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Abstract

This paper deals with unobserved heterogeneity in hedonic price models,
arising from missing property and locational characteristics. In specific,
commercial real estate is very heterogeneous, and data on detailed property
characteristics are often lacking. We show that adding mutually independent
property random effects to a hedonic price model results in more precise out-
of-sample price predictions, both for commercial multifamily housing in Los
Angeles and owner-occupied single family housing in Heemstede, the Nether-
lands. The standard hedonic price model does not take advantage of the fact
that some properties sell more than once. We subsequently show that adding
spatial random effects leads to an additional increase in prediction accuracy.
The increase is highest for properties without prior sales.
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1. Introduction

This paper deals with unobserved heterogeneity in hedonic price models.
Hedonic price models are widely used, for example to create price indexes
(and concomitant deprecation) for cars (Berndt et al., 1995), computers (Reis
and Santos Silva, 2006), and residential housing (Hill, 2012), among many
other types of goods. The number of applications within real estate is large.
The hedonic price model has for example been used to value residential hous-
ing (Francke and De Vos, 2000; Sirmans et al., 2006), commercial real estate
(Bokhari and Geltner, 2011) and (residential) land (Diewert et al., 2015),
and to estimate the depreciation rate of houses (Knight and Sirmans, 1996;
Francke and van de Minne, 2017b).

Rosen (1974) explicated the formal microeconomic theory underlying the
hedonic price models, though the technique has older roots in consumer and
marketing empirical analytics practice (Court, 1939). It is based on the idea
that heterogeneous goods can be described by their attributes (de Haan and
Diewert, 2011). In other words, a good is a bundle of (performance) char-
acteristics. In the case of real estate properties, the relevant bundle may
contain attributes of both the building structure and the location site of the
property. For example, attributes might include the size, age, and type of
building, and the distance of the site from downtown or the airport or near-
est subway station. There is no market for the characteristics as such, since
they cannot be sold separately. In the market for property occupancy, de-
mand and supply in the market for built space (the rental market) determine
the characteristics’ marginal contributions to the total value of the bundle.
Statistical regression based techniques are typically used to estimate these
marginal value contributions.

Hedonic price models for residential and in particular commercial real es-
tate are in practice hard to develop. First, properties are very heterogeneous
in nature, implying many value drivers. Second, the property turnover rate,
and so the number of transactions, is relatively low. Third, the number of
registered property characteristics is in most databases quite limited: many
value drivers are missing. And when they are sufficiently available, there is
the risk of misspecification and over-fitting.

This paper deals with the modeling of unobserved heterogeneity, arising
from missing property and locational characteristics. And we do so with
a view toward data scarce application environments. The paper has broad
relevance, but real estate is a particularly important subject. Real estate is
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characterized by very long-lived goods which therefore often transact more
than once, and also by the importance of spatial location. With this in
mind, we deal with property related unobserved heterogeneity by adding
mutual independent property level random effects to the standard hedonic
price model, taking advantage of the fact that some properties transact more
than once. Moreover, we add spatial random effects to deal with spatial
dependencies. Spatial dependencies exist because nearby properties often
have similar characteristics and also share locational amenities (Basu and
Thibodeau, 1998).

The property random effects hedonic price model is related to the hybrid
model (Quigley, 1995). The main difference is that we include random effects
for all properties, and the hybrid model includes fixed effects for the repeat
sales only.

We use two different specifications to model the spatial property effects.
The first one is a Besag type model (Besag, 1974), and the second one a
newly proposed spatial random walk model. Both models have in common
that the spatial effect for each property depends on its neighbors.

The spatial random walk can be viewed as a special case of the Besag
model, where neighbors are defined by the Travelings Salesperson Problem
(TSP) route, the shortest route visiting every property only once, and re-
turning to the starting point. The shortest route is calculated by algorithms
solving the TSP. Using the TSP route to define neighbors, restricts each prop-
erty to have at most two neighbors, the preceding and subsequent property
on the TSP-route. We keep the model structure simple, and apply a random
walk model on the ordered properties, even without taking into account the
distance between the properties on the TSP route.

We compare the outcomes of 7 different hedonic price models: a stan-
dard hedonic price model, a hybrid model, a hedonic price model including
property random effects (all three including location fixed effects), and two
spatial models (Besag and spatial random walk) for the hybrid and property
random effects hedonic price model (all four excluding location fixed effects).
We perform a leave-one-out (LOO) cross validation to measure the out-of-
sample performance for the various models, so we can check whether adding
property random and spatial effects helps to increase prediction accuracy.
As LOO analysis is computational expensive, we use an efficient Bayesian es-
timation procedure, Integrated Nested Laplace Approximation (INLA), see
Rue et al. (2009).

We apply our model to multifamily housing (income generating proper-
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ties) in Los Angeles and single family housing (owner-occupied) in Heemstede,
a city close to Amsterdam in the Netherlands. Both data sets cover the period
from 2001 up to 2017. In both Los Angeles and Heemstede, approximately
30% of the transactions are repeat sales.

The results are in line with expectations. Adding property random effects
to the standard hedonic price model improves the prediction accuracy, more
than in the hybrid model. The standard deviation of the LOO residuals
reduce with approximately 5% in both markets. Adding random property
effects and spatial effects reduces the standard deviation of the LOO residuals
by 23% and 24% in Los Angeles and Heemstede, respectively. The differences
in prediction accuracy between the Besag and spatial random walk model are
small, so using a restricted version of the Besag model – having at most two
neighbors, the preceding and subsequent property on the TSP-route – does
not lead to a loss in prediction accuracy. However, the spatial random walk
model is computationally much more efficient. In Los Angeles the spatial
random walk model is the best performing one, in Heemstede the Besag.
The estimated spatial effects are correlated among the models. Correlations
range between 0.93 and 0.99 in Los Angeles, and between 0.88 and 0.99 in
Heemstede.

When having only 1 sale per property, the property random effects he-
donic price model including spatial effects performs better than the model
excluding the spatial effects. The difference in performances becomes smaller
when the number of sales per property increases; then the property random
effects pick up most of the unobserved heterogeneity, and there is less addi-
tional gain from the spatial structure. Finally, the property random effects
hedonic price model including spatial effects outperforms more standard he-
donic models even after excluding important characteristics.

The paper proceeds as follows. Section 2 gives the methodology. Section
3 provides a data description. Section 4 gives the estimation results, and
finally, Section 5 concludes.

2. Methodology and Estimation

2.1. Pooled Hedonic Price model

For modeling and tracking the prices of heterogeneous goods (including
real estate), a widely-used type of hedonic price model is the so-called pooled
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model, given by

yi = xiβ + εi, εi ∼ N(0, σ2
ε ), i = 1, . . . , N, (1)

where the dependent variable yi is the log price for transaction i, and N is
the number of transactions. The (1×K) vector xi represents the observable
hedonic characteristics with corresponding coefficient vector β, constant over
time. Apart from property characteristics and a constant, the row vector xi
could include location fixed effects. In the pooled hedonic price model xi also
includes time fixed effects. The error term εi is assumed to be normally and
independently distributed with zero mean and variance σ2

ε .
The pooled hedonic price model is typically estimated by ordinary least

squares (OLS). The estimated coefficient β̂ represents the marginal value
contributions, and can subsequently be used to predict the value of all prop-
erties – including the ones that were not sold – as long as we observe the
hedonic attributes x. The estimated coefficients of the time fixed effects re-
flect longitudinal changes in the market, and can be interpreted directly as
a time trend in the central tendency of market values, hence, can be used to
produce a price index.

