.20 -0.59 -1.14
t-stat [0.10] [-0.22] [0.53] [2.38] [2.20] [0.82] [-0.39] [-0.81]

R2(%) 0.15 0.04 0.25 2.42 3.84 5.94 8.30 7.65
R2

OOS(%) 0.06 -0.04 0.17 2.35 3.77 5.88 8.24 7.60
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Table 7
Regression Results This table reports the slopes and adjusted R2 of the regression results. I run the
regression

RM,t→T −R f ,t = b0 +βXt + εt→T , (10)

where Xt represents the variance, skewness, or kurtosis of the SDF or all three moments together. Panel
A presents the univariate results when CRRA preferences are used and the risk aversion parameter is set
to α = 2. Panel B presents the univariate results when preferences that depart from CRRA preferences are
used with α = 2, ρ(2) = 5, and ρ(k) = 0 for k > 2. T-statistics in brackets are computed using Hansen and
Hodrick (1980), with the number of lags equal to the time to maturity in days.

Panel A
Maturity (days) 30 60 91 122 152 182 273 365

M R P (2) -0.17 -0.20 -0.27 -0.46 -0.53 -0.56 -0.48 -0.41
t-stat -0.83 -0.69 -0.90 -2.00 -2.94 -3.92 -2.79 -2.45

R2(%) 0.19 0.52 1.17 3.91 6.28 7.95 10.53 13.67
R2

OOS(%) 0.1 0.44 1.1 3.84 6.22 7.89 10.47 13.61

M R P (3) 0.14 0.01 0.05 0.11 0.11 0.11 0.08 0.04
t-stat 0.81 0.05 0.53 2.39 3.76 5.43 4.24 3.11

R2(%) 0.19 0.00 0.34 2.86 4.40 6.47 8.33 6.95

M R P (4) 0.22 0.04 0.08 0.22 0.30 0.31 0.26 0.13
t-stat 1.55 0.24 0.52 1.88 2.72 3.74 3.04 1.69

R2(%) 0.18 0.02 0.18 1.94 4.06 5.47 6.69 4.33
R2

OOS(%) 0.10 -0.08 0.27 2.79 4.33 6.42 8.27 6.89

Panel B

Maturity (days) 30 60 91 122 152 182 273 365

M R P (2) -0.17 -0.20 -0.27 -0.45 -0.53 -0.55 -0.48 -0.41
t-stat -0.83 -0.69 -0.90 -2.00 -2.94 -3.93 -2.80 -2.45

R2(%) 0.19 0.52 1.17 3.92 6.30 7.98 10.56 13.67
R2

OOS(%) 0.10 0.44 1.10 3.85 6.24 7.92 10.50 13.61

M R P (3) 0.14 0.01 0.05 0.11 0.11 0.11 0.08 0.04
t-stat 0.81 0.05 0.53 2.40 3.77 5.45 4.26 3.12

R2(%) 0.20 0.00 0.34 2.86 4.40 6.48 8.35 6.96
R2

OOS(%) 0.10 -0.08 0.27 2.79 4.34 6.43 8.29 6.89

M R P (4) 0.22 0.04 0.08 0.22 0.30 0.31 0.25 0.13
t-stat 1.56 0.24 0.52 1.88 2.73 3.75 3.03 1.63

R2(%) 0.18 0.02 0.18 1.94 4.07 5.49 6.66 4.10
R2

OOS(%) 0.08 -0.06 0.10 1.87 4.01 5.43 6.59 4.04
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Table 8
Regression Results The table reports the slopes and adjusted R2 of the regression results. I run the
regression

RM,t→T −R f ,t = b0 +βXt + εt→T , (11)

where Xt represents the variance, skewness, or kurtosis of the simple return. T-statistics in brackets are
computed using Hansen and Hodrick (1980), with the number of lags equal to the time to maturity in days.

Maturity (days) 30 60 91 122 152 182 273 365

M R P (2) -0.08 -0.15 -0.18 -0.33 -0.45 -0.50 -0.47 -0.42
t-stat -0.73 -1.62 -0.98 -1.32 -1.74 -1.99 -2.09 -2.08

VAR∗t (RM,t→T ) 0.39 0.21 0.38 0.52 0.38 0.28 0.10 -0.05
t-stat 0.50 0.22 0.58 0.94 0.62 0.38 0.15 -0.08

R2(%) 0.39 0.60 1.49 4.55 6.67 8.18 10.58 13.69
R2

OOS(%) 0.30 0.52 1.41 4.48 6.61 8.12 10.51 13.62

M R P (3) 0.13 0.00 0.07 0.13 0.13 0.14 0.10 0.07
t-stat 0.80 0.02 0.64 2.06 2.81 3.75 3.18 2.52

SKEW∗t (RM,t→T ) -1.06 -3.84 -2.42 -1.89 -2.20 -2.15 -2.01 -1.97
t-stat -1.94 -3.45 -1.40 -0.93 -1.10 -1.04 -1.17 -1.33

R2(%) 0.25 1.08 0.99 3.43 5.35 7.62 10.66 11.88
R2

OOS(%) 0.16 1.00 0.91 3.36 5.28 7.57 10.59 11.82

M R P (4) 0.19 0.07 0.05 0.16 0.24 0.25 0.23 0.16
t-stat 5.73 1.65 0.69 1.64 2.30 2.91 2.72 2.23

KURT∗t (RM,t→T ) 1.38 -1.64 1.70 3.31 3.03 3.22 2.05 1.46
t-stat 0.24 -0.22 0.45 3.11 5.94 3.34 2.29 2.00

R2(%) 0.19 0.07 0.29 2.81 5.11 7.14 8.93 7.24
R2

OOS(%) 0.10 -0.01 0.21 2.74 5.04 7.08 8.86 7.17
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Table 9
Regression Results The table reports the slopes and adjusted R2 of the regression results. I run the
regression

RM,t→T −R f ,t = b0 +βXt + εt→T , (12)

where Xt represents the SDF variance risk premium and LJV, SDF skewness risk premium and LJV, or
SDF kurtosis risk premium and LJV. The predictive regression is a monthly frequency, and the market
return and return on the risk-free rate are consistent with the maturity used. T-statistics are computed using
Hansen and Hodrick (1980), with the number of lags equal to the time to maturity in days.

M R P (2) LJV

Maturity(days) b0 t-stat β t-stat β×102 t-stat R2(%) R2
OOS(%)

30 0.00 -0.09 2.38 2.82 2.93 1.90 4.23 2.43
60 0.00 -0.29 1.24 1.66 4.72 1.73 2.54 0.96
91 0.00 0.14 -0.07 -0.09 1.79 0.51 1.23 -0.33
122 -0.01 -0.48 -0.80 -1.86 0.24 0.07 5.97 4.56
152 -0.01 -0.62 -1.01 -3.42 -0.64 -0.20 10.07 8.76
182 -0.01 -0.75 -0.88 -4.30 0.42 0.15 11.90 10.63
273 -0.02 -0.85 -0.48 -4.69 4.78 1.86 12.70 11.26
365 -0.01 -0.40 -0.38 -6.00 4.98 2.00 13.17 11.77

M R P (3) LJV

Maturity(days) b0 t-stat β t-stat β×102 t-stat R2(%) R2
OOS(%)

30 0.00 -0.15 -0.80 -1.62 1.90 1.11 1.81 0.00
60 -0.01 -1.35 -0.69 -3.58 6.88 3.38 6.42 4.86
91 -0.01 -0.59 -0.26 -1.84 6.34 2.50 3.07 1.53
122 -0.01 -0.63 -0.03 -0.32 5.45 1.73 4.38 2.96
152 -0.01 -0.44 0.04 0.48 5.00 1.29 6.17 4.84
182 0.00 -0.20 0.10 1.66 2.47 0.54 8.20 6.92
273 -0.01 -0.28 0.07 2.29 3.59 0.79 10.07 8.62
365 0.00 0.08 0.03 2.32 5.20 1.20 8.03 6.61

M R P (4) LJV

Maturity(days) b0 t-stat β t-stat β×102 t-stat R2(%) R2
OOS(%)

30 0.00 -0.57 -2.80 -2.60 2.37 1.47 3.59 1.79
60 -0.02 -1.92 -2.14 -4.75 7.61 3.91 8.41 6.86
91 -0.02 -1.31 -1.35 -2.41 9.02 3.09 5.31 3.77
122 -0.01 -0.56 -0.03 -0.07 4.99 1.40 4.35 2.93
152 0.00 0.14 0.72 1.90 -0.35 -0.10 8.57 7.25
182 0.00 -0.01 0.71 3.00 -0.40 -0.16 11.61 10.34
273 -0.01 -0.73 0.32 5.08 5.45 2.19 12.20 10.76
365 -0.02 -0.98 0.20 5.53 10.72 3.89 11.90 10.49
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Table 10
Regression Results The table reports the slopes and adjusted R2 of the regression results. I run the
regression

RM,t→T −R f ,t = b0 +βXt + εt→T , (13)

where Xt represents the SDF variance risk premium and the variance risk premium (VRP), SDF skewness
risk premium and VRP, or SDF kurtosis risk premium and VRP. The predictive regression is a monthly
frequency and the market return and return on the risk-free rate are consistent with the maturity used. T-
statistics are computed using Hansen and Hodrick (1980), with the number of lags equal to the time to
maturity in days.

M R P (2) VRP

Maturity(days) b0 t-stat β t-stat β×102 t-stat R2(%) R2
OOS(%)

30 0.00 0.61 0.54 1.04 0.02 0.99 1.94 0.13
60 -0.01 -1.26 -0.31 -0.85 0.07 4.56 5.49 3.93
91 -0.02 -2.47 -0.60 -2.23 0.13 6.83 11.87 10.37
122 -0.03 -2.93 -0.92 -4.29 0.13 6.08 13.74 12.35
152 -0.04 -3.01 -1.00 -6.10 0.13 6.32 16.27 14.97
182 -0.04 -2.80 -0.94 -6.99 0.14 5.92 17.14 15.89
273 -0.02 -1.28 -0.61 -6.66 0.11 2.96 13.69 12.25
365 -0.01 -0.59 -0.45 -7.31 0.11 2.12 13.75 12.35

M R P (3) VRP

Maturity(days) b0 t-stat β t-stat β×102 t-stat R2(%) R2
OOS(%)

30 0.00 0.23 -0.13 -0.53 0.02 1.12 1.45 -0.37
60 -0.01 -0.78 0.01 0.07 0.07 3.79 5.05 3.49
91 -0.02 -1.82 0.09 1.04 0.13 6.96 10.38 8.86
122 -0.02 -1.99 0.15 2.28 0.13 5.56 10.62 9.23
152 -0.02 -1.80 0.15 2.74 0.13 4.91 11.63 10.32
182 -0.03 -1.96 0.15 4.21 0.14 5.51 13.54 12.28
273 -0.02 -1.10 0.09 5.90 0.12 2.83 12.05 10.61
365 -0.01 -0.37 0.05 5.62 0.12 2.08 9.26 7.84

M R P (4) VRP

Maturity(days) b0 t-stat β t-stat β×102 t-stat R2(%) R2
OOS(%)

30 0.00 0.44 -0.69 -1.00 0.01 0.83 1.80 -0.02
60 -0.01 -0.81 0.05 0.13 0.07 3.57 5.06 3.49
91 -0.02 -1.89 0.33 1.25 0.13 6.47 10.54 9.03
122 -0.02 -2.30 0.66 3.12 0.14 5.95 12.42 11.03
152 -0.03 -2.50 0.81 5.12 0.15 5.94 16.48 15.18
182 -0.03 -2.45 0.76 6.25 0.15 5.18 18.34 17.08
273 -0.02 -1.10 0.44 7.29 0.11 3.49 13.07 11.64
365 0.00 0.07 0.22 2.97 0.12 1.70 7.95 6.53
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Table 11
Regression Results The table reports the slopes and adjusted R2 of the regression results. I run the
regression:

RM,t→T −R f ,t = b0 +βXt + εt→T , (14)

where Xt represents the SDF variance risk premium and the difference between variance risk premium and
the LJV measure (VRP-LJV), SDF skewness risk premium and VRP-LJV, or SDF kurtosis risk premium
and VRP-LJV. The predictive regression is a monthly frequency and the market return and return on the
risk-free rate are consistent with the maturity used. T-statistics are computed using Hansen and Hodrick
(1980), with the number of lags equal to the time to maturity in days.

