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Abstract

Empirical analysis of the Fed’s monetary policy behavior suggests that the Fed smooths
interest rates—that is, the Fed moves the federal funds rate target in several small steps instead
of one large step with the same magnitude. We evaluate the effect of countercyclical policy by
estimating a Vector Autoregression (VAR) with regime switching. Because the size of the policy
shock is important in our model, we can evaluate the effect of smoothing the interest rate on the
path of macro variables. Our model also allows for variation in transition probabilities across
regimes, depending on the level of output growth. Thus, changes in the stance of monetary policy
affect the macroeconomic variables in a nonlinear way, both directly and indirectly through the
state of the economy. We also incorporate a factor summarizing overall sentiment into the VAR
to determine if sentiment changes substantially around turning points and whether they are
indeed important to understanding the effects of policy.
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1 Introduction

Empirical analysis of the U.S. monetary policy suggests that the Fed smooths interest rates, mov-

ing the federal funds rate target in several small steps instead of one large step with the same

magnitude. Smoothing has been characterized as an optimal monetary policy response in models

that incorporate the private sector’s expectations of future policy [e.g., Woodford (1999)]. In these

types of models, the monetary authority’s method of credibly altering expectations is important in

determining the effi cacy of the stabilization policy.

The effi cacy monetary policy is often measured by its ability to induce large responses in output

growth and inflation. However, the models used to measure these responses are often linear (e.g.,

VARs) and may exaggerate the effectiveness of policy if the dynamics of the economy change across

states.1 Even when the VARs do incorporate some form of regime switching, the responses of macro

variables to monetary shocks are often computed within-regime– i.e., assuming that the regime at

the time of the shock never changes. This assumption is problematic for evaluating countercyclical

policy. In these models, the Fed lowers the funds target to raise output growth in response to a

recession but has no effect on the duration of the recession.2

To evaluate the effectiveness of countercyclical policy, we estimate a VAR with regime switching,

where the probability of transitioning across regimes depends on the level of output growth.3 Thus,

changes in the stance of monetary policy affect the macroeconomic variables nonlinearly, both

directly and indirectly through the state of the economy. To this end, the estimated responses

of macro variables to monetary shocks can depend on (1) the current state of the economy4, (2)

1The existing literature provides mixed empirical evidence of asymmetry. Cover (1992) finds that negative money
supply shocks have larger effects on output than positive shocks. Ravn and Sola (1996) find symmetric responses once
they account for a break in late 1970’s. Morgan (1993) finds asymmetric responses of output to interest rate changes
but the evidence is weaker when excluding the early 1980’s when the Fed abandoned traditional rate-targeting polices.

2Garcia and Schaller (2002) allow monetary policy to affect the growth rate of output and the probability of
switching between states. They find that changes in the fed funds rate have larger effects during recessions than
during booms and that policy has substantial effects on the probability of switching between expansion and recession
regimes.

3 In related work, Weise (1999) uses a smooth-transition VAR to examine the asymmetric effects of policy based
on the three dimensions of interest: size, sign, and position in the business cycle. He finds evidence of size– but not
sign– asymmetries and different effects during periods of high or low growth. Monetary shocks have stronger output
effects and weaker price effects when growth is initially low but have stronger price effects and weaker output effects
when in a high growth state.

4For instance, Thoma (1994) finds that negative shocks to money growth have stronger effects on output during
periods of high-growth in real activity than in low-growth periods while positive shocks have small, mostly insignificant
effects regardless of the contemporary economic conditions.
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the history of the economy, (3) future shocks, and (4) the size of the (current) monetary shock.5

We incorporate consumer and producer sentiment into the VAR to determine if confidence and

expectations change substantially around turning points and whether they are indeed important to

understanding the effects of policy. In addition, because the size of the shock is important in our

model, we can evaluate the effect of smoothing the interest rate on the path of macro variables.

We find empirically relevant differences between the macroeconomic responses to contractionary

and expansionary policy shocks, depending on the underlying state of the economy at the time of the

shock. Small expansionary policy shocks induce responses with substantial variation in high- and

low-output-growth environments, but show less variation in periods of high and low inflation. The

responses to large expansionary shocks do not exhibit the same variation. We also find significant

differences between gradual policy changes and one-time, large policy shocks, thus making a case

for more aggressive policy intervention to combat recessions.