In the present paper we take specific interest in how to cope with the
unobserved heterogeneity. Unobserved heterogeneity is reflected in omitted
variable bias, lower model fit, and lower performance on out-of-sample pre-
diction. Unobserved heterogeneity is in specific a problem for commercial
real estate (Francke and van de Minne, 2017a), as properties are very hetero-
geneous, transaction prices are scarce, and detailed property characteristics
are often lacking.

2.2. Property Random Effects

A way of dealing with unobserved heterogeneity in the hedonic price
model is to include mutually independent property random effects in Eq.
(1), taking advantage of the fact that some properties transact more than
once, leading to the following model

yp = xpβ + jnpφp + εp, εp ∼ N(0, σ2
ε Inp), (2)

φ ∼ N(0, σ2
φIP ), (3)

where subscript p = 1, . . . , P indicates an individual property, P is the total
number of properties, j is a vector of ones, and I is the identity matrix.
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The number of transactions for property p is np; for single sales np = 1,
and for repeat sales np > 1. The total number of transactions is given by

N =
∑P

p=1 np. Note that yp is now a (np×1) vector of log transaction prices.
The property random effects φp reflect omitted variables and model misspec-
ification, and the error term ε transaction noise, the difference between the
market value and the transaction price.

Conditional on the variance parameters σ2
ε and σ2

φ the hedonic price model
including random property effects Eqs. (2)–(3) can be estimated by general-
ized least squares, giving

β|y,X, σ2
ε , σ

2
φ ∼ N(β̂,Var(β̂)), (4)

where Var(β̂) = (
∑P

p=1 (x′pΩ
−1
p xp))

−1, β̂ = Var(β̂)
∑P

p=1 (x′pΩ
−1
p yp), and Ωp =

σ2
ε Inp +σ2

φjnpj
′
np

. Conditional on σ2
ε and σ2

φ estimates of the property random
effects are given by

φ̂p =
npσ

2
φ

σ2
ε + npσ2

φ

(ȳp − x̄pβ̂), (5)

where ȳp and x̄p are the average of the transactions prices and the characteris-

tics of property p. The part of the average residual ȳp−x̄pβ̂ that is attributed
to the property random effect thus depends on the ratio of the variance pa-
rameters and the number of transactions for property p: The larger np and
the smaller the ratio of σ2

ε/σ
2
φ is, the larger this part is. The predicted values

for property p – conditional on the ratio of the variance parameters σ2
ε and

σ2
φ – can subsequently be expressed as ŷp = xpβ̂ + jnpφ̂p.

The variance parameters σ2
ε and σ2

φ can be estimated by (restricted) max-
imum likelihood or by Bayesian methods. In absence of prior information on
these variance parameters a necessary condition is that the number of trans-
actions N must be larger than the number of properties P , so N > P . In
other words, some – not all – properties need to transact more than once
over the sample period.

Please note that it is practically infeasible to replace the random effects
by fixed effects: By including property fixed effects one effectively excludes all
single sales, which are in many applications the majority of the transactions.
One could formally test whether the β coefficients are different in the fixed
and random effects model by the Hausman test. An important reason why
the two estimators could be different is the existence of correlation between
X and φ, although other sorts of misspecification may also lead to rejection
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of the null hypothesis of no difference in the β estimates. In our applications
it is evident that the property fixed effects models are misspecified – the
number of repeat sales is only a very small fraction of all sales, and for the
repeat sales most of the characteristics do not change between the date of
buying and selling – and therefore we will not apply the Hausman test.

In this paper we will focus on out-of-sample cross validation to test for
potential over-fitting, see Section 2.4 for more details. In a hedonic price
model with property fixed effects out-of-sample prediction is not possible,
unless another sale of the same property has been included in the estimation.
This drawback does not hold for random effects models, although the random
effect will be zero when the property has not been included in the model
estimation.

The hedonic price model with property random effects is related to the
hybrid model as proposed by Case and Quigley (1991), although the focus
in hybrid models is primarily on price indexes, see also Quigley (1995) and
Hwang and Quigley (2004). They split the sample in two parts representing
single and repeat sales, and provide different model specifications for both
subsamples. The single sales yS and the repeat sales yR are modeled by

ySp = xSpβ + εSp , εSp ∼ N(0, σ2
ε ), ∀p : np = 1, (6)

yRp,t − yRp,s = (xRp,t − xRp,s)β + εRp,t − εRp,s, ∀p : np > 1, (7)

where yRp,t−yRp,s is the difference in the log price at the time of selling t and the
time of buying s. By leaving out all components of (xRp,t−xRp,s)β except for the
time fixed effects, one gets the repeat sales model (Bailey et al., 1963; Case
and Shiller, 1987), which is widely used to estimate property price indexes.
Eqs. (6)–(7) are simultaneously estimated by OLS. The repeat sales model
(7) can equivalently be written in levels by adding property fixed effects,
giving

yRp = xRp β + jnpφ
FE
p + εRp , (8)

where φFE
p is the fixed effect for property p.

The combined model for single and repeat sales can subsequently be ex-
pressed as (

yS

yR

)
=

(
XS 0
XR DFE

)(
β
φFE

)
+

(
εS

εR

)
, (9)
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where DFE is the selection matrix to select the appropriate property. The
hybrid model is somewhat inconsistent by specifying property fixed effects
only for the repeat sales. Note that in hybrid models – in contrast to property
fixed effects hedonic price models – out-of-sample prediction is also possible
for single sales.

2.3. Spatial dependencies

The property random effects so far have been specified as mutually inde-
pendent, Cov(φp, φq) = 0 for p 6= q, so spatial dependencies have not been
explicitly taken into account. Spatial dependencies exist because nearby
properties often have similar building characteristics and also share loca-
tional characteristics/amenities (Basu and Thibodeau, 1998). We add spa-
tial property effects θ to the property random effects hedonic price model,
leading to

yp = xpβ + jnpφp + jnpθp + εp, εp ∼ N(0, σ2
ε Inp). (10)

The spatial property effect requires having latitude and longitude coordinates
for all properties, which in most cases are easy to obtain.

We use two different specifications for the spatial property effects θ. The
first one is a Besag type model (Besag, 1974), and the second one a newly
proposed spatial random walk model, which can be seen as a special case of
the Besag model. Both models have in common that the spatial property
effect for property p depends on its neighbors, although the spatial depen-
dence structure is different. The next subsections provide more details on
both models.

We are interested in the estimates of β, φ, and θ, and predictions of
property log prices including the property random and spatial effects, ŷp =

xpβ̂ + jnpφ̂p + jnp θ̂p. For this reason we restrict ourselves to a specific class
of spatial random effects models described in Section 2.3.1, and do not for
example consider the widely used spatial (spatio-temporal) autoregressive
models (Pace et al., 1998, 2002). Spatial-temporal autoregressive models
have been used in previous literature, but most applications have been on
residential properties. Some commercial real estate examples are Tu et al.
(2004), Nappi-Choulet and Maury (2009), and Chegut et al. (2015), all fo-
cusing on price indexes. For an extensive overview of spatial hedonic price
models, see Anselin and Lozano-Gracia (2009).
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2.3.1. Besag model

Intrinsic and conditional autoregressions were introduced by Besag (1974),
and later extended by Besag et al. (1991) and Besag and Kooperberg (1995).
These models are examples of Gaussian Markov random fields (Lindgren
et al., 2011), which are specified through the set of conditional distributions
of one component (θp) given all the others (θ−p).