M R P (2) VRP-LJV

Maturity(days) b0 t-stat β t-stat β×102 t-stat R2(%) R2
OOS(%)

30 0.00 0.64 0.53 1.01 0.02 0.98 1.91 0.10
60 -0.01 -1.24 -0.33 -0.90 0.07 4.57 5.44 3.88
91 -0.02 -2.46 -0.62 -2.32 0.13 6.83 11.86 10.35

122 -0.03 -2.92 -0.93 -4.36 0.13 6.10 13.73 12.34
152 -0.04 -3.01 -1.01 -6.16 0.13 6.35 16.27 14.97
182 -0.04 -2.78 -0.95 -7.04 0.14 5.94 17.12 15.86
273 -0.02 -1.25 -0.62 -6.71 0.11 2.94 13.63 12.20
365 -0.01 -0.56 -0.45 -7.37 0.11 2.10 13.70 12.30

M R P (3) VRP-LJV

Maturity(days) b0 t-stat β t-stat β×102 t-stat R2(%) R2
OOS(%)

30 0.00 0.25 -0.12 -0.50 0.02 1.12 1.43 -0.38
60 -0.01 -0.74 0.01 0.11 0.07 3.77 4.96 3.39
91 -0.02 -1.78 0.10 1.10 0.13 6.95 10.29 8.78

122 -0.02 -1.96 0.15 2.33 0.13 5.54 10.55 9.16
152 -0.02 -1.77 0.15 2.78 0.13 4.89 11.58 10.27
182 -0.03 -1.94 0.15 4.26 0.14 5.50 13.51 12.25
273 -0.02 -1.08 0.09 5.97 0.11 2.81 12.02 10.58
365 -0.01 -0.35 0.05 5.69 0.12 2.07 9.23 7.81

M R P (4) VRP-LJV

Maturity(days) b0 t-stat β t-stat β×102 t-stat R2(%) R2
OOS(%)

30 0.00 0.46 -0.69 -0.98 0.01 0.82 1.77 -0.04
60 -0.01 -0.77 0.06 0.17 0.07 3.55 4.97 3.40
91 -0.02 -1.85 0.35 1.32 0.13 6.46 10.47 8.96

122 -0.02 -2.27 0.67 3.18 0.14 5.94 12.39 11.00
152 -0.03 -2.48 0.82 5.18 0.15 5.95 16.50 15.20
182 -0.03 -2.43 0.77 6.29 0.15 5.19 18.34 17.09
273 -0.02 -1.06 0.44 7.34 0.11 3.46 13.00 11.57
365 0.00 0.13 0.22 2.97 0.11 1.65 7.82 6.40
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Table 12
Estimates of the Price of Risk: This table presents the estimation results of the beta pricing model (40).
The model is estimated using daily returns on the 100 portfolios formed on size and book-to-market. The
column Only FF5 presents results when only the five Fama French factors are used. The data are from Jan-
uary 1996 to August 2015. I report the Fama and MacBeth (1973) t-ratio under correctly specified models
(tFM), the Shanken (1992) t-ratio (tS), the Jagannathan and Wang (1998) t-ratio under correctly specified
models that account for the EIV problem (tJW ), and the Kan, Robotti, and Shanken (2013) misspecification-
robust t-ratios (tKRS). The table also presents the sample cross-sectional R2 of the beta pricing model (40).
p(R2 = 1) is the p-value for the test of H0 : R2 = 1, p(R2 = 0) is the p-value for the test of H0 : R2 = 0, and
p(W ) is the p-value of Wald test under the null hypothesis that all prices of risk are equal to zero. se(R̂2) is
the standard error of R̂2 under the assumption that 0 < R2 < 1.

Maturity Only FF5 30 60 91 122 152 182 273 365
λ0 0.091 0.142 0.148 0.147 0.146 0.145 0.145 0.141 0.138

tFM 8.486 12.925 13.457 13.417 13.302 13.227 13.115 12.643 12.311
tS 8.466 7.866 8.075 8.153 8.156 8.180 8.305 8.271 8.111

tJW 7.636 6.921 6.757 6.859 7.107 7.192 7.280 7.545 7.496
tKRS 6.747 6.755 6.687 6.939 7.240 7.321 7.301 7.126 6.677

λMKT -0.031 -0.019 -0.037 -0.041 -0.046 -0.051 -0.055 -0.060 -0.063
tFM -2.850 -5.311 -5.596 -5.556 -5.484 -5.446 -5.426 -5.220 -5.082
tS -2.848 -4.351 -4.549 -4.549 -4.512 -4.499 -4.529 -4.423 -4.316

tJW -3.368 -4.691 -4.718 -4.730 -4.810 -4.814 -4.825 -4.858 -4.755
tKRS -3.033 -4.905 -4.915 -4.966 -5.027 -5.004 -4.935 -4.667 -4.332

λM (2) 0.531 0.379 0.299 0.257 0.225 0.191 0.127 0.095
tFM 26.743 24.380 21.606 20.356 18.932 16.125 12.161 10.754
tS 16.787 15.057 13.462 12.791 11.978 10.400 8.061 7.170

tJW 6.434 5.850 5.495 5.354 5.098 4.849 4.283 3.908
tKRS 7.140 6.366 5.770 5.484 5.018 4.386 3.195 2.685

λM (3) -0.275 -0.453 -0.407 -0.338 -0.284 -0.239 -0.137 -0.085
tFM 11.612 12.142 13.109 13.612 13.830 13.225 11.453 10.723
tS 7.204 7.456 8.170 8.582 8.801 8.605 7.664 7.215

tJW 4.047 3.993 3.936 3.962 3.915 3.858 3.558 3.327
tKRS 3.699 3.970 4.003 4.028 3.992 3.837 3.205 2.814

λM (4) -0.027 0.175 0.163 0.124 0.100 0.084 0.042 0.022
tFM 10.993 10.726 12.280 12.927 13.702 14.649 15.292 15.299
tS 6.829 6.586 7.657 8.151 8.728 9.574 10.334 10.410

tJW 3.680 3.904 4.066 4.108 4.158 4.260 4.112 3.895
tKRS 3.219 3.659 4.008 4.167 4.254 4.417 4.329 4.010
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Table 12
Estimates of the Price of Risk, continued

Maturity Only FF5 30 60 91 122 152 182 273 365
λSMB 0.053 0.102 0.110 0.112 0.111 0.109 0.113 0.106 0.103
tFM 1.097 1.146 1.182 1.162 1.127 1.114 1.127 1.149 1.161
tS 1.097 1.120 1.153 1.136 1.102 1.089 1.104 1.128 1.141

tJW 1.047 1.069 1.098 1.075 1.038 1.020 1.031 1.052 1.063
tKRS 1.040 1.078 1.103 1.078 1.039 1.019 1.028 1.047 1.058

λHML 0.031 0.155 0.176 0.183 0.185 0.183 0.182 0.177 0.174
tFM 0.958 1.141 1.077 1.098 1.105 1.099 1.096 1.096 1.089
tS 0.958 1.108 1.044 1.066 1.074 1.069 1.068 1.071 1.064

tJW 0.931 1.080 1.027 1.050 1.058 1.052 1.052 1.053 1.045
tKRS 0.926 1.066 1.014 1.038 1.047 1.043 1.044 1.046 1.038

λRMW 0.096 0.047 0.052 0.045 0.030 0.019 0.016 0.011 0.016
tFM 2.464 2.696 3.268 3.299 3.090 2.919 2.789 2.514 2.386
tS 2.461 2.005 2.407 2.450 2.308 2.192 2.129 1.961 1.869

tJW 1.930 1.847 2.259 2.318 2.223 2.146 2.097 1.951 1.860
tKRS 1.646 1.662 2.087 2.165 2.082 2.012 1.973 1.811 1.714

λCMA -0.074 -0.249 -0.298 -0.316 -0.309 -0.303 -0.313 -0.326 -0.322
tFM 0.281 -0.876 -1.184 -1.229 -1.130 -1.114 -1.229 -1.427 -1.497
tS 0.280 -0.613 -0.819 -0.858 -0.795 -0.789 -0.887 -1.056 -1.114

tJW 0.029 -0.634 -0.849 -0.907 -0.853 -0.854 -0.956 -1.145 -1.188
tKRS 0.226 -0.575 -0.768 -0.817 -0.763 -0.759 -0.838 -0.963 -0.983

R2 0.011 0.665 0.692 0.717 0.741 0.763 0.784 0.809 0.818
p(R2 = 1) 0.000 0.026 0.059 0.060 0.066 0.075 0.083 0.111 0.148
p(R2 = 0) 0.074 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

p(W ) 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
se(R̂2) 0.006 0.079 0.078 0.074 0.072 0.068 0.063 0.061 0.063
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Table 13
Estimates of the Price of Risk This table presents the estimation results of the beta pricing model (40).
The model is estimated using daily returns on the 100 portfolios formed on size and operating profitability.
The column Only FF5 presents results when only the five Fama French factors are used. The data are from
January 1996 to August 2015. I report the Fama and MacBeth (1973) t-ratio under correctly specified mod-
els (tFM), the Shanken (1992) t-ratio (tS), the Jagannathan and Wang (1998) t-ratio under correctly specified
models that account for the EIV problem (tJW ), and the Kan, Robotti, and Shanken (2013) misspecification-
robust t-ratios (tKRS). The table also presents the sample cross-sectional R2 of the beta pricing model (40).
p(R2 = 1) is the p-value for the test of H0 : R2 = 1, p(R2 = 0) is the p-value for the test of H0 : R2 = 0, and
p(W ) is the p-value of Wald test under the null hypothesis that all prices of risk are equal to zero. se(R̂2) is
the standard error of R̂2 under the assumption that 0 < R2 < 1.

Maturity Only FF5 30 60 91 122 152 182 273 365
λ0 0.046 0.089 0.087 0.079 0.077 0.074 0.072 0.070 0.071

tFM 4.272 7.566 7.329 6.755 6.524 6.272 6.062 5.947 6.057
tS 4.267 5.928 5.629 5.196 5.133 5.022 4.950 4.965 5.070

tJW 3.912 5.271 4.920 4.586 4.594 4.655 4.765 4.871 4.984
tKRS 3.619 4.506 5.009 4.739 4.647 4.579 4.527 4.483 4.623

λMKT -0.000 -0.015 -0.015 -0.010 -0.013 -0.013 -0.015 -0.017 -0.020
tFM -0.543 -2.586 -2.451 -2.106 -1.981 -1.852 -1.761 -1.664 -1.711
tS -0.543 -2.365 -2.222 -1.911 -1.814 -1.708 -1.635 -1.561 -1.608

tJW -0.658 -2.516 -2.294 -1.981 -1.905 -1.840 -1.803 -1.768 -1.825
tKRS -0.643 -2.378 -2.408 -2.072 -1.969 -1.871 -1.794 -1.745 -1.811

λM (2) 0.223 0.054 0.003 -0.016 -0.017 -0.012 -0.002 0.002
tFM 7.540 7.616 7.469 7.193 6.990 6.868 7.101 7.547
tS 5.944 5.886 5.781 5.693 5.627 5.636 5.957 6.350

tJW 4.256 4.077 3.986 4.039 4.108 4.263 4.557 4.836
tKRS 2.578 3.280 3.611 3.686 3.739 3.816 4.125 4.475

λM (3) 0.659 0.489 0.371 0.257 0.186 0.136 0.056 0.029
tFM 5.535 6.931 7.865 8.201 8.120 7.995 8.002 7.997
tS 4.374 5.372 6.103 6.508 6.553 6.575 6.724 6.736

tJW 3.527 3.860 4.021 4.186 4.268 4.452 4.728 4.826
tKRS 2.509 3.037 3.403 3.669 3.766 3.936 4.398 4.568

λM (4) -0.773 -0.361 -0.222 -0.128 -0.084 -0.058 -0.020 -0.008
tFM 3.206 4.272 5.418 5.965 6.069 6.158 6.339 6.342
tS 2.536 3.314 4.207 4.736 4.900 5.064 5.324 5.340

tJW 2.340 2.805 3.173 3.427 3.514 3.694 3.990 4.077
tKRS 1.563 1.823 2.252 2.590 2.759 2.986 3.475 3.638
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Table 13
Estimates of the Price of Risk, continued

Maturity Only FF5 30 60 91 122 152 182 273 365
λSMB 0.054 0.064 0.067 0.064 0.062 0.056 0.057 0.059 0.061
tFM 1.163 1.263 1.279 1.286 1.250 1.235 1.230 1.199 1.194
tS 1.163 1.253 1.269 1.275 1.241 1.227 1.223 1.193 1.189

tJW 1.099 1.173 1.192 1.202 1.175 1.163 1.160 1.131 1.128
tKRS 1.102 1.174 1.193 1.204 1.177 1.166 1.163 1.134 1.130

λHML 0.019 0.079 0.063 0.066 0.067 0.075 0.076 0.076 0.079
tFM 0.193 -0.208 -0.158 -0.070 0.020 0.116 0.102 0.107 0.133
tS 0.193 -0.185 -0.140 -0.062 0.018 0.105 0.093 0.099 0.123

tJW 0.193 -0.182 -0.138 -0.060 0.017 0.102 0.091 0.097 0.123
tKRS 0.184 -0.179 -0.134 -0.058 0.017 0.098 0.088 0.094 0.117

λRMW 0.095 0.077 0.102 0.118 0.123 0.121 0.117 0.107 0.101
tFM 2,067 1.837 1.845 1.875 1.831 1.843 1.834 1.840 1.848
tS 2.067 1.809 1.814 1.844 1.804 1.818 1.811 1.821 1.828

tJW 1.701 1.509 1.513 1.534 1.499 1.510 1.502 1.506 1.513
tKRS 1.701 1.518 1.522 1.542 1.503 1.513 1.505 1.506 1.513

λCMA -0.078 -0.213 -0.199 -0.190 -0.184 -0.183 -0.181 -0.180 -0.182
tFM -0.530 -1.873 -1.854 -1.770 -1.667 -1.584 -1.523 -1.426 -1.440
tS -0.529 -1.582 -1.543 -1.473 -1.411 -1.358 -1.324 -1.258 -1.273

tJW -0.562 -1.528 -1.533 -1.470 -1.439 -1.415 -1.401 -1.354 -1.381
tKRS -0.524 -1.486 -1.455 -1.352 -1.271 -1.260 -1.256 -1.207 -1.238

R2 0.025 0.318 0.429 0.525 0.569 0.606 0.627 0.629 0.625
p(R2 = 1) 0.000 0.002 0.024 0.147 0.235 0.312 0.288 0.148 0.102
p(R2 = 0) 0.122 0.007 0.001 0.000 0.000 0.000 0.000 0.000 0.000

p(W ) 0.134 0.031 0.004 0.001 0.001 0.000 0.000 0.000 0.000
se(R̂2) 0.018 0.186 0.164 0.130 0.111 0.096 0.088 0.085 0.085
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Table 14
Estimates of the Price of Risk: This table presents the estimation results of the beta pricing model (41).
The model is estimated using daily returns on the 100 portfolios formed on size and book-to-market. The
data are from January 1996 to August 2015. I report the Fama and MacBeth (1973) t-ratio under correctly
specified models (tFM), the Shanken (1992) t-ratio (tS), the Jagannathan and Wang (1998) t-ratio under
correctly specified models that account for the EIV problem (tJW ), and the Kan, Robotti, and Shanken
(2013) misspecification-robust t-ratios (tKRS). The table also presents the sample cross-sectional R2 of the
beta pricing model ((41)). p(R2 = 1) is the p-value for the test of H0 : R2 = 1, p(R2 = 0) is the p-value for
the test of H0 : R2 = 0, and p(W ) is the p-value of Wald test under the null hypothesis that all prices of risk
are equal to zero. se(R̂2) is the standard error of R̂2 under the assumption that 0 < R2 < 1.