The balance of the paper is outlined as follows: Section 2 outlines the models. We start by fixing

notation with the familiar single-regime VAR. We then add the effects of sentiment, modeled by a

latent factor, and Markov-switching. Finally, we augment the Markov-switching with time-varying

transition probabilities. Section 3 describes the data and the methods used to estimate the model.

Details for the full sampler are left to the Appendix. Section 3.3 compares the different methods

to compute the impulse responses to evaluate the effectiveness of the shocks. In this section, we

reiterate the importance of history, future, sign, and scale of the shock. Section 4 presents the

baseline results. Section 5, in particular, focuses on the experiment comparing the effect of a net

25-basis-point change in the federal funds rate implemented in a single step or in multiple steps.

Section 7 offers final thoughts.

2 Empirical Approach

One of the most commonly used models in the empirical analysis of monetary policy is the VAR.

A simple example of a monetary VAR is a three-variable model with measures of output growth,

prices, and a monetary policy instrument. The effects of the policy shocks are determined by

tracing out the impulse responses to identified shocks. In this section, we construct a VAR that

5Lo and Piger (2005) find that policy actions taken during recessions have much larger effects than those taken
during expansions. However, they find no evidence of asymmetries based on the size or sign of the policy shock.
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allows for asymmetric responses to shocks and differences in shock volatilities. In addition, we model

economic sentiment through a latent factor that is allowed to affect or be affected by macroeconomic

aggregates in different ways depending on the state of the economy.

2.1 The VAR

Let yt represent the N ×1 vector of period−t variables of interest; then, the reduced-form VAR(P )

is

yt = B̃ (L) yt−1 + ε̃t, (1)

where we have suppressed the constant and any trends, ε̃t ∼ N
(
0, Ω̃

)
is the reduced-form inno-

vation, and Ω̃ is left unrestricted. Inference on the effect of shocks is derived from the structural

form of the VAR:

Ã−1yt = Ã−1B̃ (L) yt−1 + ũt, (2)

which is obtained by pre-multiplying by Ã−1 which represents the contemporaneous effects of the

structural shocks ũt ∼ N
(

0, Σ̃
)
, where Σ̃ is diagonal, and ÃΣ̃Ã′ = Ω̃. Because the decomposition

ÃΣ̃Ã′ = Ω̃ is not unique, further identifying restrictions must be imposed to obtain the structural

form of the VAR and determine the (impact) effects of the shocks. These restrictions can come in

the form of imposing a causal ordering on the variables in the VAR, assuming zero contemporaneous

effects across variables [Christiano, Eichenbaum, and Evans (2000)], imposing zero restrictions on

the long-run (or long-horizon) effects of certain shocks [Blanchard and Quah (1989)], predetermining

the signs of the responses [e.g., Uhlig (2005)], or some combination of these [Arias, Rubio-Ramirez,

and Waggoner (2014)].

2.2 Modeling Sentiment

Recent studies show that fluctuations in consumer and investor sentiment help explain macroeco-

nomic fundamentals. Barksy and Sims (2012) outline two explanations from the literature regarding

the relationship between sentiment and the macroeconomy. The first explanation is the "animal

spirits" view of sentiment, where exogenous changes in agents’ beliefs about the economy have
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temporary effects on real variables. The second explanation is the "news" view of sentiment, which

implies that changes in sentiment contain information about permanent shocks to the productive

capacity of the economy.6 Including sentiment in the model allows us to control for changes in

agents’expectations either through animal spirits or news. Additionally, our nonlinear model al-

lows for the effects of sentiment shocks to depend on the state of the economy or monetary policy.7

We wish to augment the VAR with a broad measure of sentiment regarding the current strength

of and outlook for the economy; sentiment, however, is not easily quantifiable. We opt to include

a factor (or vector of factors) Ft representing overall sentiment in the VAR. Then, the (N + 1)× 1

vector of variables of interest can be defined as Yt = [Ft, y
′
t]
′ and the VAR rewritten as

Yt = B (L)Yt−1 + εt,

where the reduced form shocks εt ∼ N (0,Ωt) are now an (N + 1)× 1 vector and we have imposed

autoregressive dynamics on the factor. The factor Ft summarizes the information in M series col-

lected in a vector Xt that contains observable information about consumer and producer sentiment.