Let wp,q denote a symmetric proximity measure for properties p and q.
It is nonnegative when p 6= q, and 0 otherwise. In our application we use
wp,q = 1 if the distance between the properties is smaller than a predefined
threshold, and 0 otherwise.1 Let ∂p denote all mp neighbors of property p;
all properties q for which it holds that wp,q 6= 0. The conditional distribution
of θp is given by

θp|θ−p, σ2
θ ∼ N

(∑
q∈∂p wp,qθq

mp

,
σ2
θ

mp

)
, (11)

where θ−p is the vector of spatial property effects excluding property p. From
the right-hand-side of Eq. (11) is it clear that the spatial effect for property
p is directly inferred from its neighbors only. In case wp,q = 1 for neighboring
properties, the conditional mean is simply the mean of the spatial effects of
neighboring properties, and the conditional variance inversely related to the
number of neighboring properties.

Note that the unconditional joint distribution of θ is not proper, the rank
of the precision matrix is only positive semidefinite. A proper specification
is obtained by adding a positive parameter d to the denominator, giving

θp|θ−p, σ2
θ , d ∼ N

(∑
q∈∂p wp,qθq

d+mp

,
σ2
θ

d+mp

)
. (12)

This model is sometimes referred to as a proper Besag model (Blangiardo
and Cameletti, 2015). The parameter d will be estimated from the data.

1We use a maximum distance of 770m and 35m for Los Angeles and Heemstede respec-
tively, resulting in at least 1 neighboring property for each property.
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2.3.2. Spatial random walk

In this section we present a new two-step method to model spatial prop-
erty effects, closely related to the Besag model. In the first step we calculate
the shortest route visiting every property only once, and returning to the
starting point. The shortest route is calculated by using algorithms solv-
ing the Travelings Salesperson Problem (TSP). This gives an ordering of
the properties and distances between the ordered properties. The TSP is
a well known and important combinatorial optimization problem (Lawler
et al., 1985; Gutin et al., 2002). There are multiple TSP-algorithms to be
found in literature. We use 8 different versions: (1) Nearest neighbor algo-
rithm, (2) Insertion algorithm, (3) Nearest insertion, (4) Farthest insertion,
(5) Cheapest insertion, (6) Arbitrary insertion, (7) k-Opt heuristics, and (8)
the Lin-Kernighan heuristic. For more information on these different TSP-
algorithms, please see Lawler et al. (1985) and Hahsler and Hornik (2007).
Subsequently, we pick the version which renders the shortest route. Except
for showing the shortest route, we do not give any statistics on this first step.
Note that most software packages will pick a random starting point. This
shouldn’t affect the results too much, as the route remains similar, irrespec-
tive of the starting point.

In our application, see Section 3, we ‘only’ have approximately 2,000 ob-
servations for each of our two markets. Computing all of the above-mentioned
TSP algorithms is therefore not a computational issue. However, with large
data-sets (housing data can have 100,000s of transactions for example), the
time required to solve some TSP algorithms might become infeasible. In our
study we found that both the nearest neighbor and arbitrary insertion algo-
rithms finished within a second. The other algorithms would take between
30 seconds to 1 minute to solve for the shortest route. Bentley (1992) gives
the computational time for different TSP algorithms for large data problems.
Even in this relatively old paper, Bentley (1992) solved the nearest neighbor
algorithm for 1M observations within 10 minutes.

In the second step we use a structural time series specification to specify
the value profile over the TSP route. Structural time series models have
been widely and successfully applied in the last few decades (Harvey, 1989),
but not so much as a spatial application. In this application we keep the
model structure simple, and use a random walk specification, even without
taking into account the distance between the ordered properties on the TSP
route. More complex structural time series models, like local linear trend
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and autoregressive representations (Francke et al., 2017), taking into account
distances between properties, could also be applied, possibly improving model
fit, but we leave this for future research.

The spatial random walk specification is given by

θ(p) ∼ N(θ(p−1), σ
2
θ), (13)

where subscripts (p) denote properties ordered by the TSP route. For iden-
tification purposes we will impose the restriction that the sum of the value
profiles over all properties is zero,

∑P
p=1 θp = 0.

Note that the spatial random walk is a special case of the Besag model in
Eq. (11). In the spatial random walk the neighbors of property p – denoted
by ∂p in Eq. (11) – are defined by the TSP route. The TSP route restricts
all properties – except the first and the last – to have at most two neighbors,
the preceding and subsequent property on the TSP-route.

The advantage of this specification over the Besag model is its relative
ease of estimation, especially in a large data environment. Besag models
need a large P × P (sparse) matrix of zeros and ones identifying neighbors.
Given that it is not uncommon to have large P, especially with housing data,
this can result in computational issues. The spatial random walk only needs
a vector (1×P ) indicating the ordering of the TSP route, thus reducing the
size issue considerably. However, even with sparse data (which is the case
in the current paper), we found that the estimation time itself is reduced
considerably as well, especially when using Markov chained Monte Carlo
(MCMC) algorithms. In fact, we found that estimating the spatial random
walk instead of the Besag model using our relative small data set (see Sec-
tion 3) with MCMC procedures decreased computational time 20-fold.2 The
estimation time difference is reduced considerably when using Laplace ap-
proximation. However, we still found a 25% computational time decrease
after using the spatial random walk. Estimation time differences are larger
if the data becomes larger. Also note that the spatial random walk can be
estimated using the Kalman filter, reducing computational time even more.

An obvious disadvantage of the two-step approach is that we reduce a

2In an earlier version we ran our models using the the No-U-Turn-Sampler (Hoffman
and Gelman, 2014). Even after very efficient re-parametrization of the models, the Besag
models would take over 24h to estimate, compared to less than an hour for the spatial
random walk.
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two dimensional plane into an one dimensional line, at the risk of ignoring
important information. For that reason we will perform a leave-one-out cross
validation for the spatial random walk model and other (spatial) models.

2.4. Leave-one-out cross validation and estimation

We do a full Leave-One-Out analysis (LOO) to compare out-of-sample
model performance. More specifically, we leave one observation (i) out of
the data, and predict the value for this observation yi, the posterior mean
E[yi|y−i], based on the remaining N −1 observations y−i for different models
as defined in Section 2. We redo this analysis for every observation, so
N times. By simply subtracting our predicted value from the actual log
transaction price, we get the LOO residual, which is essentially an out-of-
sample prediction error. Subsequently, we use the LOO residuals to calculate
out-of-sample performance statistics, such as the mean, the absolute mean,
and the standard deviation.

As the LOO analysis is computationally expensive we use an efficient esti-
mation procedure, the Integrated Nested Laplace Approximation (INLA, Rue
et al., 2009). In essence, INLA computes an approximation to the posterior
marginal distribution of the hyper-parameters. Operationally, INLA pro-
ceeds by first exploring the marginal joint posterior for the hyper-parameters
in order to locate the mode, a grid search is then performed and produces
a set of “relevant” points together with a corresponding set of weights, to
give the approximation of the distributions. Each marginal posterior can be
obtained using interpolation based on the computed values and correcting
for (probably) skewness, by using log-splines. For each hyper-parameter, the
conditional posteriors are then evaluated on a grid of selected values for the
prior and the marginal posteriors are obtained by numerical integration. In
this paper we have a flat prior for all hyper-parameters.

3. Data and Descriptive Statistics

We use two different data sources, commercial multifamily real estate
(income generating properties) in the city of Los Angeles and single family
housing (owner-occupied) in Heemstede, a city relatively close to Amsterdam
in the Netherlands.