Maturity Only FF5 30 60 91 122 152 182 273 365
λ0 0.091 0.118 0.129 0.129 0.126 0.124 0.118 0.122 0.134

tFM 8.486 10.862 11.751 11.822 11.548 11.294 10.578 11.180 12.389
tS 8.465 7.247 8.097 7.925 7.419 7.408 7.081 7.667 8.607

tJW 7.636 6.825 7.397 7.182 6.879 6.724 6.779 6.913 7.799
tKRS 6.747 5.861 6.727 7.044 6.985 6.745 6.441 7.129 7.754

λMKT -0.031 -0.019 -0.054 -0.064 -0.072 -0.070 -0.063 -0.059 -0.047
tFM -2.850 -4.235 -4.703 -4.663 -4.494 -4.348 -4.050 -4.305 -4.826
tS -2.848 -3.639 -4.097 -4.014 -3.790 -3.702 -3.470 -3.744 -4.227

tJW -3.368 -4.266 -4.792 -4.623 -4.342 -4.213 -4.224 -4.109 -4.798
tKRS -3.034 -3.993 -4.638 -4.707 -4.478 -4.321 -4.174 -4.242 -4.910

λM R P (2) -0.568 0.107 0.454 0.511 0.467 0.373 0.212 0.094
tFM -12.655 -8.614 -3.524 -0.451 1.889 2.833 4.647 5.363
tS -8.572 -6.016 -2.394 -0.294 1.257 1.924 3.235 3.778

tJW -4.417 -3.454 -1.501 -0.221 1.092 1.746 3.094 3.164
tKRS -3.318 -2.526 -1.041 -0.140 0.707 1.163 2.165 2.079

λM R P (3) 0.699 0.255 0.119 0.061 0.042 0.032 0.017 0.012
tFM 21.586 21.230 18.069 15.053 10.891 9.792 8.465 9.361
tS 14.757 15.005 12.444 9.956 7.330 6.726 5.956 6.674

tJW 5.022 5.294 4.285 3.582 3.971 4.059 4.131 4.043
tKRS 5.405 6.346 4.907 4.016 3.433 3.323 3.394 3.067

λM R P (4) -0.897 -0.098 0.215 0.267 0.242 0.181 0.090 0.023
tFM 13.020 11.152 8.522 6.364 3.163 1.942 -1.007 -4.455
tS 8.841 7.814 5.809 4.159 2.110 1.321 -0.701 -3.127

tJW 3.932 4.455 3.584 2.811 1.785 1.170 -0.694 -3.037
tKRS 2.999 3.257 2.873 2.163 1.196 0.793 -0.490 -1.647
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Table 14
Estimates of the Price of Risk, continued

Maturity Only FF5 30 60 91 122 152 182 273 365
λSMB 0.053 0.111 0.113 0.117 0.116 0.141 0.146 0.145 0.127
tFM 1.097 1.253 1.208 1.109 1.050 1.069 1.116 1.157 1.115
tS 1.097 1.232 1.189 1.090 1.030 1.050 1.097 1.139 1.098

tJW 1.047 1.184 1.144 1.045 0.981 0.996 1.040 1.077 1.036
tKRS 1.040 1.188 1.142 1.040 0.972 0.992 1.037 1.073 1.028

λHML 0.031 0.118 0.165 0.185 0.182 0.141 0.114 0.115 0.148
tFM 0.958 1.123 1.074 1.189 1.229 1.259 1.122 1.152 1.050
tS 0.958 1.099 1.054 1.164 1.199 1.230 1.098 1.130 1.030

tJW 0.931 1.067 1.016 1.119 1.157 1.197 1.072 1.111 1.010
tKRS 0.926 1.060 1.002 1.105 1.149 1.190 1.062 1.105 1.004

λRMW 0.096 0.100 0.061 0.027 -0.021 0.006 0.042 0.040 0.072
tFM 2.464 2.244 2.431 2.433 2.160 2.383 2.769 2.938 3.326
tS 2.461 1.779 1.968 1.934 1.668 1.867 2.198 2.370 2.696

tJW 1.930 1.528 1.681 1.648 1.392 1.603 1.889 2.135 2.404
tKRS 1.646 1.609 1.479 1.484 1.282 1.520 1.811 2.070 2.269

λCMA -0.072 -0.188 -0.265 -0.319 -0.331 -0.336 -0.335 -0.302 -0.349
tFM 0.281 -0.808 -1.379 -1.915 -2.035 -2.403 -2.511 -1.957 -2.237
tS 0.281 -0.608 -1.064 -1.445 -1.486 -1.783 -1.893 -1.504 -1.736

tJW 0.290 -0.648 -1.078 -1.404 -1.424 -1.828 -2.001 -1.624 -1.960
tKRS 0.226 -0.566 -0.946 -1.274 -1.306 -1.728 -1.906 -1.557 -1.837

R2 0.011 0.446 0.475 0.558 0.643 0.740 0.790 0.857 0.816
p(R2 = 1) 0.000 0.000 0.002 0.008 0.032 0.032 0.071 0.377 0.140
p(R2 = 0) 0.074 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

p(W ) 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
se(R̂2) 0.006 0.077 0.086 0.097 0.104 0.067 0.055 0.038 0.062
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Table 15
Estimates of the Price of Risk: This table presents the estimation results of the beta pricing model (41).
The model is estimated using daily returns on the 100 portfolios formed on size and operating profitability.
The data are from January 1996 to August 2015. I report the Fama and MacBeth (1973) t-ratio under
correctly specified models (tFM), the Shanken (1992) t-ratio (tS), the Jagannathan and Wang (1998) t-ratio
under correctly specified models that account for the EIV problem (tJW ), and the Kan, Robotti, and Shanken
(2013) misspecification-robust t-ratios (tKRS). The table also presents the sample cross-sectional R2 of the
beta pricing model ((41)). p(R2 = 1) is the p-value for the test of H0 : R2 = 1, p(R2 = 0) is the p-value for
the test of H0 : R2 = 0, and p(W ) is the p-value of Wald test under the null hypothesis that all prices of risk
are equal to zero. se(R̂2) is the standard error of R̂2 under the assumption that 0 < R2 < 1.

Maturity Only FF5 30 60 91 122 152 182 273 365
λ0 0.046 0.070 0.073 0.066 0.061 0.046 0.047 0.049 0.060

tFM 4.272 6.176 6.381 5.919 5.478 4.230 4.245 4.224 5.025
tS 4.267 5.055 4.941 4.636 4.471 3.567 3.628 3.602 4.201

tJW 3.912 4.592 4.465 4.337 4.397 3.213 3.263 3.127 3.991
tKRS 3.619 4.135 4.673 4.414 4.337 2.943 2.950 2.742 3.615

λMKT -0.000 -0.005 -0.009 -0.004 -0.009 0.000 -0.004 -0.014 -0.021
tFM -0.543 -1.684 -1.814 -1.499 -1.243 -0.549 -0.585 -0.656 -1.178
tS -0.543 -1.574 -1.658 -1.379 -1.163 -0.520 -0.556 -0.622 -1.105

tJW -0.658 -1.717 -1.772 -1.542 -1.355 -0.600 -0.626 -0.673 -1.234
tKRS -0.643 -1.716 -1.845 -1.560 -1.336 -0.576 -0.600 -0.636 -1.209

λM R P (2) -1.091 -0.712 -0.500 -0.343 -0.263 -0.191 -0.074 -0.019
tFM -6.131 -7.667 -8.271 -8.143 -7.428 -7.522 -10.236 -12.774
tS -5.054 -5.990 -6.536 -6.700 -6.308 -6.469 -8.802 -10.815

tJW -3.801 -4.179 -4.588 -5.128 -5.473 -5.792 -6.646 -5.735
tKRS -2.670 -3.337 -3.965 -4.074 -4.241 -4.076 -5.327 -6.283

λM R P (3) 0.171 0.045 0.024 0.009 -0.003 -0.003 -0.001 0.002
tFM 2.730 4.403 5.135 4.853 3.661 3.664 4.634 6.235
tS 2.250 3.442 4.057 3.992 3.107 3.148 3.968 5.237

tJW 2.069 2.808 3.131 3.334 2.962 3.012 3.524 3.773
tKRS 1.169 2.112 2.624 2.795 2.063 1.895 2.271 3.208

λM R P (4) -1.430 -0.560 -0.332 -0.195 -0.131 -0.082 -0.017 0.004
tFM 2.513 3.756 4.650 4.876 4.477 4.661 7.456 10.033
tS 2.074 2.936 3.674 4.009 3.798 4.002 6.396 8.540

tJW 1.834 2.477 2.975 3.419 3.508 3.829 5.210 5.608
tKRS 1.154 1.528 2.162 2.348 2.504 2.477 3.600 6.087
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Table 15
Estimates of the Price of Risk, continued

Maturity Only FF5 30 60 91 122 152 182 273 365
λSMB 0.054 0.053 0.061 0.061 0.057 0.036 0.040 0.052 0.058
tFM 1.163 1.253 1.331 1.311 1.316 1.282 1.284 1.301 1.307
tS 1.163 1.245 1.321 1.301 1.309 1.276 1.279 1.295 1.301

tJW 1.099 1.167 1.247 1.229 1.244 1.212 1.217 1.231 1.237
tKRS 1.102 1.171 1.251 1.230 1.244 1.213 1.218 1.233 1.240

λHML 0.019 0.055 0.048 0.062 0.053 0.065 0.074 0.064 0.058
tFM 0.193 0.288 0.047 0.094 -0.072 0.250 0.228 0.088 0.004
tS 0.193 0.263 0.042 0.084 -0.066 0.232 0.213 0.082 0.004

tJW 0.193 0.254 0.040 0.080 -0.061 0.219 0.200 0.076 0.003
tKRS 0.184 0.241 0.039 0.077 -0.060 0.212 0.194 0.073 0.003

λRMW 0.095 0.103 0.127 0.143 0.150 0.149 0.143 0.144 0.123
tFM 2.067 1.951 1.939 1.928 1.870 1.921 1.872 1.888 1.926
tS 2.067 1.928 1.908] 1.898 1.847 1.902 1.855 1.871] 1.906

tJW 1.701 1.605 1.588 1.578 1.535 1.576 1.540 1.553 1.574
tKRS 1.701 1.609 1.595 1.584 1.538 1.574 1.538 1.552 1.572

λCMA -0.078 -0.169 -0.175 -0.181 -0.172 -0.145 -0.162 -0.192 -0.191
tFM -0.530 -1.395 -1.560 -1.648 -1.677 -1.235 -1.415 -1.881 -1.840
tS -0.530 -1.216 -1.305 -1.390 -1.458 -1.099 -1.271 -1.687 -1.627

tJW -0.562 -1.204 -1.267 -1.373 -1.446 -1.167 -1.332 -1.687 -1.654
tKRS -0.524 -1.120 -1.182 -1.300 -1.371 -1.095 -1.236 -1.580 -1.563

R2 0.025 0.274 0.469 0.583 0.624 0.645 0.637 0.619 0.619
p(R2 = 1) 0.000 0.001 0.063 0.283 0.317 0.369 0.313 0.274 0.288
p(R2 = 0) 0.122 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000

p(W ) 0.134 0.027 0.002 0.000 0.000 0.000 0.000 0.000 0.000
se(R̂2) 0.018 0.156 0.141 0.101 0.087 0.083 0.086 0.087 0.088

79



Table 16
Estimates of the Price of Risk: Controlling for VRP This table presents the estimation results of the
beta pricing model (42). The model is estimated using monthly returns on the 100 portfolios formed on size
and operating profitability. The data are from January 1996 to August 2015. I report the Fama and MacBeth
(1973) t-ratio under correctly specified models (tFM), the Shanken (1992) t-ratio (tS), the Jagannathan and
Wang (1998) t-ratio under correctly specified models that account for the EIV problem (tJW ), and the Kan,
Robotti, and Shanken (2013) misspecification-robust t-ratios (tKRS). The table also presents the sample
cross-sectional R2 of the beta pricing model ((41)). p(R2 = 1) is the p-value for the test of H0 : R2 = 1,
p(R2 = 0) is the p-value for the test of H0 : R2 = 0, and p(W ) is the p-value of Wald test under the null
hypothesis that all prices of risk are equal to zero. se(R̂2) is the standard error of R̂2 under the assumption
that 0 < R2 < 1.