The factor is related to Xt = [X1t, ..., XMt]
′ by

Xmt = λmFt + ςmt, (3)

where ςmt ∼ iidN
(
0, σ2

m

)
, which assumes that the innovations to the elements of Xt are uncorre-

lated. This assumption imposes that the correlation across series are a result of the factor alone

and is relatively common in the factor literature.

2.3 The Markov-Switching VAR

Recently, studies have investigated whether monetary policy has time-dependent effects– for ex-

ample, depending on the state of the economy.8 For example, one could ask whether monetary

policy has differing effects in recessions and expansions, when the Fed tightens or eases, or when

6See Beaudry and Portier (2014) for a survey of the literature on news shocks.
7See Christiano, Ilut, Motto, and Rostangno (2010), Kurmann and Otrok (2013), Ahmed and Cassou (2016), and

Gambetti et al. (2017).
8See Hamilton (2015) for a detailed overview of regime-switching modeling techniques and applications within

macroeconomics.
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the change in the fed funds target rate is large or small, etc.9 One popular model used to deter-

mine the state-dependent effects of monetary policy is the Markov-switching VAR, which has a

reduced-form:

Yt = [1− St]B0 (L)Yt−1 + StB1 (L)Yt−1 + εt, (4)

where St = {0, 1} follows an irreducible first-order Markov process with (constant) transition

probabilities p = Pr [St = 1|St−1 = 1] and q = Pr [St = 0|St−1 = 0], εt ∼ N (0,Ωt), and regime-

dependent heteroskedastic covariance matrix

Ωt = [1− St] Ω0 + StΩ1. (5)

In this case, the economy takes on two alternative dynamics, dictated by the realization of the

underlying state St. When St = 1, the economy has B1 (L) dynamics and when St = 0, the economy

has B0 (L) dynamics. Thus, the model is linear, conditional on St being known.10 The shock

processes– by assumption– follow the same regime-switching process as the reduced-form VAR

coeffi cients, making the contemporaneous effects of the shocks regime-dependent.11 The shocks are

identified using similar methods as above or, additionally, exploiting the regime-dependence [e.g.,

Rigobon and Sack (2004)].

2.4 Time-Varying Transition Probabilities

One drawback of the constant probability Markov-switching VAR is that the underlying regime

is invariant to the model variables. Countercyclical policy then cannot affect– either directly or

indirectly– the state of the economy, making both the regimes and the impulse responses to changes

9 In recent work, Angrist, Jorda, and Kuersteiner (2013) find that contractionary policy can reduce output, employ-
ment, and inflation but expansionary policy produces very little stimulus. Barnichon and Matthes (2016) find that
contractionary policy shocks have strong adverse effects on output while expansionary shocks do not have significant
effects unless the shocks are large and occur specifically during recessions.
10Based on multiple Lagrange Multiplier tests for linearity, Weise (1999) finds that when using lagged output

growth as the switching variable, the data prefer the non-linear model with time-variation in the coeffi cients of all
equations in the VAR to a standard linear VAR with constant parameters. Furthermore, the parameter governing the
speed of the transition between regimes is very large. This suggests a sharp transition between regimes and justifies
the use of a discrete regime-switching model.
11 It is straightforward to extend the model to allow the covariance switching process to vary from the coeffi cient

switching process. The main drawback is that independent processes increases the number of regimes geometrically.
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in policy diffi cult to interpret.12 One way to ameliorate this problem is to allow the state of the

economy to depend, in part, on variables in the VAR. For example, if we want to interpret the state

variable as representing business cycle regimes, we can make the transition probabilities functions

of output growth.

We can accomplish this by assuming that the state process St has time-varying, rather than

constant, transition probabilities. Moreover, we assume that changes in the underlying state of

the economy (and, thus, underlying changes in the dynamic responses to monetary shocks) are

driven by (lags of) a variable zt. If, as in our case, zt is a variable in the VAR, shocks to the

policy instrument affect zt which, in turn, feed back into the regime.13 Thus, more accommodative

monetary policy in a recession can stimulate output and increase the probability of switching back

to expansionary dynamics. We assume that the transition probabilities follow a logistic formulation:

pji (zt−d) = Pr [St = j|St−1 = i] =
exp

(
γji + γjizt−d

)∑
k exp (γki + γkizt−d)

(6)

for each of the regimes with
∑

k pki (zt−d) = 1 for all i, t. In the constant transition probability

case, the expected duration of the regime is time-invariant. In our case, however, the duration of

the regime will depend on the evolution of the transition variable, zt−d. Thus, structural shocks

that affect zt will eventually also have an effect on the regime process.