The first database is provided by Real Capital Analytics (RCA), and cap-
tures approximately ninety percent of all commercial property transactions
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in the US over $2.5 million. The database contains 2,263 pre-filtered trans-
actions, of which 1,936 are unique properties, in the period 2001 to 2017.
The annual number of transactions is given in Figure A.1a, about 140 trans-
actions on average. The highest transaction volume was realized before the
crisis. Even in the most recent periods, the amount of transactions never
reached pre-crisis levels. The relatively low number in 2017 is due to the fact
that we do not observe all transactions in 2017.

We observe the Net Operating Income (NOI), property subtype (garden
versus mid/highrise), the age and size of the structure (in square feet), lati-
tude and longitude, and the transaction price. The upper panel of Table B.1
provides some descriptive statistics. The average transaction price is about
$6.4 million, the average size is about 32,000 square feet, and the average
age is 45 years. Most properties are designated garden.

[Place Figure A.1 about here]

The second database is provided by the Dutch Association of Real Estate
Brokers and Real Estate Experts (NVM), the largest brokers organization in
the Netherlands. About 70% of all real estate brokers in the Netherlands is
affiliated to the NVM. The database contains 2,262 transactions, of which
2,065 are unique properties, in the period 2001 to 2017. The majority of
the transactions is single sales (69%). The annual number of transactions is
given in Figure A.1b, about 145 transactions on average. The transaction
volume dropped by 50% during the crisis.

We observe the property subtype (row houses, corner house, 2 types of
semi detached homes and detached), the age and size of the structure, the
maintenance level (3 groups from bad to good), the presence of a yard, lati-
tude and longitude, and the transaction price. The lower panel of Table B.1
provides some descriptive statistics. The average transaction price is about
e485 thousand, the average size 151 square meters (1,625 square feet), and
the average age is 65 years. The largest number of properties are row houses
(44%). The NVM distinguishes between two types of semi detached homes;
(1) two properties are connected via a garage, and (2) two properties are
connected wall-to-wall. Most of the semi detached properties fall in the sec-
ond category, 24% of the observations. More than half of the properties have
an average maintenance level at the time of listing, compared to 18% badly
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maintained and 23% well maintained.3 Almost all properties have a yard, in
only 6% of the transactions this is not the case.

[Place Table B.1 about here]

4. Results

In this section we provide estimation results for 7 different model spec-
ifications. All models have the log of the transaction price as dependent
variable, and the log of the size as one of the independent variables. In ad-
dition, we use the log of the NOI per square foot as independent variable in
the Los Angeles model. Property age is entered in a quadratic way. All other
variables have been entered as dummy variables, including the annual time
fixed effects. The 7 model specifications are

1. Standard: The standard hedonic price model including location fixed
effects, given by Eq. (1).

2. Hybrid: The hybrid model including location fixed effects, given by
Eq. (9).

3. RE: The property random effects hedonic price model including loca-
tion fixed effects, given by Eqs. (2) and (3).

4. Besag(Hybrid): The hybrid model, Eq. (9), where spatial property
effects have been added by the Besag model, Eq. (12).

5. Besag(RE): The property random effects hedonic price model, where
spatial property effects have been added by the Besag model, given by
Eqs. (3), (10), and (12).

6. SRW(Hybrid): The hybrid model, Eq. (9), where spatial property
effects have been added by the spatial random walk model, Eq. (13).

7. SRW(RE): The property random effects hedonic price model, where
spatial property effects have been added by the spatial random walk
model, given by Eqs. (3), (10), (13).

3See Francke and van de Minne (2017b) for a discussion on how the maintenance data
in the NVM data is compiled.
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Note that only the Standard, Hybrid, and RE model include location fixed
effects.4 For Los Angeles we have 6 locations, defined by RCA: East LA/Long
Beach, Hollywood/Santa Monica, Los Angeles - CBD, North LA County,
Valley/Tri-Cities and West Covina/Diamond Bar. For Heemstede we have 4
locations, defined by the first 4 digits of the ZIP codes.

The remainder of this section is organized as follows. Subsection 4.1
discusses estimation results. Subsection 4.2 provides summary statistics for
the leave-one-out cross validation. Subsection 4.3 discusses spatial effects,
and finally subsection 4.4 gives some robustness checks.

4.1. Estimation results

Tables B.2 – B.3 provides the posterior means of the coefficients and sig-
nificance levels for Los Angeles and Heemstede respectively.5 The estimates
of the time dummies can be interpreted as a log price index for Heemstede.
In Los Angeles the interpretation is less straightforward, given that we also
include the Net Operating Income in the model, which picks up a large part
of the time variation (or the macro-economic cycle). We first discuss the
results for Los Angeles, and then the results for Heemstede.

Los Angeles
The estimated elasticity for NOI per square foot on prices is about 0.7 on
average over all models. The coefficient for size is slightly less than 1, in-
dicating that prices increase less than proportional to property size. If the
property doubles in size, the price increases with 95% on average. Most
real estate studies find this law of diminishing returns (Bokhari and Gelt-
ner, 2016). The coefficient for Mid/Highrise properties in Los Angeles is
positive but insignificant for the Standard, Hybrid, and RE model. For the
Besag and SRW model the coefficient becomes statistically significant and
negative, which might indicate an interaction between property type and lo-
cation, which the location dummies in the standard, hybrid, and RE model
do not pick-up. Also, ceteris paribus, one would expect that lowrise housing
would be more popular compared to highrise housing. Age has a negative

4Bourassa et al. (2007) advocate to use submarket fixed effects, defined by real estate
agents.

5The highest posterior density intervals are not shown for the sake of brevity. They
are available on request.
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coefficient and the square of age a positive coefficient. This confirms ex-
pectations, as depreciation is fastest when a property is young, see Bokhari
and Geltner (2016). Here the estimated coefficient is also lower compared to
other studies because of the inclusion of NOI (and age squared is not always
significantly different from zero). It is well known that depreciation results in
lower NOI, and not so much in higher cap rates (Bokhari and Geltner, 2016;
Geltner and van de Minne, 2017). As such, most depreciation is ‘captured’
by the NOI variable.

The year 2001 is the omitted time dummy variable, and is therefore the
reference group. The point estimates of the year dummies for the standard,
hybrid and random effects model, are always smaller than that of the other
models. (Especially compared to the spatial random walk models.) This is
explained by the differences in the estimate for NOI per square foot, which is
considerably different for the different models. Given that NOI also ‘captures’
changes in the macro-economic environment, this was expected. In other
words, models with a high estimate for NOI per square foot (like the standard
model) will result in less variation in the time dummy estimates and vice
verse. Note that the crisis and subsequent recovery are still clearly visible in
all models. However, the timing is slightly different. The trough of the time
dummies is 2010 for the standard, hybrid and random effects and hybrid
Besag model. The trough is a full year earlier for the other models. 6

The residual standard error is highest in the Standard model, σε = 0.19.
In other words, the model-fit is quite low. The standard error reduces to 0.18
in the Hybrid model, and is around 0.13 for the other models. The standard
error of the property random effects σφ is 0.15 in the RE and Besag model,
and it reduces to 0.04 in the SRW model. The standard errors of the spatial
property effects σθ in the Besag and SRW are difficult to compare, because
the underlying models are different. Note that in the spatial random walk
model σθ is much lower in the RE model than in the Hybrid model. The
Moran I statistic suggests that there is some spatial autocorrelation left in
the residuals only for the non-spatial models: The Standard, Hybrid and
RE model. The WAIC7 of the Hybrid model is actually higher compared to

6Although it should be noted that the the different index levels do not differ from each
other significantly between 2009 and 2010. This is not shown here, but is available upon
request.