Maturity 30 60 91 122 152 182 273 365
λ0 0.069 0.067 0.067 0.067 0.068 0.068 0.068 0.068

tFM 11.581 11.449 11.436 11.473 11.568 11.639 11.667 11.687
tS 10.327 10.320 10.254 10.194 10.156 10.139 10.077 10.041

tJW 10.292 10.824 11.297 11.537 11.665 11.733 11.812 11.847
tKRS 6.985 7.025 7.121 7.216 7.294 7.369 7.421 7.444

λM (2) 0.380 0.251 0.189 0.154 0.129 0.105 0.068 0.050
tFM 5.258 4.486 3.896 3.459 3.106 2.792 2.256 1.860
tS 5.002 4.278 3.701 3.270 2.916 2.610 2.099 1.726

tJW 2.560 2.073 1.735 1.494 1.322 1.179 0.941 0.772
tKRS 2.294 1.784 1.464 1.256 1.119 1.017 0.828 0.685

λM (3) -0.708 -0.629 -0.471 -0.351 -0.275 -0.216 -0.109 -0.065
tFM 3.797 3.342 2.847 2.449 2.043 1.659 1.057 0.738
tS 3.630 3.201 2.714 2.323 1.925 1.556 0.987 0.687

tJW 2.121 1.692 1.350 1.109 0.905 0.722 0.444 0.306
tKRS 1.785 1.370 1.084 0.897 0.741 0.608 0.388 0.271

λM (4) 0.166 0.299 0.222 0.153 0.115 0.088 0.038 0.019
tFM 3.474 3.307 3.100 2.930 2.708 2.461 2.045 1.772
tS 3.348 3.192 2.977 2.803 2.574 2.327 1.924 1.663

tJW 1.947 1.713 1.504 1.363 1.232 1.093 0.870 0.741
tKRS 1.657 1.412 1.231 1.123 1.025 0.934 0.772 0.667

λV RP -0.002 0.000 0.002 0.002 0.003 0.003 0.003 0.003
tFM 1.175 1.319 1.449 1.503 1.554 1.584 1.587 1.582
tS 1.129 1.272 1.395 1.442 1.485 1.509 1.507 1.499

tJW 0.798 0.903 0.998 1.045 1.091 1.115 1.107 1.098
tKRS 0.644 0.726 0.809 0.847 0.898 0.938 0.953 0.958

R2 0.077 0.074 0.082 0.091 0.101 0.108 0.114 0.118
p(R2 = 1) 0.002 0.001 0.001 0.002 0.002 0.002 0.003 0.003
p(R2 = 0) 0.067 0.132 0.136 0.126 0.103 0.089 0.081 0.075

p(W ) 0.218 0.168 0.094 0.062 0.043 0.037 0.036 0.036
se(R̂2) 0.054 0.056 0.058 0.061 0.064 0.065 0.066 0.067
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Table 17
Estimates of the Price of Risk: Controlling for LJV measure This table presents the estimation results
of the beta pricing model (43). The model is estimated using monthly returns on the 100 portfolios formed
on size and operating profitability. The data are from January 1996 to August 2015. I report the Fama
and MacBeth (1973) t-ratio under correctly specified models (tFM), the Shanken (1992) t-ratio (tS), the
Jagannathan and Wang (1998) t-ratio under correctly specified models that account for the EIV problem
(tJW ), and the Kan, Robotti, and Shanken (2013) misspecification-robust t-ratios (tKRS). The table also
presents the sample cross-sectional R2 of the beta pricing model ((41)). p(R2 = 1) is the p-value for the test
of H0 : R2 = 1, p(R2 = 0) is the p-value for the test of H0 : R2 = 0, and p(W ) is the p-value of Wald test
under the null hypothesis that all prices of risk are equal to zero. se(R̂2) is the standard error of R̂2 under
the assumption that 0 < R2 < 1.

Maturity 30 60 91 122 152 182 273 365
(days)

λ0 0.074 0.073 0.073 0.073 0.073 0.073 0.073 0.073
tFM 11.975 11.908 11.840 11.823 11.876 11.903 11.886 11.893
tS 10.618 10.645 10.494 10.454 10.303 10.228 10.209 10.155

tJW 10.389 10.812 11.053 11.097 11.249 11.342 11.406 11.476
tKRS 5.404 5.362 5.348 5.336 5.380 5.405 5.393 5.422

λM (2) 0.348 0.199 0.151 0.119 0.100 0.081 0.049 0.036
tFM 4.136 3.332 2.724 2.296 1.982 1.701 1.273 1.091
tS 3.949 3.185 2.591 2.181 1.864 1.592 1.191 1.017

tJW 1.933 1.482 1.179 0.963 0.822 0.699 0.513 0.435
tKRS 1.309 1.013 0.822 0.678 0.589 0.517 0.390 0.336

λM (3) -1.032 -0.614 -0.477 -0.340 -0.268 -0.217 -0.109 -0.065
tFM 3.559 3.076 2.502 2.117 1.779 1.450 1.018 0.949
tS 3.417 2.956 2.389 2.018 1.680 1.362 0.955 0.889

tJW 1.879 1.491 1.148 0.927 0.766 0.614 0.415 0.380
tKRS 1.216 0.970 0.767 0.631 0.531 0.443 0.314 0.295

λM (4) 0.876 0.439 0.297 0.187 0.143 0.112 0.047 0.023
tFM 3.823 3.578 3.250 3.014 2.815 2.566 2.203 2.145
tS 3.703 3.467 3.130 2.899 2.684 2.433 2.085 2.024

tJW 2.106 1.822 1.556 1.379 1.265 1.127 0.924 0.882
tKRS 1.393 1.204 1.050 0.946 0.881 0.813 0.702 0.688

λLJV -1.044 -0.892 -0.688 -0.526 -0.669 -0.658 -0.547 -0.558
tFM 1.549 1.316 1.119 1.045 0.894 0.843 0.831 0.800
tS 1.477 1.259 1.066 0.995 0.844 0.793 0.781 0.751

tJW 0.771 0.636 0.534 0.493 0.425 0.407 0.408 0.396
tKRS 0.502 0.417 0.353 0.326 0.281 0.271 0.271 0.264

R2 0.064 0.059 0.065 0.066 0.077 0.082 0.081 0.084
p(R2 = 1) 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002
p(R2 = 0) 0.128 0.172 0.158 0.167 0.132 0.111 0.117 0.110

p(W ) 0.091 0.042 0.022 0.016 0.014 0.016 0.017 0.016
se(R̂2) 0.037 0.035 0.036 0.038 0.043 0.046 0.048 0.050

81



Table 18
Estimates of the Price of Risk:Controlling for innovation in market risk neutral variance This table
presents the estimation results of the beta pricing model (44). The model is estimated using monthly
returns on the 100 portfolios formed on size and operating profitability. The data are from January 1996
to August 2015. I report the Fama and MacBeth (1973) t-ratio under correctly specified models (tFM),
the Shanken (1992) t-ratio (tS), the Jagannathan and Wang (1998) t-ratio under correctly specified models
that account for the EIV problem (tJW ), and the Kan, Robotti, and Shanken (2013) misspecification-robust
t-ratios (tKRS). The table also presents the sample cross-sectional R2 of the beta pricing model ((41)).
p(R2 = 1) is the p-value for the test of H0 : R2 = 1, p(R2 = 0) is the p-value for the test of H0 : R2 = 0, and
p(W ) is the p-value of Wald test under the null hypothesis that all prices of risk are equal to zero. se(R̂2) is
the standard error of R̂2 under the assumption that 0 < R2 < 1.

Maturity 30 60 91 122 152 182 273 365
λ0 0.071 0.070 0.069 0.068 0.069 0.069 0.069 0.069

tFM 11.925 11.685 11.544 11.465 11.483 11.480 11.494 11.535
tS 10.522 10.446 10.307 10.172 10.071 9.993 9.914 9.887

tJW 10.469 10.891 11.274 11.410 11.473 11.476 11.599 11.672
tKRS 7.428 7.487 7.580 7.514 7.570 7.583 7.532 7.535

λM (2) 0.442 0.276 0.203 0.162 0.136 0.112 0.072 0.053
tFM 5.166 4.443 3.883 3.378 2.983 2.631 2.061 1.655
tS 4.891 4.221 3.682 3.191 2.798 2.458 1.916 1.533

tJW 2.514 2.072 1.773 1.508 1.313 1.153 0.892 0.711
tKRS 2.158 1.735 1.472 1.251 1.099 0.986 0.779 0.624

λM (3) -1.102 -0.703 -0.480 -0.358 -0.283 -0.224 -0.114 -0.068
tFM 3.701 3.278 2.823 2.371 1.931 1.515 0.876 0.538
tS 3.523 3.130 2.686 2.248 1.819 1.420 0.817 0.500

tJW 2.063 1.690 1.383 1.114 0.886 0.684 0.379 0.229
tKRS 1.679 1.330 1.089 0.889 0.720 0.575 0.332 0.203

λM (4) 0.368 0.315 0.210 0.151 0.116 0.090 0.039 0.020
tFM 3.384 3.244 3.076 2.871 2.624 2.350 1.895 1.601
tS 3.249 3.123 2.951 2.746 2.494 2.222 1.783 1.502

tJW 1.905 1.720 1.543 1.382 1.233 1.078 0.828 0.686
tKRS 1.569 1.369 1.230 1.118 1.013 0.918 0.734 0.617

λ∆VAR 0.628 0.282 0.136 0.045 0.002 -0.028 -0.028 -0.024
tFM 1.866 1.499 1.513 1.360 1.268 1.144 1.264 1.227
tS 1.777 1.436 1.447 1.301 1.208 1.086 1.200 1.164

tJW 2.187 1.627 1.560 1.435 1.302 1.167 1.306 1.293
tKRS 1.776 1.391 1.340 1.241 1.136 1.029 1.219 1.271

R2 0.084 0.078 0.084 0.091 0.102 0.108 0.115 0.120
p(R2 = 1) 0.002 0.002 0.001 0.002 0.002 0.002 0.003 0.003
p(R2 = 0) 0.066 0.128 0.133 0.121 0.099 0.085 0.074 0.067

p(W ) 0.048 0.135 0.107 0.087 0.074 0.072 0.059 0.059
se(R̂2) 0.057 0.059 0.060 0.062 0.065 0.066 0.068 0.069
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Table 19
Estimates of the Price of Risk: Controlling for innovation in market risk neutral skewness This
table presents the estimation results of the beta pricing model (45). The model is estimated using monthly
returns on the 100 portfolios formed on size and operating profitability. The data are from January 1996
to August 2015. I report the Fama and MacBeth (1973) t-ratio under correctly specified models (tFM),
the Shanken (1992) t-ratio (tS), the Jagannathan and Wang (1998) t-ratio under correctly specified models
that account for the EIV problem (tJW ), and the Kan, Robotti, and Shanken (2013) misspecification-robust
t-ratios (tKRS). The table also presents the sample cross-sectional R2 of the beta pricing model ((41)).
p(R2 = 1) is the p-value for the test of H0 : R2 = 1, p(R2 = 0) is the p-value for the test of H0 : R2 = 0, and
p(W ) is the p-value of Wald test under the null hypothesis that all prices of risk are equal to zero. se(R̂2) is
the standard error of R̂2 under the assumption that 0 < R2 < 1.