We consider lagged output growth as the transition variable and set the delay parameter, d,

to 1. Thus, output growth in the previous period will affect the probability of switching between

expansion and recession in the current period.14 In order to identify the two separate regimes, we

impose that the coeffi cient on lagged output growth influencing the transition from expansion to

recession, γ10, is negative. Therefore, if St−1 = 0 (expansion) and output growth is above average,

the probability that St = 1 (recession) falls. We define St = 0 as the reference state; thus, all

parameters governing the transition into expansion (γ0i and γ0i for i = 0, 1) are normalized to 0.

12The constant transition probability model is also of limited use for forecasting. Conditional on the past regime
being known, no additional data improves the forecast of the regime.
13Potter (1995) called the system in which the transition variable is also in the VAR self-exciting.
14We also estimated the VAR considering two alternative transition variables: (1) the lagged value of the Federal

Reserve Board’s Labor Market Conditions Indicator (LMCI) (only available from 1976:8) or (2) the unemployment
rate. The results are fairly consistent across specifications — the posterior probability of recession is high during
NBER-dated recessions. The correlation between the posterior estimates of the regime processes from the output
and LMCI or unemployment rate models is 0.82 and 0.80, respectively. In some cases, we are able to capture the
1991 recession but, in others, we identify more false positives. We opt to present the results with output growth for
a more natural interpretation. These alternative results are available upon request.
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3 Empirical Analysis

In this section, we describe how the model is estimated, the data used in the estimation, and the

methods for which we compute the impulse responses.

3.1 The Sampler

The model parameters, factors, regimes, and transition probabilities are estimated using the Gibbs

sampler. Let the full set of parameters, including the regimes and the factors, be represented by:

Θ =
{
B0 (L) , B1 (L) ,Ω0,Ω1,γ,γ,

{
λm, σ

2
m

}M
m=1

}
,

ST = {St}Tt=1, and FT = {Ft}Tt=1. The Gibbs sampler draws elements of Θ, ST , and FT , conditional

on the previous draw of each other elements. We sample from five blocks: (1) the VAR coeffi cients

and covariance matrices; (2) the regimes; (3) the transition function parameters; (4) the factor;

and (5) the factor loadings and residual variances. The joint posterior distribution of all the model

parameters and the factors are obtained from these draws from the conditional distribution after

discarding some draws to allow for convergence.

The Gibbs sampler is a Bayesian method and requires a prior. We assume a multivariate

normal-inverse Wishart prior for the VAR parameters, a multivariate normal prior for the transition

function parameters, independent normal-inverse Gamma priors for each of the factor loadings and

their associated residual variance. Table 1 shows the hyperparameters of the prior distributions.

Given the prior and the data and conditional on the sequence of regimes and the factor, the

posterior for each regime’s VAR parameters is conjugate normal-inverse-Wishart. The regimes are

drawn from the Hamilton filter, modified to account for time-variation in the transition proba-

bilities. The parameters of the transition function are drawn employing the difference in random

utility model described in Kaufmann (2015). The factor is drawn from an application of the Kalman

filter; conditional on the factor, the loadings and variances of the factor equations have normal-

inverse-Gamma posterior densities. The blocks of the sampler and the derivation of the posterior

distributions are described in detail in the Appendix.
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3.2 Data

For the baseline analysis, our sample period runs from 1960:1 to 2008:12, when the federal funds

rate approaches the zero lower bound. We exclude the zero lower bound period because of the

diffi culty in assessing the stance of monetary policy in a single policy instrument.15 The data for

the baseline VAR are monthly and consist of a measure of output, prices, and policy. We use the

change in the log of the Conference Board Coincident Indicators Index (ZCOIN), the change in the

log of the personal consumption expenditures price level index (PCEPI), and the effective federal

funds rate.