7The Watanabe-Akaike or widely applicable information criterion (WAIC, Watanabe,
2010) is based on the series expansion of leave-one-out cross-validation. WAIC can be
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the Standard model, meaning worse model fit. The WAIC for the RE does
improve considerably over the standard model with 820 points. The models
including both property random and spatial effects have the lowest WAIC.
The best performing model is SRW(RE).

[Place Table B.2 about here]

Heemstede
Compared to row houses, detached house are valued the highest, followed by
semi detached and corner houses. Compared to poorly maintained houses,
average and good maintained houses sell at a premium of 14% and 23%, re-
spectively. The estimated premium for a yard sits at 2% on average, however
is statistically insignificant different from zero for most of our models. The
coefficient for size varies between 0.69 and 0.90, depending on the model spec-
ification, indicating that prices increase less than proportional to property
size. Age has a positive coefficient and the square of age a negative coeffi-
cient. In other words, older houses have higher values. An eighty years old
house – built in the thirties – has a 16% premium compared to a new house.
This has most likely to do with vintage effects, see for example (Coulson
and McMillen, 2008; Wilhelmsson, 2008; Francke and van de Minne, 2017b),
combined with the fact that we hold constant for physical deterioration by
controlling for maintenance. Interestingly, the effect of age on house prices is
statistically insignificant for the spatial random walk models (however, the
age squared term is significant).

Since we have no variables that move with the economic cycle in Heemst-
ede, the coefficients of time dummy variables can be interpreted as a log price
index. Between 2001 and 2008 prices increased by 32% – 34%. Subsequently,
prices dropped between 2008 and 2013 by 13% – 16%. Note that the crisis
took relatively long in the Netherlands. From 2013 to 2017 prices increased
by 33% – 36%. The difference between the models is negligible.

The Moran I statistic suggests that there is some spatial autocorrelation
left in the residuals only for the Standard model. The WAIC of the Hybrid
model is almost similar to the Standard model. The RE model performs
better, the WAIC of the RE model is 1,261 points lower compared to the
Hybrid model. The models including both property random and spatial

viewed as an improvement of the Deviance Information Criterion (DIC, Spiegelhalter
et al., 2002). Lower values indicate a better model-fit.
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effects have the lowest WAIC. The WAIC of the best performing model,
Besag(RE), is 643 points lower compared to the RE model.

[Place Table B.3 about here]

4.2. Leave-one-out cross validation

Table B.4 provides the results of the leave-one-out cross validation, the
upper part for Los Angeles, and the lower part for Heemstede. In general,
the out-of-sample model fit is slightly better for single family in Heemstede
compared to multifamily housing in Los Angeles.

In Los Angeles the standard deviation of the LOO residuals is similar for
the Standard and Hybrid models, about 0.190. In the RE model the standard
deviation is 0.184, which is still not a big improvement over the Standard
model. The main reason for this small reduction is the relative small portion
of repeat sales. Adding spatial structures reduces the standard deviation
considerably though, to 0.146 in the best performing model SRW(RE), a
reduction of 24% (23%) compared to the Standard (Hybrid) model. The
spatial models including property random effects perform better than the
hybrid spatial models, although the differences seem small.

In Heemstede the standard deviation of the LOO residuals is similar for
the Standard and Hybrid model, both 0.172. In the RE model the standard
deviation is 0.164, a small reduction of 4.7% compared to the Standard model.
Adding spatial structures reduces the standard deviation even more, to 0.130
in the best performing model Besag(RE), a reduction of 24% compared to the
Standard and Hybrid model. The spatial models including property random
effects perform better than the hybrid spatial models.

The best performing models measured by the standard deviation of the
LOO residuals coincide with the best ones measured by the WAIC criterion.
Unlike LOO statistics one cannot compare WAICs over different data-sets.

[Place Table B.4 about here]

Table B.5 provides the absolute mean LOO residuals as a function of the
number of sales per property (the first column). The final column gives the
corresponding number of properties. Note that when the number of sales per
property is n, in the leave-on-out analysis n − 1 sales of the property have
been used to estimate the model.
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In the Standard model the-out-of-sample model fit increases when the
number of sales per property increases, although the gain is relatively small.
In Los Angeles it goes down from 0.148, when having only 1 sale, to 0.139,
when having 3 sales of the property (-6.1%), and in Heemstede from 0.139,
when having 1 sale, to 0.120, when having 3 sales of the property (-13.8%).
Note that the reduction is much higher for the RE models. In Los Angeles it
goes down from 0.149, when having only 1 sale, to 0.112, when having 3 sales
of the property (-24.8%), and in Heemstede from 0.139, when having 1 sale, to
0.091, when having 3 sales of the property (-35.0%). The property random
effects hedonic price model clearly takes advantage of the fact that some
properties transact more than once. Note that the Hybrid model performs
less than the RE model in particular when the number of sales per property
is 2. In fact, the Hybrid model performs equal to the standard model with
just 2 sales. This was expected, given that the Hybrid model can only get
property level estimates if the property was sold three times or more (because
we lose one observation in the leave-on-out analysis).

When having only 1 sale per property (or zero during the leave-on-out
analysis), the property random effects hedonic price model including spatial
effects performs better than the model excluding the spatial effects. The
difference in performances becomes smaller when the number of sales per
property increases, then the property random effects pick up most of the
unobserved heterogeneity, and there is almost no additional gain from the
spatial structure.

[Place Table B.5 about here]

4.3. Spatial effects

Figure A.2 gives the TSP routes for both Los Angeles and Heemstede.
Figure A.3 provides the spatial effects θ along this route for the Besag and
SRW models, and Figures A.4 and A.5 give heat maps for Los Angeles and
Heemstede for the same models.

The heat maps of Los Angeles, Figure A.4, give a clear picture. The
highest values of the spatial random effects are in the CBD area and Holly-
wood/Santa Monica, and generally speaking along the coast. Lower values
are found in the North and the East of Los Angeles. Note that this after
holding the model constant for NOI, which should also vary over space. The
heat maps of Heemstede, Figure A.5 , give a less clear picture. This corre-
sponds to the erratic pattern of the spatial effects over the TSP route, see
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lower panel of Figure A.3. Although clearly the north-east (south) of the
map is dominated by high (low) values of the spatial effect θ. It should be
stressed though, that these heat maps represent the value of the spatial effect
θ, and not the total property values per se (or square meter values).

Table B.6 gives some descriptive statistics on the spatial effects θ. In Los
Angeles the difference between the 2.5% and 97.5% percentile of θ is about
0.644, corresponding to a 90% difference between the cheapest and most
expensive location, after correction for differences in property characteristics
and NOI. In Heemstede the difference between the 2.5% and 97.5% percentile
of θ is similar with 0.615, corresponding to a 85% difference between the
cheapest and most expensive location. The estimated spatial effects θ are
positively correlated among the models. Correlations range between 0.93 and
0.99 in Los Angeles, and between 0.88 and 0.99 in Heemstede.

[Place Figure A.2 about here]

[Place Figure A.3 about here]

[Place Figure A.4 about here]

[Place Figure A.5 about here]

[Place Table B.6 about here]

4.4. Robustness check

In this Section we perform a simple robustness check. In Heemstede we
omit the level of maintenance and the property type dummy variables as
explanatory variables and re-run both the standard hedonic price model and
the spatial random walk with property random effects (SRW (RE)) model.
Our basic interest is to compare the SRW (RE) model on the reduced data-
set with the standard hedonic price model with all variables included, see
previous Sections. This can learn us something on how effectively the spa-
tial and property random effects deal with omitted variables / unobserved
heterogeneity.
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We do something similar for the commercial properties. It is well known
that Net-Operating-Income (NOI) or rents explain a large part of prices,
where higher rents result in higher prices (Kok et al., 2017). For example,
Geltner and van de Minne (2017) show that the (cross-sectional) variation in
NOI is much higher compared to capitalization rates, using the same RCA
data. For Los Angeles we therefore omit NOI per square foot from the
regression and re-run the models and the leave-on-out analysis. A summary
of the robustness checks is given in Tables B.7 – B.8.