Maturity 30 60 91 122 152 182 273 365
λ0 0.069 0.067 0.067 0.067 0.067 0.068 0.068 0.068

tFM 11.522 11.355 11.323 11.363 11.438 11.498 11.544 11.594
tS 10.234 10.067 9.977 9.944 9.895 9.874 9.868 9.880

tJW 10.380 10.815 11.075 11.227 11.316 11.326 11.401 11.482
tKRS 7.080 7.139 7.253 7.343 7.408 7.461 7.470 7.486

λM (2) 0.408 0.285 0.211 0.167 0.138 0.114 0.073 0.054
tFM 5.149 4.323 3.735 3.269 2.911 2.614 2.065 1.676
tS 4.890 4.091 3.520 3.069 2.715 2.428 1.913 1.550

tJW 2.544 2.056 1.730 1.462 1.277 1.129 0.867 0.697
tKRS 2.354 1.872 1.538 1.285 1.128 1.008 0.778 0.623

λM (3) -1.288 -0.981 -0.633 -0.435 -0.328 -0.252 -0.121 -0.071
tFM 3.751 3.257 2.754 2.323 1.906 1.523 0.889 0.557
tS 3.580 3.098 2.606 2.190 1.785 1.420 0.826 0.517

tJW 2.158 1.731 1.382 1.101 0.875 0.680 0.376 0.231
tKRS 1.900 1.503 1.186 0.944 0.759 0.603 0.340 0.209

λM (4) 0.720 0.567 0.329 0.205 0.146 0.106 0.042 0.020
tFM 3.451 3.286 3.078 2.880 2.643 2.390 1.928 1.630
tS 3.322 3.154 2.937 2.740 2.498 2.248 1.808 1.526

tJW 1.994 1.782 1.571 1.391 1.237 1.081 0.823 0.683
tKRS 1.756 1.562 1.370 1.212 1.087 0.972 0.755 0.626

λ∆SKEW -4.578 -3.348 -1.706 -0.934 -0.680 -0.490 -0.181 -0.081
tFM -0.899 -0.901 -0.596 -0.130 0.035 -0.002 0.092 0.267
tS -0.860 -0.870 -0.579 -0.126 0.034 -0.002 0.089 0.258

tJW -1.135 -1.278 -0.883 -0.186 0.050 -0.003 0.125 0.352
tKRS -0.840 -0.917 -0.700 -0.159 0.044 -0.003 0.117 0.344

R2 0.082 0.091 0.099 0.105 0.115 0.122 0.124 0.125
p(R2 = 1) 0.002 0.002 0.002 0.002 0.003 0.003 0.004 0.004
p(R2 = 0) 0.041 0.062 0.069 0.072 0.061 0.053 0.055 0.055

p(W ) 0.081 0.048 0.046 0.060 0.055 0.049 0.057 0.065
se(R̂2) 0.051 0.057 0.061 0.065 0.068 0.071 0.071 0.072
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Table 20
Estimates of the Price of Risk: Controlling for innovation in market risk neutral kurtosis This
table presents the estimation results of the beta pricing model (46). The model is estimated using monthly
returns on the 100 portfolios formed on size and operating profitability. The data are from January 1996
to August 2015. I report the Fama and MacBeth (1973) t-ratio under correctly specified models (tFM),
the Shanken (1992) t-ratio (tS), the Jagannathan and Wang (1998) t-ratio under correctly specified models
that account for the EIV problem (tJW ), and the Kan, Robotti, and Shanken (2013) misspecification-robust
t-ratios (tKRS). The table also presents the sample cross-sectional R2 of the beta pricing model ((41)).
p(R2 = 1) is the p-value for the test of H0 : R2 = 1, p(R2 = 0) is the p-value for the test of H0 : R2 = 0, and
p(W ) is the p-value of Wald test under the null hypothesis that all prices of risk are equal to zero. se(R̂2) is
the standard error of R̂2 under the assumption that 0 < R2 < 1.

Maturity 30 60 91 122 152 182 273 365
λ0 0.070 0.068 0.067 0.067 0.067 0.068 0.068 0.068

tFM 11.747 11.506 11.355 11.345 11.412 11.453 11.531 11.599
tS 10.500 10.381 10.167 10.029 9.949 9.886 9.878 9.890

tJW 10.412 10.693 10.961 11.158 11.270 11.276 11.412 11.483
tKRS 7.161 7.196 7.288 7.334 7.412 7.464 7.467 7.485

λM (2) 0.378 0.252 0.192 0.158 0.132 0.110 0.072 0.054
tFM 5.165 4.349 3.715 3.216 2.843 2.528 2.019 1.650
tS 4.919 4.150 3.528 3.034 2.661 2.353 1.872 1.526

tJW 2.501 1.997 1.668 1.414 1.230 1.087 0.850 0.688
tKRS 2.207 1.709 1.417 1.203 1.058 0.954 0.757 0.613

λM (3) -0.758 -0.662 -0.505 -0.387 -0.303 -0.240 -0.119 -0.070
tFM 3.721 3.217 2.694 2.248 1.824 1.436 0.843 0.531
tS 3.561 3.083 2.567 2.129 1.714 1.341 0.784 0.493

tJW 2.082 1.638 1.304 1.045 0.826 0.639 0.357 0.221
tKRS 1.732 1.319 1.057 0.862 0.695 0.555 0.321 0.200

λM (4) 0.213 0.324 0.245 0.176 0.132 0.101 0.041 0.020
tFM 3.414 3.217 2.996 2.799 2.561 2.309 1.886 1.608
tS 3.293 3.107 2.877 2.673 2.428 2.177 1.770 1.505

tJM 1.920 1.686 1.489 1.335 1.189 1.044 0.807 0.675
tKRS 1.616 1.376 1.227 1.120 1.014 0.921 0.734 0.617

λ∆KURT 1.660 -0.056 -0.714 -0.690 -0.591 -0.527 -0.199 -0.087
tFM -0.057 -0.217 -0.217 -0.033 0.034 -0.031 0.183 0.260
tS -0.055 -0.211 -0.211 -0.032 0.033 -0.030 0.178 0.252

tJW -0.075 -0.281 -0.277 -0.042 0.043 -0.039 0.234 0.335
tKRS -0.059 -0.231 -0.235 -0.038 0.039 -0.036 0.225 0.329

R2 0.075 0.073 0.083 0.095 0.107 0.116 0.121 0.124
p(R2 = 1) 0.002 0.001 0.001 0.002 0.002 0.003 0.004 0.004
p(R2 = 0) 0.075 0.134 0.122 0.100 0.079 0.065 0.060 0.057

p(W ) 0.274 0.236 0.155 0.112 0.084 0.070 0.065 0.063
se(R̂2) 0.054 0.055 0.057 0.061 0.065 0.068 0.070 0.071
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Table 21
Estimates of the Price of Risk: This table presents the estimation results of the beta pricing model
(40) using the Giglio and Xiu (2017) Three-pass approach. The model is estimated using 460 portfolios
at daily frequency: 100 portfolios sorted by size and book-to-market ratio, 100 portfolios sorted by size
and profitability, 100 portfolios sorted by size and investment, 25 portfolios sorted by size and short-term
reversal, 25 portfolios sorted by size and long-term reversal, 25 portfolios sorted by size and momentum, 25
portfolios sorted by profitability and investment, 25 portfolios sorted by book and investment, 25 portfolios
sorted by book-to-market and profitability, and 10 industry portfolios (see Kenneth French’s website). It
also presents the t-ratio computed using the standard errors of Giglio and Xiu (2017).

Maturity Only FF5 30 60 91 122 152 182 273 365
λ0 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081
tGX 10.762 10.762 10.762 10.762 10.762 10.762 10.762 10.762 10.762

λMKT -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047
tGX -2.545 -2.545 -2.545 -2.545 -2.545 -2.545 -2.545 -2.545 -2.545

λSMB 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
tGX 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090

λHML 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
tGX 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241

λRMW 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
tGX 1.323 1.323 1.323 1.323 1.323 1.323 1.323 1.323 1.323

λCMA 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
tGX 1.737 1.737 1.737 1.737 1.737 1.737 1.737 1.737 1.737

λM (2) 0.005 0.009 0.013 0.017 0.021 0.024 0.036 0.049
tGX 6.208 6.313 6.484 6.633 6.750 6.886 6.996 6.961

λM (3) 0.002 0.005 0.009 0.015 0.021 0.027 0.055 0.099
tGX 4.387 4.739 5.122 5.362 5.559 5.763 5.986 6.037

λM (4) 0.002 0.006 0.012 0.021 0.032 0.045 0.114 0.251
tGX 3.920 4.227 4.716 4.975 5.236 5.572 5.958 6.059
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Table 22
Estimates of the Price of Risk: This table presents the estimation results of the beta pricing model
(47) using the Giglio and Xiu (2017) Three-pass approach. The model is estimated using 460 portfolios
at daily frequency: 100 portfolios sorted by size and book-to-market ratio, 100 portfolios sorted by size
and profitability, 100 portfolios sorted by size and investment, 25 portfolios sorted by size and short-term
reversal, 25 portfolios sorted by size and long-term reversal, 25 portfolios sorted by size and momentum, 25
portfolios sorted by profitability and investment, 25 portfolios sorted by book and investment, 25 portfolios
sorted by book-to-market and profitability, and 10 industry portfolios (see Kenneth French’s website). It
also presents the t-ratio computed using the standard errors of Giglio and Xiu (2017).

Maturity Only XHZ 30 60 91 122 152 182 273 365
λ0 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061
tGX 9.785 9.785 9.785 9.785 9.785 9.785 9.785 9.785 9.785

λMKT -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025
tGX -1.423 -1.423 -1.423 -1.423 -1.423 -1.423 -1.423 -1.423 -1.423

λME 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
tGX 0.963 0.963 0.963 0.963 0.963 0.963 0.963 0.963 0.963

λI/A 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
tGX 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265

λROE 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
tGX 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550

λM (2) 0.005 0.009 0.013 0.017 0.020 0.024 0.036 0.049
tGX 6.152 6.259 6.436 6.587 6.708 6.847 6.962 6.927

λM (3) 0.002 0.005 0.009 0.015 0.020 0.027 0.054 0.099
tGX 4.340 4.684 5.077 5.315 5.514 5.724 5.953 6.007

λM (4) 0.002 0.006 0.012 0.021 0.032 0.045 0.114 0.250
tGX 3.878 4.172 4.669 4.924 5.185 5.530 5.923 6.028
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Table 23
Estimates of the Price of Risk: This table presents the estimation results of the beta pricing model
(41) using the Giglio and Xiu (2017) Three-pass approach. The model is estimated using 460 portfolios
at daily frequency: 100 portfolios sorted by size and book-to-market ratio, 100 portfolios sorted by size
and profitability, 100 portfolios sorted by size and investment, 25 portfolios sorted by size and short-term
reversal, 25 portfolios sorted by size and long-term reversal, 25 portfolios sorted by size and momentum, 25
portfolios sorted by profitability and investment, 25 portfolios sorted by book and investment, 25 portfolios
sorted by book-to-market and profitability, and 10 industry portfolios (see Kenneth French’s website). It
also presents the t-ratio computed using the standard errors of Giglio and Xiu (2017).

Maturity Only FF5 30 60 91 122 152 182 273 365
λ0 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081
tGX 10.762 10.762 10.762 10.762 10.762 10.762 10.762 10.762 10.762

λMKT -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.0466
tGX -2.545 -2.545 -2.545 -2.545 -2.545 -2.545 -2.545 -2.545 -2.545

λSMB 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
tGX 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090

λHML 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
tGX 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241

λRMW 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
tGX 1.323 1.323 1.323 1.323 1.323 1.323 1.323 1.323 1.323

λCMA 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
tGX 1.737 1.737 1.737 1.737 1.737 1.737 1.737 1.737 1.737

λM R P (2) -0.001 -0.002 -0.003 -0.005 -0.006 -0.007 -0.011 -0.016
tGX -4.023 -4.312 -4.466 -4.569 -4.552 -4.425 -3.890 -3.398

λM R P (3) 0.002 0.007 0.014 0.025 0.037 0.051 0.116 0.228
tGX 4.252 4.617 5.069 5.291 5.504 5.807 6.190 6.288

λM R P (4) 0.001 0.002 0.004 0.007 0.009 0.012 0.020 0.015
tGX 3.335 3.795 4.355 4.853 5.204 5.329 5.077 1.904
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Table 24
Estimates of the Price of Risk: This table presents the estimation results of the beta pricing model
(48) using the Giglio and Xiu (2017) Three-pass approach. The model is estimated using 460 portfolios
at daily frequency: 100 portfolios sorted by size and book-to-market ratio, 100 portfolios sorted by size
and profitability, 100 portfolios sorted by size and investment, 25 portfolios sorted by size and short-term
reversal, 25 portfolios sorted by size and long-term reversal, 25 portfolios sorted by size and momentum, 25
portfolios sorted by profitability and investment, 25 portfolios sorted by book and investment, 25 portfolios
sorted by book-to-market and profitability, and 10 industry portfolios (see Kenneth French’s website). It
also presents the t-ratio computed using the standard errors of Giglio and Xiu (2017).

Maturity Only HXZ 30 60 91 122 152 182 273 365

λ0 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061
tGX 9.785 9.785 9.785 9.785 9.785 9.785 9.785 9.785 9.785

λMKT -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025
tGX -1.423 -1.423 -1.423 -1.423 -1.423 -1.423 -1.423 -1.423 -1.423

λME 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
tGX 0.963 0.963 0.963 0.963 0.963 0.963 0.963 0.963 0.963

λI/A 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
tGX 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265

λROE 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
tGX 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550

λM R P (2) -0.001 -0.002 -0.003 -0.004 -0.006 -0.007 -0.011 -0.015
tGX -3.980 -4.266 -4.428 -4.531 -4.518 -4.393 -3.861 -3.373

λM R P (3) 0.002 0.007 0.014 0.025 0.037 0.050 0.115 0.227
tGX 4.209 4.555 5.019 5.238 5.453 5.766 6.157 6.257

λM R P (4) 0.001 0.002 0.004 0.007 0.009 0.012 0.020 0.014
tGX 3.280 3.743 4.315 4.826 5.199 5.325 5.078 1.834
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Fig. 1. Conditional Physical Moments of the SDF under CRRA Preferences. I plot daily variance,
skewness, and kurtosis of the SDF. The moments are computed from the S&P 500 index option prices and
are not annualized. The data runs from January 4, 1996, through August 31, 2015. The maturity of options
used to compute the moments is labeled in days.
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Fig. 2. Conditional Risk-Neutral Moments of the SDF under CRRA Preferences. I plot daily variance,
skewness, and kurtosis of the SDF. The moments are computed from the S&P 500 index option prices and
are not annualized. The data runs from January 4, 1996, through August 31, 2015, and is not annualized.
The maturity of options used to compute the moments is labeled in days.
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Fig. 3. SDF Moments Risk Premium under CRRA preferences. I plot SDF moments risk premium at
monthly frequency. The data runs from January 4, 1996, through August 31, 2015, and is not annualized.
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Fig. 4. SDF Moments Risk Premium under CRRA preferences. I plot SDF moments risk premium
at monthly frequency. In this figure, the maturity of options used is 30 days to facilitate comparison.
Monthly estimates of SDF moments risk premium are computed by averaging within a month all daily
estimates of the SDF moments risk premium. The moments are computed from the S&P 500 index op-
tion prices and are not annualized. The data runs from January 4, 1996, through August 31, 2015, and
are not annualized. The figure also plots the variance risk premium obtained form Hao Zhou’s web-page
(https://sites.google.com/site/haozhouspersonalhomepage/). To facilitate comparison with the SDF mo-
ments risk premium, the variance risk premium is negative of the variance risk premia defined in Hao
Zhou’s calculation. The latter is computed by taking the difference between the risk-neutral variance and
the physical variance. I also plot in the same figure the Left Risk Neutral Jump Variation (LJV) of Boller-
slev, Todorov, and Xu (2015). Monthly estimates of LJV data are available from January 1996 to December
2011.
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Fig. 5. Conditional Expected Excess Returns on SDF-Based Moments under CRRA Preferences. I
plot conditional expected excess returns on SDF-based moments under CRRA preferences. The expected
excess returns are annualized and cover the period from January 4, 1996, through August 31, 2015. The
maturity of options used to compute the moments is labeled in days.
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Fig. 6. Sharpe Ratios of Returns on SDF-Based Moments I plot conditional Sharpe ratio of returns
on SDF-based moments under CRRA preferences. Conditional Sharpe ratios are annualized and cover
the period from January 4, 1996, through August 31, 2015. The maturity of options used to compute the
moments is labeled in days.
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Real-Time Distribution of Stochastic Discount Factors

Internet Appendix: Not for Publication

Abstract

The Internet Appendix consists of three sections. In Section A, we present result of beta pricing models
when the test assets comprise 25 Fama and French portfolios. Section B provides the proof of the spanning
formula used in the paper. Section C presents the proof of the SDF when preferences depart from CRRA
preferences and also closed-form expression of the conditional moments of the SDF.



A. Results for Fama and French 25 Portfolios Formed on Size and Book-to-

Market

A.1. Results Obtained With the Pricing Model (40)

Table 25 reports the estimation results of the beta pricing model. The estimates of the price of SDF

variance risk, λM (2) , are all positive and significant at 30-, 60-, and 91-day maturity. The price of SDF

volatility risk decreases with the maturity, featuring a decreasing term structure of the price of the SDF

variance. The Fama and MacBeth (1973) t-ratio, the Shanken (1992) t-ratio, and the Jagannathan and

Wang (1998) t-ratio show that the estimates of the price of SDF skewness and SDF kurtosis are significant

at 30-, 60-, and 91-day maturity. The price of risk of the Fama and French factors, SMB, HML, RMW,

and CMA are not significant at all maturities. The adjusted R2 ranges from 36.4% (at 30-day maturity) to

42.2% (at 365-day maturity). When I use only the Fama and French five factors, the adjusted R2 is 19.7%.

This further shows a significant improvement of the beta pricing model (40) over the Fama and French five

factor model.

A.2. Results Obtained with the Pricing Model (41)

Table 26 reports the estimation results of the beta pricing model (41). The estimates of the price of the

SDF variance risk premium, λM R P (2) are negative and significant at 30-, 60-, and 91-day maturity when

the Fama and MacBeth (1973) t-ratio, the Shanken (1992) t-ratio, and the Jagannathan and Wang (1998)

t-ratio are used. They are not significant when the Kan, Robotti, and Shanken (2013) t-ratio is used.

In contrast, regardless of the t-ratio used to gauge the significance of the price of risks, the estimates of

the price of the SDF third moment risk premium, λM R P (3) , are positive for all maturities and significant at

30-, 60-, and 91-day maturity. The estimates decrease from 0.152 (at 30-day horizon) to 0.005 (at 365-day)

horizon. The price of the SDF fourth moment risk premium, λM R P (4) , is marginally significant at 60-day

horizon, regardless of the t-ratios used.

Finally, the price of risk of the Fama and French factors, SMB, HML, RMW, and CMA is not significant

at all maturities. The R2 ranges from 33.8% to 39.8%. When I use only the Fama and French five factors,

1



the adjusted R2 is 19.7%. Thus, there is an improvement of the beta pricing model (41) over the Fama and

French five factor model.

B. Appendix

Before I give a formal proof of various propositions, I show that for any function g [x] that is continuous

and has first- and second-order derivative that exist, the following identity holds

g [x] = g [x0]+g
′
[x0] (x− x0)+

∫ x0

0
g
′′
[K]max(K− x,0)dK +

∫
∞

x0

g
′′
[K]max(x−K,0)dK.

Note that the following identity holds:

∫
∞

0
g
′′
[K]max(x−K,0)dK =

[
g
′
[K]x−

(
Kg

′
[K]−g [K]

)]x

0

=
(

g
′
[x]x−

(
xg
′
[x]−g [x]

))
−
(

g
′
[0]x−

(
0g
′
[0]−g [0]

))
= g [x]− xg

′
[0]−g [0] .

Thus,

g [x] = g [0]+ xg
′
[0]+

∫
∞

0
g
′′
[K]max(x−K,0)dK. (I-A1)

Observe that

∫
∞

0
g
′′
[K]max(x−K,0)dK =

∫ x0

0
g
′′
[K]max(x−K,0)dK +

∫
∞

x0

g
′′
[K]max(x−K,0)dK. (I-A2)

Since

(x−K) = max(x−K,0)−max(K− x,0) ,

I multiply this identity by g
′′
[K] to obtain

g
′′
[K] (x−K) = g

′′
[K]max(x−K,0)−g

′′
[K]max(K− x,0)
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and

g
′′
[K]max(x−K,0) = g

′′
[K] (x−K)+g

′′
[K]max(K− x,0) . (I-A3)

Replace (I-A3) in (I-A2), and get

∫
∞

0
g
′′
[K]max(x−K,0)dK =

∫ x0

0
g
′′
[K] (x−K)dK+

∫ x0

0
g
′′
[K]max(K− x,0)dK+

∫
∞

x0

g
′′
[K]max(x−K,0)dK.

(I-A4)

Now, replace the following expression in (I-A1):

g [x] = g [0]+ xg
′
[0]+

∫ x0

0
g
′′
[K] (x−K)dK +

∫ x0

0
g
′′
[K]max(K− x,0)dK +

∫
∞

x0

g
′′
[K]max(x−K,0)dK.

This simplifies to

g [x] = g [0]+ xg
′
[0]+

[
g
′
[K]x−

(
Kg

′
[K]−g [K]

)]x0

0
+

∫ x0

0
g
′′
[K]max(K− x,0)dK +

∫
∞

x0

g
′′
[K]max(x−K,0)dK

and

g [x] = g [x0]+g
′
[x0] (x− x0)+

∫ x0

0
g
′′
[K]max(K− x,0)dK +

∫
∞

x0

g
′′
[K]max(x−K,0)dK.(I-A5)

This is similar to the spanning formula of Carr and Madan (2001) and Bakshi, Kapadia, and Madan (2003).

C. Appendix

Proof of the Moments of the Simple Return RM,t→T . I use the spanning formula (I-A5) to show that

(RM,t→T −R f ,t→T )
n =

(
ST

St
−R f ,t→T

)n

(I-B1)

=

(
St

St
−R f ,t→T

)n

+n
1
St

(
St

St
−R f ,t→T

)n−1

(ST −St)

+
n(n−1)

S2
t


∫

∞

St

(
K
St
−R f ,t→T

)n−2
(ST −K)+ dK

+
∫ St

0

(
K
St
−R f ,t→T

)n−2
(K−ST )

+ dK
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Then, I take the conditional expectation of

E∗t (RM,t→T −E∗t (RM,t→T ))
n

= (1−n)(1−R f ,t→T )
n +

n(n−1)R f ,t→T

S2
t


∫

∞

St

(
K
St
−R f ,t→T

)n−2
Ct [K]dK

+
∫ St

0

(
K
St
−R f ,t→T

)n−2
Pt [K]dK

 .

Hence,

VAR∗t (RM,t→T ) = E∗t (RM,t→T −E∗t (RM,t→T ))
2 ,

SKEW∗t (RM,t→T ) = E∗t (RM,t→T −E∗t (RM,t→T ))
3 , and

KURT∗t (RM,t→T ) = E∗t (RM,t→T −E∗t (RM,t→T ))
4 .

Proof of Proposition 11. Consider the following maximization problem:

max
ωt

Wt→T=Wt

(
R f ,t+ω

′
t(Rt→T−R f ,t)

)Et (ϑ [Wt→T ]) = max
ωt

Wt→T=Wt

(
R f ,t+ω

′
t(Rt→T−R f ,t)

)Et (υ [u [Wt→T ]]) .

The FOCs are

Et

(
υ
′
[u [Wt→T ]]u

′
[Wt→T ] (Ri,t→T −R f ,t→T )

)
= 0 for i = 1, ...,N.

The FOCs imply a SDF of the form

mSDF
t→T =

1
R f ,t→T

υ
′
[u [Wt→T ]]u

′
[Wt→T ]

Et (υ
′
[u [Wt→T ]]u

′
[Wt→T ])

= atυ
′
[u [Wt→T ]]u

′
[Wt→T ] , (I-B2)

with

at =
1

R f ,t→T

1
Et (υ

′
[u [Wt→T ]]u

′
[Wt→T ])

.

To begin this proof, I omit the time subscript for simplicity. The Taylor expansion series of υ around

u [x] = u [x0] is

υ [u [x]] = υ [u [x0]]+
∞

∑
k=1

1
k!

(u [x]−u [x0])
k
(

∂kυ [y]
∂ky

)
y=u[x0]
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and

υ [u [x]] = υ [u [x0]]+
∞

∑
k=1

1
k!

(u [x]−u [x0])
k
(

∂kυ [y]
∂ky

)
y=u[x0]

. (I-B3)

I use (I-B3) to show that

υ
′
[u [Wt→T ]] =

∞

∑
k=1

k
k!

(u [Wt→T ]−u [x0])
k−1
(

∂kυ [y]
∂ky

)
y=u[x0]

.

Hence, the SDF is

mSDF
t→T = atu

′
[Wt→T ]

∞

∑
k=1

1
(k−1)!

(u [Wt→T ]−u [x0])
k−1
(

∂kυ [y]
∂ky

)
y=u[x0]

= ctu
′
[Wt→T ]zM,t→T , (I-B4)

with

zM,t→T = 1+
∞

∑
k=2

(−1)k+1 ρ(k)

(k−1)!

(
u [Wt→T ]

u [x0]
−1
)k−1

,and

ρ
(k) =

(−1)k+1
yk−1∂kυ[y]

∂ky
∂υ[y]

∂y


y=u[x0]

,

ct = at

(
∂υ [y]

∂y

)
y=u[x0]

.

From (I-B4), observe that

mSDF
t→T

(
u
′
[Wt→T ]

)−1
= ctzM,t→T .

Now, I take the expected value of this equation and obtain

Et

(
mSDF

t→T

(
u
′
[Wt→T ]

)−1
)
= ctEt [zM,t→T ] .

Thus, I derive ct ,

Et

(
mSDF

t→T

(
u
′
[Wt→T ]

)−1
)

Et [zM,t→T ]
= ct . (I-B5)
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Now, replace ct in (I-B4) and get

mSDF
t→T =

(
u
′
[Wt→T ]

)(
Et

(
mSDF

t→T

(
u
′
[Wt→T ]

)−1
))

zM,t→T

Et (zM,t→T )
=

1
R f ,t→T

u
′
[Wt→T ]

E∗t
(

1
u′ [Wt→T ]

)
Et (zM,t→T )

zM,t→T .