[Place Table B.7 about here]

[Place Table B.8 about here]

Overall, the results are in line with expectations. The SRW (RE) model
outperforms the standard hedonic price model to a large extent on the same
set of characteristics, and in case of the SRW (RE) model, the fit is bet-
ter for properties that transacted more often. Also unsurprisingly is that
omitting maintenance/property types and NOI in the price model in respec-
tively Heemstede and Los Angeles, deteriorates the model fit considerably.
The standard deviation of the LOO residual increases with almost 20% in
Heemstede and even 50% in Los Angeles after omitting our selection of char-
acteristics. (For both the Standard and the SRW (RE) model.)

However, as noted earlier, our main interest is in comparing the fit of
the SRW (RE) model on the reduced data-set with the standard hedonic
price model using all variables. In Heemstede the SRW (RE) model on the
reduced data-set clearly outperforms the standard model on the full data-set.
Both ‘traditional’ metrics in Table B.7 as the LOO residuals in Table B.8
are better for the first over the latter. The average absolute LOO residual
is 0.122 for the SRW (RE) on the reduced data, compared to 0.135 for the
standard model on the full data. For properties that sold more than once,
the relative gain is even bigger.

In Los Angeles the standard model including NOI as explanatory vari-
able actually performs better than the SRW (RE) model excluding NOI on
some metrics, but not on others. For example, the ‘noise’ (σε in Table B.7)
is considerably lower for the SRW (RE) model excluding NOI compared to
the standard model including NOI and the WAIC also improves. However,
the DIC is ‘better’ for the standard model over the SRW (RE) model. The
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average absolute LOO residuals in Table B.8 also give an inconsistent pic-
ture. For properties that sold only once the standard model including NOI
as explanatory variable outperforms the SRW (RE) model excluding NOI.
More specifically, the average absolute LOO residual is 0.148 (0.172) for the
standard model including NOI (SRW (RE) excluding NOI). However, for
properties that sold multiple times, the SRW (RE) model results in a better
model-fit. Given that we do not have that many repeat sales in Los Angeles,
the mean absolute LOO residuals are lower for the standard model including
NOI data overall. Still, given how much of the variance of property prices is
explained by NOI, it is impressive how well the spatial random effects model
excluding NOI data performs.

5. Conclusion

This paper deals with unobserved heterogeneity in hedonic price mod-
els, arising from missing property and locational characteristics. In specific
commercial real estate is very heterogeneous, and detailed property charac-
teristics are often missing.

We show that adding mutually independent property random effects to a
hedonic price model results in more precise out-of-sample price predictions,
both for commercial multifamily housing in Los Angeles and owner-occupied
single family housing in Heemstede. The larger the share of repeat sales, the
higher the increase in prediction accuracy is. Put differently, having more
(previous) sales, reduces the prediction error for a property when property
random effects are included in the hedonic price model. The standard hedonic
price model does not take advantage of the fact that some properties sell more
than once, and so the prediction accuracy only marginally improves when
having previous sales. The hedonic price model including property random
effects also outperforms the related hybrid model, including property fixed
effects for repeat sales only.

We subsequently show that adding spatial effects leads to an additional
increase in prediction accuracy. The increase in prediction accuracy is high-
est for properties without prior sales. When for a property a prior sale is
available, the unobserved heterogeneity is already captured in the property
random effect, and there is almost no additional gain from the spatial struc-
ture.

We use two different specifications for the spatial effects. The first speci-
fication is a Besag model where a neighbor is defined by properties within a
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specific radius from the subject property. The second specification is a spatial
random walk, a restricted Besag model, where neighbors are defined by the
preceding and subsequent property on the TSP-route, so having at most 2
neighbors. The out-of-sample prediction results for both models are compa-
rable, so the reduction of a two-dimensional plane to a one-dimensional line
does not lead to a lower performance in our applications, and the correlations
between the estimated spatial effects in both models are high. Moreover, the
spatial random walk model is computationally much more efficient.

Note that we use a simple time series structure, a random walk, to model
the spatial effects. More complex structural time series models, taking into
account distances between properties, could also be applied, possibly improv-
ing model fit, but we leave this for future research.
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Figure A.1: Annual number of sales.
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Figure A.2: TSP route.31
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Figure A.3: Spatial effects θ values over TSP route.32

 Electronic copy available at: https://ssrn.com/abstract=3249256 



(a) Besag (Hybrid). (b) Besag (RE).

(c) SRW (Hybrid). (d) SRW (RE).

Figure A.4: Heat map of spatial effects for Los Angeles.
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(a) Besag (Hybrid). (b) Besag (RE).

(c) SRW (Hybrid). (d) SRW (RE).

Figure A.5: Heat map of spatial effects for Heemstede.
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Appendix B. Tables
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Table B.1: Descriptive statistics.

mean sd min max

Los Angeles

Sales price ($)1 6,389,494 6,460,729 1,550,000 64,250,000
Net Operating Income ($) 325,223 353,270 67,200 3,600,000
Age (Years) 45 21 2 97
Size (SqFt) 31,718 31,972 5,964 271,757
Years between sales 4.61 2.87 0.17 12.00
Garden (R) 0.87 0 1
Mid/Highrise 0.13 0 1

Observations 2,263
Unique properties 1,936

Heemstede

Sales price (e)1 484,612 189,106 200,000 1,195,000
Age (Years) 65 22 15 106
Size (SqMt) 151 39 82 288
Years between sales 7.07 3.67 0.42 16.25
Maintenance [bad] (R) 0.18 0 1
Maintenance [average] 0.59 0 1
Maintenance [good] 0.24 0 1
Row house (R) 0.44 0 1
Semi detached (1) 0.03 0 1
Semi detached (2) 0.23 0 1
Corner home 0.25 0 1
Detached 0.05 0 1
Yard (yes) 0.94 0 1

Observations 2,468
Unique properties 2,065

R gives the reference categories in our model. Semi detached (1) are properties that are connected via a
garage, and Semi detached (2) are properties that are connected wall-to-wall.
1 Estimate for Moran’s I (sales prices) for Los Angeles and Heemstede are respectively +0.04 and+0.23.
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Table B.2: Los Angeles estimation results: posterior means and in-sample fit statistics.