(I-B6)

Next, I determine Et [zM,t→T ]. I first observe that mSDF
t→T = ctu

′
[Wt→T ]zM,t→T and use it to show that

mSDF
t→T

(
u
′
[Wt→T ]zM,t→T

)−1
= ct . (I-B7)

I then apply the conditional expectation operator to ct and show that

ct = Et

(
mSDF

t→T

(
u
′
[Wt→T ]zM,t→T

)−1
)
. (I-B8)

This reduces to

ct =
1

R f ,t→T
E∗t
((

u
′
[Wt→T ]

)−1
z−1

M,t→T

)
. (I-B9)

Identities (I-B5) and (I-B9) are identical:

Et

(
mSDF

t→T

(
u
′
[Wt→T ]

)−1
)

Et (zM,t→T )
=

1
R f ,t→T

E∗t
((

u
′
[Wt→T ]

)−1
z−1

M,t→T

)
. (I-B10)

From the equation (I-B10), I deduce

Et (zM,t→T ) =

E∗t
(

u
′
[Wt ]

u′ [Wt→T ]

)
E∗t
(

u′ [Wt ]

u′ [Wt→T ]
z−1

M,t→T

) .
Finally, (I-B6) can be expressed as

mSDF
t→T =

(
1

R f ,t→T
u
′
[Wt→T ]

(
E∗t
(

1
u′ [Wt→T ]

)))
×
(

zM,t→T

Et (zM,t→T )

)
, (I-B11)

with

Et (zM,t→T ) =
E∗t
(

1
u′ [Wt→T ]

)
E∗t
(

1
u′ [Wt→T ]

z−1
M,t→T

)

6



To summarize, the SDF has the form

mSDF
t→T = mT

t→T ×mP
t→T , (I-B12)

with

mT
t→T =

(
1

R f ,t→T
u
′
[Wt→T ]

(
E∗t
(

1
u′ [Wt→T ]

)))
and

mP
t→T =

zM,t→T

Et (zM,t→T )
,

and

zM,t→T = 1+
∞

∑
k=2

(−1)k+1 ρ(k)

(k−1)!

(
u [Wt→T ]

u [x0]
−1
)k−1

Et [zM,t→T ] =
E∗t
[

1
u′ [Wt→T ]

]
E∗t
[

1
u′ [Wt→T ]

z−1
M,t→T

] ,
where

ρ
(k) =

(
(−1)k+1 zk−1∂kυ [z]

∂kz
/

∂υ [z]
∂z

)
z=u[x0]

.

Setting Wt→T = ST and x0 = St ends the proof.

Proof of the Conditional Moments when mSDF
t→T = mT

t→T ×mP
t→T .

To proceed, I set x = ST , x0 = St , z = zM,t→T , and k = 2. I recall that

u [x] =
x1−α−1

1−α
.

Thus,

u
′
[x] = x−α, u

′′
[x] =−αx−α−1, u

′′′
[x] = α(α+1)x−α−2

and

zM,t→T = 1−ρ
(2)
(

u [x]
u [x0]

−1
)
.
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My first goal is to determine

E∗t
[

1
zu′ [x]

]
.

I first observe that
1

zu′ [x]
= F [x] ,

with

F [x] =
1

u′ [x]−ρ(2) u[x]u′ [x]
u[x0]

+ρ(2)u′ [x]
.

Observe that

F [x0] =
1

u′ [x0]
.

Observe that the first derivative of F [x] is

Fx [x] =
f [x]

(g [x])2 ,

with

f [x] = −u
′′
[x]+ρ

(2)

(
u
′
[x]
)2

u [x0]
+ρ

(2) u [x]u
′′
[x]

u [x0]
−ρ

(2)u
′′
[x] and

g [x] = u
′
[x]−ρ

(2) u [x]u
′
[x]

u [x0]
+ρ

(2)u
′
[x] .

The second derivative of F [.] with respect to x is

Fxx [x] =
f
′
[x]g [x]−2g

′
[x] f [x]

(g [x])3 ,

with

f
′
[x] = −u

′′′
[x]+3ρ

(2) u
′
[x]u

′′
[x]

u [x0]
+ρ

(2) u [x]u
′′′
[x]

u [x0]
−ρ

(2)u
′′′
[x] and

g
′
[x] = u

′′
[x]−ρ

(2)

(
u
′
[x]
)2

u [x0]
−ρ

(2) u [x]u
′′
[x]

u [x0]
+ρ

(2)u
′′
[x] .
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Hence,

Fxx [K] =
f
′
[K]g [K]−2g

′
[K] f [K]

(g [K])3 .

Using the spanning formula from Appendix I-A, the following identity holds:

F [ST ] = F [St ]+ (ST −St)FS [St ]+
∫

∞

St

FSS [K] (ST −K)+ dK +
∫ St

0
FSS [K] (K−ST )

+ dK.

Hence,

E∗t [F [ST ]] = F [St ]+ (R f ,t→T −1)StFS [St ]+R f ,t→T

(∫
∞

St

FSS [K]Ct [K]dK +
∫ St

0
FSS [K]Pt [K]dK

)
.

I recall that

E∗t
[

1
u′ [x]

]
= E∗t [Sα

T ] = Sα
t E∗t

[
Rα

M,t→T
]

(since RM,t→T =
ST

St
).

Finally,

Et [z] =
E∗t [Sα

T ]

E∗t [F [ST ]]

=
Sα

t E∗t
[
Rα

M,t→T

]
E∗t [F [ST ]]

=
Sα

t δt

E∗t [F [ST ]]
(δt in defined in the proof of Proposition 8).

Conditional Physical Moments of the SDF

Now, I compute the conditional moments of the SDF. To compute the physical moments of the SDF, I

derive a closed-form expression of N ∗(n) [T ]:

N ∗(n)
t [T ] = E∗t

[(
mSDF

t→T −Et
(
mSDF

t→T
))n
]
= E∗t

[(
mt→T mP

t→T −
1

R f ,t→T

)n]
.

Note that

mSDF
t→T =

δt

R f ,t→T
R−α

M,t→T
zM,t→T

Et (zM,t→T )
.
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Hence,

N ∗(n)
t [T ] = E∗t

[(
δt

R f ,t→T
R−α

M,t→T
zM,t→T

Et (zM,t→T )
− 1

R f ,t→T

)n]
=

1
Rn

f ,t→T
E∗t
[(

δ̃tR−α

M,t→T zM,t→T −1
)n]

=
1

Rn
f ,t→T

E∗t
[(

δ̃tH [ST ]−1
)n]

.

Denote

δ̃t =
δt

Et (zM,t→T )
and H [ST ] =

u
′
[ST ]

u′ [St ]

(
1−ρ

(2)
(

u [ST ]

u [St ]
−1
))

.

It follows that

H [St ] = 1,

HS [ST ] =
u
′′
[ST ]

u′ [St ]

(
1−ρ

(2)
(

u [ST ]

u [St ]
−1
))
−ρ

(2)

(
u
′
[ST ]

)2

u′ [St ]u [St ]
, and

HSS [ST ] =
u
′′′
[ST ]

u′ [St ]

(
1−ρ

(2)
(

u [ST ]

u [St ]
−1
))
−ρ

(2) u
′′
[ST ]

u′ [St ]

u
′
[ST ]

u [St ]
−2ρ

(2) u
′
[ST ]u

′′
[ST ]

u′ [St ]u [St ]
.

Now I use the spanning formula in Appendix I-A to show that

(
δ̃tH [ST ]−1

)n
=

(
δ̃t −1

)n
+n(ST −St)

(
δ̃tH [St ]−1

)n−1
δ̃tHS [St ] (I-B13)

+
∫

∞

St

GSS [K] (ST −K)+ dK +
∫ St

0
GSS [K] (K−ST )

+ dK,

with

GSS [ST ] = n(n−1)
(

δ̃tH [ST ]−1
)n−2(

δ̃t

)2
(HS [ST ])

2 +n
(

δ̃tH [ST ]−1
)n−1

δ̃tHSS [ST ] .

I take the expected value of (I-B13):

E∗t
[(

δ̃tH [ST ]−1
)n]

=
(

δ̃t −1
)n

+n(R f ,t→T −1)
(

δ̃t −1
)n−1

δ̃tStHS [St ]

+R f ,t→T

(∫
∞

St

GSS [K]Ct [K]dK +
∫ St

0
GSS [K]Pt [K]dK

)
.
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Conditional Risk-Neutral Moments of the SDF The conditional risk-neutral moment is

M ∗(n)
t [T ] = E∗t

[(
mSDF

t→T −E∗t
(
mSDF

t→T
))n
]

=
(
E∗t
(
mSDF

t→T
))nE∗t

[(
mSDF

t→T

E∗t
(
mSDF

t→T

) −1

)n]
.

Since

mSDF
t→T =

δt

R f ,t→TEt (zM,t→T )
R−α

M,t→T zM,t→T ,

we have
mSDF

t→T

E∗t
(
mSDF

t→T

) = δ
∗
t R−α

M,t→T zM,t→T ,

where

δ
∗
t =

(
δt

Et(zM,t→T )

)
R f ,t→T ξt

,

with

ξt = E∗t
(
mSDF

t→T
)
= R f ,t→TEt

((
mSDF

t→T
)2
)
= R f ,t→T

(
M (2)

t [T ]+
1

R2
f ,t→T

)
.

Thus,

M ∗(n)
t [T ] = ξ

n
t E∗t

[(
δ
∗
t R−α

M,t→T zM,t→T −1
)n]

= ξ
n
t E∗t [(δ∗t H [ST ]−1)n]

= ξ
n
t E∗t (G [ST ]) .

Following the proof of the physical moments of the SDF, we define

GSS [ST ] = n(n−1)(δ∗t H [ST ]−1)n−2 (δ∗t )
2 (HS [ST ])

2 +n(δ∗t H [ST ]−1)n−1
δ
∗
t HSS [ST ] .

and show that

E∗t [(δ∗t H [ST ]−1)n] = (δ∗t −1)n +n(R f ,t→T −1)(δ∗t −1)n−1
δ
∗
t StHS [St ]

+R f ,t→T

(∫
∞

St

GSS [K]Ct [K]dK +
∫ St

0
GSS [K]Pt [K]dK

)
.
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Therefore,

M ∗(n)
t [T ] = ξ

n
t E∗t [(δ∗t H [ST ]−1)n] .

Risk-Neutral Moments of E∗t
((

mSDF
t→T

)n−2
)

I first observe that

mSDF
t→T =

δt

R f ,t→T
R−α

M,t→T
zM,t→T

Et (zM,t→T )
.

Thus, (
mSDF

t→T
)n−2

=

 δt
R f ,t→T

Et (zM,t→T )

n−2

R−α(n−2)
M,t→T z(n−2)

M,t→T = ξ
n−2R−α(n−2)

M,t→T z(n−2)
M,t→T ,

with ξt =
δt

R f ,t→T
Et(zM,t→T )

.

It follows that E∗t
((

mSDF
t→T

)n−2
)
= ξ

n−2
t E∗t (H [ST ]) with H [ST ] = f [ST ]g [ST ], where

f [ST ] =

(
ST

St

)−α(n−2)

and g [ST ] = 1−ρ
(2)
(

u [ST ]

u [St ]
−1
)
. (I-B14)

I, thereafter, observe that

f [ST ] =

(
ST

St

)−α(n−2)

and H [ST ] = 1−ρ
(2)
(

S1−α

T −1
S1−α

t −1
−1
)
. (I-B15)

Thus H [St ] = 1 and

HS [St ] = f
′
[ST ]g [ST ]+ f [ST ]g

′
[ST ] = α(2−n)

1
St
−ρ

(2) u
′
[St ]

u [St ]
,

and

HSS [K] = fSS [K]g [K]+2 fS [K]gS [K]+ f [K]gSS [K] ,

where

fS [ST ] = α(2−n)
1
St

(
ST

St

)α(2−n)−1

, fSS [ST ] = (α(2−n))2 1
S2

t

(
ST

St

)α(2−n)−2

, (I-B16)
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gS [ST ] = −ρ
(2) u

′
[ST ]

u [St ]
=−ρ

(2) (1−α)
S−α

t

S1−α
t −1

(
ST

St

)−α

, and

gSS [ST ] = −ρ
(2) u

′′
[ST ]

u [St ]
=−ρ

(2) (−α)(1−α)
S−α−1

t

S1−α
t −1

(
ST

St

)−α−1

.

Using the spanning formula,

H [ST ] = H [1]+ (ST −St)HS [St ]+
∫

∞

St

HS [St ] (ST −K)+ dK +
∫ St

0
HS [St ] (K−ST )

+ dK.

Finally,

E∗t
((

mSDF
t→T
)n−2

)
=E∗t (H [ST ])=H [1]+(R f ,t→T −1)StHS [St ]+R f ,t→T

(∫
∞

St

HS [St ]Ct [K]dK +
∫ St

0
HS [St ]Pt [K]dK

)
.

(I-B17)
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Table 25
Estimates of the Price of Risk This table presents the estimation results of the beta pricing model (40).
The model is estimated using daily returns on the 25 Fama and French portfolios formed on size and book-
to-market. The column Only FF5 presents results when only the five Fama French factors are used. The
data are from January 1996 to August 2015. I report the Fama and MacBeth (1973) t-ratio under correctly
specified models (tFM), the Shanken (1992) t-ratio (tS), the Jagannathan and Wang (1998) t-ratio under
correctly specified models that account for the EIV problem (tJW ), and the Kan, Robotti, and Shanken
(2013) misspecification robust t-ratios (tKRS). The table also presents the sample cross-sectional R2 of the
beta pricing model (40). p(R2 = 1) is the p-value for the test of H0 : R2 = 1, p(R2 = 0) is the p-value for
the test of H0 : R2 = 0, and p(W ) is the p-value of Wald test under the null hypothesis that all prices of risk
are equal to zero. se(R̂2) is the standard error of R̂2 under the assumption that 0 < R2 < 1.