Besag SRW
Standard Hybrid RE Hybrid RE Hybrid RE

(Intercept) 3.940∗∗∗ 4.091∗∗∗ 4.053∗∗∗ 4.135∗∗∗ 4.096∗∗∗ 4.029∗∗∗ 4.033∗∗∗

ln Size 0.932∗∗∗ 0.924∗∗∗ 0.928∗∗∗ 0.945∗∗∗ 0.952∗∗∗ 0.956∗∗∗ 0.961∗∗∗

ln
(
NOI
Size

)
0.735∗∗∗ 0.708∗∗∗ 0.700∗∗∗ 0.613∗∗∗ 0.609∗∗∗ 0.603∗∗∗ 0.602∗∗∗

Age -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.003∗∗∗ -0.004∗∗∗ -0.004∗∗∗ -0.004∗∗∗

Age2 0.000∗∗∗ 0.000 0.000 0.000 0.000∗ 0.000 0.000∗∗∗

Mid/Highrise 0.018 0.014 0.019 -0.003∗∗∗ -0.002∗∗∗ -0.004∗∗∗ -0.005∗∗∗

2002 0.060 0.014 0.032 0.054 0.048 0.089∗ 0.094∗∗

2003 0.170∗∗∗ 0.153∗ 0.140∗ 0.192∗∗∗ 0.184∗∗∗ 0.216∗∗∗ 0.202∗∗∗

2004 0.275∗∗∗ 0.272∗∗∗ 0.264∗∗∗ 0.308∗∗∗ 0.293∗∗∗ 0.334∗∗∗ 0.326∗∗∗

2005 0.318∗∗∗ 0.328∗∗∗ 0.336∗∗∗ 0.409∗∗∗ 0.397∗∗∗ 0.439∗∗∗ 0.437∗∗∗

2006 0.344∗∗∗ 0.350∗∗∗ 0.362∗∗∗ 0.433∗∗∗ 0.421∗∗∗ 0.464∗∗∗ 0.461∗∗∗

2007 0.309∗∗∗ 0.321∗∗∗ 0.333∗∗∗ 0.416∗∗∗ 0.398∗∗∗ 0.446∗∗∗ 0.437∗∗∗

2008 0.318∗∗∗ 0.315∗∗∗ 0.329∗∗∗ 0.410∗∗∗ 0.402∗∗∗ 0.444∗∗∗ 0.440∗∗∗

2009 0.217∗∗∗ 0.220∗∗∗ 0.213∗∗∗ 0.287∗∗∗ 0.264∗∗∗ 0.312∗∗∗ 0.297∗∗∗

2010 0.192∗∗∗ 0.188∗∗∗ 0.203∗∗∗ 0.281∗∗∗ 0.273∗∗∗ 0.311∗∗∗ 0.309∗∗∗

2011 0.253∗∗∗ 0.247∗∗∗ 0.258∗∗∗ 0.324∗∗∗ 0.317∗∗∗ 0.365∗∗∗ 0.359∗∗∗

2012 0.287∗∗∗ 0.292∗∗∗ 0.294∗∗∗ 0.364∗∗∗ 0.356∗∗∗ 0.398∗∗∗ 0.392∗∗∗

2013 0.320∗∗∗ 0.324∗∗∗ 0.330∗∗∗ 0.454∗∗∗ 0.450∗∗∗ 0.478∗∗∗ 0.475∗∗∗

2014 0.411∗∗∗ 0.428∗∗∗ 0.439∗∗∗ 0.558∗∗∗ 0.547∗∗∗ 0.592∗∗∗ 0.585∗∗∗

2015 0.528∗∗∗ 0.545∗∗∗ 0.554∗∗∗ 0.664∗∗∗ 0.656∗∗∗ 0.693∗∗∗ 0.691∗∗∗

2016 0.628∗∗∗ 0.621∗∗∗ 0.641∗∗∗ 0.762∗∗∗ 0.762∗∗∗ 0.791∗∗∗ 0.796∗∗∗

2017 0.622∗∗∗ 0.639∗∗∗ 0.648∗∗∗ 0.775∗∗∗ 0.767∗∗∗ 0.814∗∗∗ 0.811∗∗∗

Location FE FE FE

σε 0.190 0.184 0.124 0.126 0.123 0.137 0.120
σφ 0.146 0.149 0.040
σθ 0.033 0.029 0.011 0.064
σθ/
√
d+ w̄p+ 0.010 0.008

Moran I 0.112 0.079 0.084 0.000 0.003 -0.003 -0.002
DIC -1,072.1 -919.8 -1,850.6 -2,132.5 -2,412.0 -2,035.4 -2,502.4
WAIC -1,070.6 -1,031.9 -1,891.2 -2,220.0 -2,443.5 -2,074.4 -2,459.2

The omitted dummy variable is garden apartment (for property subtype) and 2001 (for time of sale).
Moran’s I is a measure for spatial autocorrelation and NOI stands for Net Operating Income. DIC
denotes Deviance Information Criterion, and WAIC Watanabe Information Criterion.
*** means the parameter is significantly different from 0 at the 1% level, ** at the 5% level and * at the
10% level.

37

 Electronic copy available at: https://ssrn.com/abstract=3249256 



Table B.3: Heemstede estimation results: posterior means and in-sample fit statistics.

Besag SRW
Standard Hybrid RE Hybrid RE Hybrid RE

(Intercept) 8.010∗∗∗ 8.060∗∗∗ 8.135∗∗∗ 8.836∗∗∗ 8.891∗∗∗ 9.127∗∗∗ 9.095∗∗∗

ln Size 0.898∗∗∗ 0.889∗∗∗ 0.876∗∗∗ 0.723∗∗∗ 0.714∗∗∗ 0.685∗∗∗ 0.694∗∗∗

Age 0.004∗∗∗ 0.002∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.001 0.001
Age2 -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

Semi detached (1) 0.148∗∗∗ 0.162∗∗∗ 0.137∗∗∗ 0.083∗∗∗ 0.074∗∗∗ 0.088∗∗∗ 0.073∗∗∗

Semi detached (2) 0.199∗∗∗ 0.214∗∗∗ 0.205∗∗∗ 0.167∗∗∗ 0.152∗∗∗ 0.174∗∗∗ 0.163∗∗∗

Corner Home 0.094∗∗∗ 0.117∗∗∗ 0.104∗∗∗ 0.100∗∗∗ 0.087∗∗∗ 0.109∗∗∗ 0.094∗∗∗

Detached 0.337∗∗∗ 0.357∗∗∗ 0.347∗∗∗ 0.307∗∗∗ 0.292∗∗∗ 0.301∗∗∗ 0.286∗∗∗

Maintenance [average] 0.128∗∗∗ 0.127∗∗∗ 0.133∗∗∗ 0.129∗∗∗ 0.130∗∗∗ 0.123∗∗∗ 0.128∗∗∗

Maintenance [good] 0.216∗∗∗ 0.209∗∗∗ 0.208∗∗∗ 0.204∗∗∗ 0.208∗∗∗ 0.206∗∗∗ 0.207∗∗∗