Maturity ”Only FF5” 30 60 91 122 152 182 273 365
λ0 0.013 0.117 0.124 0.128 0.129 0.130 0.131 0.126 0.122

tFM 5.653 5.211 5.544 5.715 5.890 6.046 6.132 6.016 5.812
tS 5.635 4.893 5.225 5.390 5.551 5.680 5.744 5.552 5.317

tJW 5.820 5.721 6.054 6.217 6.372 6.563 6.645 6.230 5.928
tKRS 5.743 5.154 5.341 5.334 5.561 5.770 6.020 5.818 5.438

λMKT -0.064 -0.051 -0.062 -0.068 -0.072 -0.073 -0.073 -0.073 -0.069
tFM -2.923 -2.894 -3.152 -3.281 -3.367 -3.453 -3.490 -3.366 -3.217
tS -2.917 -2.781 -3.036 -3.162 -3.245 -3.323 -3.353 -3.205 -3.046

tJW -3.330 -3.387 -3.672 -3.786 -3.839 -3.945 -3.963 -3.693 -3.492
tKRS -3.208 -3.141 -3.352 -3.371 -3.460 -3.576 -3.662 -3.461 -3.235

λM (2) 0.094 0.057 0.046 0.042 0.048 0.050 0.043 0.036
tFM 3.078 2.726 2.389 2.185 2.023 1.595 0.765 0.518
tS 2.893 2.571 2.254 2.061 1.902 1.495 0.706 0.474

tJW 3.024 2.644 2.301 2.090 2.027 1.624 0.756 0.513
tKRS 2.369 2.055 1.744 1.593 1.407 1.028 0.483 0.321

λM (3) 0.112 -0.044 -0.067 -0.069 -0.072 -0.076 -0.064 -0.042
tFM 2.324 2.421 2.217 2.056 1.720 1.275 0.424 0.183
tS 2.184 2.283 2.092 1.939 1.616 1.195 0.392 0.168

tJW 2.363 2.437 2.176 1.968 1.703 1.276 0.409 0.178
tKRS 1.504 1.632 1.409 1.294 1.022 0.724 0.252 0.111

λM (4) -0.088 0.041 0.046 0.039 0.033 0.032 0.021 0.011
tFM 2.106 2.369 2.377 2.306 2.005 1.641 0.887 0.623
tS 1.979 2.234 2.243 2.175 1.885 1.538 0.819 0.570

tJW 2.071 2.390 2.343 2.204 1.963 1.623 0.839 0.593
tKRS 1.400 1.674 1.560 1.486 1.231 0.955 0.543 0.391
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Table 25
Estimates of the Price of Risk, continued

Maturity Only FF5 30 60 91 122 152 182 273 365
(days)

λSMB 0.024 0.043 0.048 0.049 0.051 0.050 0.050 0.045 0.043
tFM 0.709 0.798 0.798 0.795 0.804 0.795 0.793 0.779 0.784
tS 0.709 0.796 0.796 0.793 0.802 0.793 0.791 0.777 0.781

tJW 0.688 0.776 0.780 0.776 0.785 0.774 0.770 0.752 0.754
tKSR 0.685 0.775 0.777 0.774 0.782 0.771 0.767 0.745 0.745

λHML 0.061 0.080 0.094 0.102 0.108 0.106 0.105 0.095 0.090
tFM 1.125 1.173 1.138 1.128 1.102 1.093 1.087 1.064 1.063
tS 1.125 1.171 1.136 1.126 1.100 1.091 1.085 1.061 1.059

tJW 1.084 1.113 1.083 1.076 1.055 1.050 1.046 1.028 1.029
tKSR 1.078 1.107 1.079 1.069 1.046 1.042 1.037 1.015 1.013

λRMW 0.013 0.022 0.023 0.021 0.020 0.011 0.003 -0.018 -0.020
tFM 0.915 1.044 1.205 1.255 1.289 1.225 1.187 0.974 0.895
tS 0.913 1.000 1.157 1.206 1.237 1.173 1.133 0.920 0.839

tJW 0.723 0.826 0.952 1.004 1.047 1.025 1.023 0.906 0.864
tKSR 0.710 0.803 0.914 0.953 0.984 0.944 0.924 0.808 0.763

λCMA -0.130 -0.147 -0.186 -0.205 -0.219 -0.213 -0.212 -0.196 -0.182
tFM -0.287 -0.315 -0.526 -0.638 -0.717 -0.649 -0.629 -0.525 -0.441
tS -0.286 -0.299 -0.501 -0.608 -0.682 -0.616 -0.595 -0.490 -0.409

tJW -0.337 -0.370 -0.621 -0.750 -0.847 -0.780 -0.759 -0.634 -0.532
tKSR -0.299 -0.333 -0.554 -0.658 -0.729 -0.649 -0.611 -0.501 -0.419

R2 0.197 0.364 0.354 0.362 0.365 0.370 0.381 0.408 0.422
p(R2 = 1) 0.001 0.003 0.002 0.002 0.002 0.001 0.001 0.003 0.004
p(R2 = 0) 0.075 0.125 0.107 0.105 0.097 0.105 0.114 0.085 0.075

p(W ) 0.030 0.016 0.015 0.013 0.012 0.011 0.010 0.009 0.008
se(R̂2) 0.097 0.144 0.136 0.134 0.133 0.132 0.134 0.147 0.151
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Table 26
Estimates of the Price of Risk This table presents the estimation results of the beta pricing model (41).
The model is estimated using daily returns on the 25 Fama and French portfolios formed on size and book-
to-market. The data are from January 1996 to August 2015. I report the Fama and MacBeth (1973) t-ratio
under correctly specied models (tFM), the Shanken (1992) t-ratio (tS), the Jagannathan and Wang (1998)
t-ratio under correctly specied models that account for the EIV problem (tJW ), and the Kan, Robotti, and
Shanken (2013) misspecification-robust t-ratios (tKRS). The table also presents the sample cross-sectional
R2 of the beta pricing model ((41)). p(R2 = 1) is the p-value for the test of H0 : R2 = 1, p(R2 = 0) is the
p-value for the test of H0 : R2 = 0, and p(W ) is the p-value of Wald test under the null hypothesis that all
prices of risk are equal to zero. se(R̂2) is the standard error of R̂2 under the assumption that 0 < R2 < 1.

Maturity Only FF5 30 60 91 122 152 182 273 365
λ0 0.013 0.111 0.116 0.120 0.121 0.123 0.136 0.133 0.128

tFM 5.653 4.994 5.191 5.305 5.439 5.577 6.083 6.310 6.135
tS 5.635 4.718 4.897 4.997 5.150 4.913 5.035 5.199 5.696

tJW 5.820 5.243 5.448 5.613 5.707 5.559 5.155 5.685 6.554
tKRS 5.743 4.771 4.994 5.033 5.205 5.039 4.967 5.147 6.330

λMKT -0.064 -0.050 -0.059 -0.061 -0.066 -0.060 -0.070 -0.076 -0.062
tFM -2.923 -2.700 -2.871 -2.986 -3.064 -3.133 -3.563 -3.614 -3.404
tS -2.917 -2.605 -2.767 -2.875 -2.961 -2.889 -3.145 -3.194 -3.255

tJW -3.330 -3.069 -3.252 -3.370 -3.395 -3.409 -3.423 -3.527 -3.833
tKRS -3.208 -2.819 -3.019 -3.070 -3.144 -3.151 -3.315 -3.281 -3.719

λM R P (2) -0.235 -0.070 -0.035 0.007 -0.121 -0.152 0.154 0.038
tFM -2.308 -2.307 -1.864 -1.461 -1.783 -1.849 1.262 0.138
tS -2.182 -2.178 -1.757 -1.384 -1.572 -1.532 1.040 0.128

tJW -2.330 -2.253 -1.812 -1.366 -1.723 -1.687 1.164 0.141
tKRS -1.592 -1.550 -1.111 -0.797 -0.786 -0.704 0.541 0.073

λM R P (3) 0.152 0.048 0.029 0.015 0.017 0.014 0.008 0.005
tFM 2.322 2.730 2.773 2.396 2.711 2.805 0.486 1.186
tS 2.195 2.577 2.614 2.270 2.390 2.324 0.401 1.102

tJW 2.054 2.299 2.366 1.976 2.386 2.359 0.421 1.169
tKRS 1.626 2.006 1.829 1.425 1.219 1.063 0.231 0.656

λM R P (4) -0.238 -0.037 -0.018 0.014 -0.078 -0.094 0.073 0.014
tFM 1.966 2.432 2.253 2.002 1.918 1.823 -0.494 0.242
tS 1.858 2.296 2.123 1.896 1.691 1.510 -0.407 0.225

tJW 1.864 2.336 2.199 1.883 1.880 1.674 -0.458 0.246
tKRS 1.207 1.640 1.397 1.153 0.903 0.751 -0.245 0.152
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Table 26
Estimates of the Price of Risk, continued

Maturity Only FF5 30 60 91 122 152 182 273 365
(days)

λSMB 0.024 0.044 0.049 0.051 0.053 0.040 0.029 0.074 0.050
tFM 0.709 0.792 0.818 0.820 0.831 0.866 0.851 0.809 0.793
tS 0.709 0.790 0.816 0.818 0.829 0.862 0.843 0.802 0.791

tJW 0.688 0.771 0.801 0.802 0.813 0.844 0.831 0.769 0.769
tKRS 0.685 0.771 0.797 0.797 0.807 0.835 0.827 0.763 0.758

λHML 0.061 0.074 0.089 0.099 0.102 0.126 0.160 0.045 0.078
tFM 1.125 1.175 1.122 1.116 1.096 1.037 1.026 1.197 1.166
tS 1.125 1.173 1.120 1.113 1.095 1.032 1.018 1.187 1.163

tJW 1.084 1.112 1.062 1.057 1.040 0.979 0.970 1.138 1.112
tKRS 1.078 1.101 1.059 1.053 1.037 0.973 0.961 1.127 1.100

λRMW 0.013 0.031 0.037 0.042 0.042 0.066 0.051 -0.055 0.013
tFM 0.915 0.971 1.137 1.246 1.291 1.393 1.225 0.991 1.259
tS 0.913 0.934 1.093 1.196 1.242 1.273 1.068 0.859 1.194

tJW 0.723 0.754 0.874 0.960 1.009 1.015 0.806 0.891 1.051
tKRS 0.710 0.735 0.835 0.903 0.924 0.939 0.775 0.756 0.929

λCMA -0.130 -0.139 -0.178 -0.200 -0.214 -0.221 -0.244 -0.116 -0.180
tFM -0.287 -0.331 -0.569 -0.712 -0.787 -0.800 -0.862 0.022 -0.447
tS 0.286 -0.315 -0.542 -0.677 -0.752 -0.719 -0.734 0.018 -0.420

tJW -0.337 -0.371 -0.644 -0.802 -0.902 -0.847 -0.813 0.023 -0.520
tKRS -0.299 -0.332 -0.571 -0.710 -0.770 -0.749 -0.725 0.016 -0.393

R2 0.197 0.338 0.333 0.343 0.341 0.367 0.398 0.433 0.389
p(R2 = 1) 0.001 0.004 0.004 0.004 0.004 0.056 0.226 0.085 0.003
p(R2 = 0) 0.075 0.167 0.179 0.161 0.163 0.159 0.168 0.131 0.109

p(W ) 0.030 0.026 0.026 0.023 0.019 0.017 0.013 0.010 0.012
se(R̂2) 0.097 0.145 0.145 0.147 0.143 0.176 0.211 0.203 0.160
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Fig. 7. Conditional Moments of the SDF under Generalized Preferences I plot daily variance, skewness,
and kurtosis of the SDF. The moments are computed from the S&P 500 index option prices from January
4, 1996, through August 31, 2015, and are not annualized. I use preferences that depart from CRRA
preferences with α = 2, ρ(2) = 5 and ρ(k) = 0 for k > 2. The maturity of options used to compute the
moments is labeled in days.
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Fig. 8. Conditional Risk-Neutral Moments of the SDF under Generalized Preferences. I plot daily
variance, skewness and kurtosis of the SDF. The moments are computed from the S&P 500 index option
prices from January 4, 1996, through August 31, 2015, and are not annualized. I use preferences that
depart from CRRA preferences with α = 2, ρ(2) = 5, and ρ(k) = 0 for k > 2. The maturity of options used
to compute the moments is labeled in days.
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Fig. 9. Sharpe Ratios on SDF Moments under Generalized Preferences. I plot conditional Sharpe
Ratios under preferences that depart from CRRA preferences. Sharpe Ratios are annualized and cover
the period from January 4, 1996, through August 31, 2015. I use preferences that depart from CRRA
preferences with α = 2, ρ(2) = 5, and ρ(k) = 0 for k > 2. The maturity of options used to compute the
moments is labeled in days.
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Fig. 10. Expected Excess Returns on SDF Moments under Generalized Preferences. I plot conditional
expected excess returns on SDF-based moments under preferences that depart from CRRA preferences. I
use preferences that depart from CRRA preferences with α = 2, ρ(2) = 5, and ρ(k) = 0 for k > 2. The
expected excess returns are annualized and cover the period from January 4, 1996, through August 31,
2015. The maturity of options used to compute the moments is labeled in days.
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