Yard 0.025 0.031∗ 0.025 0.013 0.014 0.015 0.016

2002 0.047∗∗ 0.041∗ 0.036∗ 0.031∗ 0.034∗∗ 0.032∗∗ 0.031∗∗

2003 0.039∗ 0.036 0.027 0.026 0.029∗ 0.038∗ 0.038∗∗

2004 0.078∗∗∗ 0.084∗∗∗ 0.068∗∗∗ 0.071∗∗∗ 0.071∗∗∗ 0.075∗∗∗ 0.068∗∗∗

2005 0.141∗∗∗ 0.133∗∗∗ 0.134∗∗∗ 0.128∗∗∗ 0.130∗∗∗ 0.140∗∗∗ 0.139∗∗∗

2006 0.171∗∗∗ 0.180∗∗∗ 0.170∗∗∗ 0.168∗∗∗ 0.171∗∗∗ 0.185∗∗∗ 0.181∗∗∗

2007 0.261∗∗∗ 0.261∗∗∗ 0.252∗∗∗ 0.247∗∗∗ 0.253∗∗∗ 0.270∗∗∗ 0.272∗∗∗

2008 0.280∗∗∗ 0.290∗∗∗ 0.278∗∗∗ 0.284∗∗∗ 0.283∗∗∗ 0.295∗∗∗ 0.286∗∗∗

2009 0.244∗∗∗ 0.232∗∗∗ 0.232∗∗∗ 0.225∗∗∗ 0.227∗∗∗ 0.239∗∗∗ 0.241∗∗∗

2010 0.224∗∗∗ 0.213∗∗∗ 0.216∗∗∗ 0.204∗∗∗ 0.213∗∗∗ 0.228∗∗∗ 0.228∗∗∗

2011 0.224∗∗∗ 0.212∗∗∗ 0.223∗∗∗ 0.216∗∗∗ 0.224∗∗∗ 0.228∗∗∗ 0.238∗∗∗

2012 0.135∗∗∗ 0.132∗∗∗ 0.133∗∗∗ 0.115∗∗∗ 0.116∗∗∗ 0.132∗∗∗ 0.133∗∗∗

2013 0.135∗∗∗ 0.136∗∗∗ 0.135∗∗∗ 0.118∗∗∗ 0.113∗∗∗ 0.123∗∗∗ 0.121∗∗∗

2014 0.176∗∗∗ 0.173∗∗∗ 0.185∗∗∗ 0.158∗∗∗ 0.161∗∗∗ 0.177∗∗∗ 0.184∗∗∗

2015 0.216∗∗∗ 0.207∗∗∗ 0.230∗∗∗ 0.221∗∗∗ 0.229∗∗∗ 0.232∗∗∗ 0.241∗∗∗

2016 0.344∗∗∗ 0.340∗∗∗ 0.354∗∗∗ 0.334∗∗∗ 0.343∗∗∗ 0.358∗∗∗ 0.365∗∗∗

2017 0.420∗∗∗ 0.415∗∗∗ 0.434∗∗∗ 0.403∗∗∗ 0.408∗∗∗ 0.420∗∗∗ 0.427∗∗∗

Location FE FE FE

σε 0.171 0.164 0.102 0.096 0.095 0.116 0.098
σφ 0.139 0.011 0.070
σθ 0.119 0.118 0.057 0.053
σθ/
√
d+ w̄p+ 0.049 0.048

Moran’s I 0.089 0.037 0.019 0.005 -0.021 -0.017 -0.011
DIC -1,671.4 -1,517.1 -2,835.4 -2,581.9 -3,538.2 -2,813.2 -3,395.0
WAIC -1,670.3 -1,664.6 -2,925.9 -2,700.3 -3,569.0 -2,834.2 -3,384.3

The omitted dummy variables are row house (for property subtype), maintenance [bad], and having no
yard. Semi Detached (1) are houses connected by a garage, and Semi Detached (2) are houses that are
connected wall-to-wall and 2001 (for time of sale).
Moran’s I is a measure for spatial autocorrelation. DIC denotes Deviance Information Criterion, and
WAIC Watanabe Information Criterion.
*** means the parameter is significantly different from 0 at the 1% level, ** at the 5% level and * at the
10% level.
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Table B.4: LOO cross validation.

Besag SRW
Standard Hybrid RE Hybrid RE Hybrid RE

Los Angeles

Mean 0.000 -0.005 0.001 -0.001 0.000 -0.001 0.000
|Mean| 0.146 0.146 0.140 0.111 0.108 0.111 0.109
Standard deviation 0.191 0.190 0.184 0.150 0.147 0.148 0.146
Minimum -0.777 -0.769 -0.759 -0.814 -0.830 -0.850 -0.846
Maximum 1.022 1.005 1.003 0.747 0.755 0.772 0.775

Heemstede

Mean 0.000 0.004 -0.001 0.001 0.001 0.004 -0.001
|Mean| 0.137 0.137 0.133 0.108 0.105 0.109 0.106
Standard deviation 0.172 0.172 0.164 0.173 0.130 0.136 0.133
Minimum -0.656 -0.639 -0.663 -0.719 -0.547 -0.634 -0.653
Maximum 0.463 0.462 0.467 0.491 0.457 0.418 0.426

Table B.5: Absolute mean of LOO residuals as a function of the number of sales per
property.

# Sales Besag SRW
per property Standard Hybrid RE Hybrid RE Hybrid RE Prop.

Los Angeles

1 0.148 0.149 0.149 0.115 0.112 0.115 0.114 1,643
2 0.138 0.141 0.115 0.098 0.096 0.098 0.095 261
3 0.139 0.121 0.112 0.112 0.101 0.110 0.102 30
Total 0.146 0.146 0.140 0.111 0.108 0.111 0.109 2,263

Heemstede

1 0.139 0.139 0.139 0.112 0.108 0.112 0.110 1,703
2 0.129 0.130 0.102 0.093 0.090 0.094 0.091 644
3 0.120 0.100 0.091 0.088 0.087 0.088 0.083 117
Total 0.137 0.137 0.133 0.108 0.105 0.109 0.106 2,468
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Table B.6: Summary statistics of spatial effects θ.

Besag (Hybrid) Besag (RE) SRW (Hybrid) SRW (RE)

Los Angeles

Mean 0.000 0.000 0.000 0.000
|Mean| 0.124 0.156 0.159 0.182
Standard deviation 0.168 0.171 0.169 0.171
Minimum -0.515 -0.509 -0.367 -0.345
2.5%-perc -0.277 -0.269 -0.259 -0.262
97.5%-perc 0.367 0.380 0.368 0.381
Maximum 0.702 0.631 0.593 0.595

Correlations

Besag (Hybrid) 0.988 0.935 0.933
Besag (RE) 0.942 0.948
SRW (Hybrid) 0.996

Heemstede

Mean 0.000 0.000 0.000 0.000
|Mean| 0.033 0.037 0.070 0.069
Standard deviation 0.161 0.166 0.162 0.161
Minimum -0.486 -0.483 -0.377 -0.370
2.5%-perc. -0.319 -0.326 -0.303 -0.299
97.5%-perc. 0.296 0.299 0.266 0.259
Maximum 0.521 0.514 0.343 0.334

Correlations

Besag (Hybrid) 0.975 0.896 0.880
Besag (RE) 0.904 0.908
SRW (Hybrid) 0.991
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Table B.7: Standard metrics for the robustness check.

All Variables Reduced Data-set
Standard SRW (RE) Standard SRW (RE)

Los Angeles

σε 0.190 0.120 0.289 0.139
DIC -1,072.1 -2,502.4 825.1 -1,243.8
WAIC -1,070.6 -2,459.2 831.0 -1,302.6

Heemstede

σε 0.171 0.098 0.204 0.118
DIC -1,671.4 -3,395.0 -824.2 -2,531.8
WAIC -1,670.3 -3,384.3 -823.2 -2,510.8

The results with all variables, can also be found in Tables B.2 – B.3. For Los Angeles the reduced
data-set does not include (log of) Net Operating Income per square foot. In order to create the reduced
data-set for Heemstede, we omit the variables on property types and maintenance levels.

Table B.8: Absolute mean of LOO residuals as a function of the number of sales per
property for the robustness check.

# Sales All Variables Reduced Data-set
per property Standard SRW (RE) Standard SRW (RE) Prop.

Los Angeles

1 0.148 0.114 0.222 0.172 1,643
2 0.138 0.095 0.219 0.125 261
3 0.139 0.102 0.248 0.124 30
Total 0.146 0.109 0.222 0.159 2,263

Heemstede

1 0.139 0.110 0.164 0.130 1,703
2 0.129 0.091 0.151 0.107 644
3 0.120 0.093 0.130 0.087 117
Total 0.135 0.104 0.159 0.122 2,468

The results with all variables, can also be found in Tables B.2 – B.3. For Los Angeles the reduced
data-set does not include (log of) Net Operating Income per square foot. In order to create the reduced
data-set for Heemstede, we omit the variables on property types and maintenance levels.
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