The model also requires data that proxy for overall sentiment in the form of a factor. We utilize

a small unbalanced panel of monthly data that includes multiple surveys and indices. We include

the Conference Board Consumer Confidence Index (CBCCI), the University of Michigan Con-

sumer Sentiment Index (UMCSI), the Organization for Economic Cooperation and Development

Consumer Confidence Index (OECDCCI), and the Institute for Supply Management Purchasing

Managers Index (PMI).16

We order the sentiment factor first in the VAR, allowing the macro variables and the policy

rate to respond contemporaneously to shocks to overall (consumer and producer) sentiment. This

restriction implies that the factor itself responds to policy shocks with a lag. The results are

qualitatively similar and the overall conclusions unchanged if the factor is instead ordered last,

after the policy rate, allowing it to respond to contemporaneous policy shocks.

3.3 Computing Impulse Responses

The effects of monetary policy shocks from VARs are typically summarized using impulse responses.

Nonlinearity in the VAR complicates computation of the impulse responses. In a nonlinear model,

the response can depend on the level (rather than the change) of all of the variables; thus, compu-

tation of the conditional expectation depends on the initial condition (i.e., the history of all of the

innovations up until time t) and the future path of the variables (i.e., the sequence of shocks from

15One alternative that has been proposed is the shadow short rate of Krippner (2013) and Wu and Xia (2016).
The shadow short rate exploits the Gaussian affi ne term structure model and changes in the long rate to estimate
the level of a hypothetical short rate that is allowed to fall below the zero lower bound. We consider this extension
in Section 6.
16All sentiment data are normalized to have mean zero and unit standard deviation.
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t + 1 to t + h). For example, the responses can vary depending on whether the economy starts in

recession or expansion and can vary depending on whether a policy action is followed by successive

positive or negative shocks. Moreover, in the nonlinear model the response can depend on the sign

and magnitude of the shock.

The Markov-switching VAR is linear, conditional on knowing the regime. Regime-dependent

impulse responses (RDIR) can be obtained from each of the two conditionally linear VARs as

suggested by Ehrmann, Ellison, and Valla (2003) by assuming that the regime at the time of the

shock lasts forever. Of course, these RDIRs have the limitation that they are constructed under the

extreme counterfactual assumption that the state of the world does not change after the incidence

of the shock. The linear responses have the advantage of being invariant to the history of shocks

up through time t, the sequence of the shocks after time t, and the size of the shock. Moreover,

the responses are symmetric to the sign of the shock.

While these (conditionally) linear responses are often used to distinguish between the dynamics

across the regimes, they do not take into account the future possibility that the economy exits the

initial regime. In this sense, they can overestimate the differences between shocks that are inci-

dent in the different regimes. Alternatively, Krolzig (2006) shows that simple constant probability

transitions across regimes can be accounted for by computing the response as a weighted average

of the two regime-dependent responses. The weight at any horizon is a function of the transition

probabilities and the responses are computed conditional on the period−t regime. For more com-

plicated models with time-varying transition probabilities, we need to account for the response of

the transition probability to the shock.

In our case, the transition probabilities depend on the variables in the VAR. Thus, simply prop-

agating the transition probabilities out over time is insuffi cient to obtain any inferences about the

effect of shocks. One alternative is the generalized impulse response functions (GIRFs) suggested

by Koop, Pesaran, and Potter (1996). They argue that an impulse response at horizon h can be

viewed as the difference between two conditional expectations, one conditional on the (structural)

shock ut = δ occurring at time t and one conditional on no shock at time t:

IR (h) = Et [Yt+h|ut = δ]− Et [Yt+h|ut = 0] .
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In the linear model, the difference in the conditional expectation is invariant to the history up until

time t and the future sequence of shocks up through t + h. In addition, the magnitude of δ acts

only as a scaling factor and the response is symmetric with respect to the sign of δ. To compute

the expectations, we average the expected paths of Y over all histories Yt−1 that correspond to

a Gibbs draw of St = i. Thus, we are computing the averages of separate responses for average

shocks that occur in different regimes.

Let R[g]
i represent the number of incidences of St = i for the gth Gibbs iteration. In addition to

the histories, the responses depend on the future sequence of shocks. We can account for variation

in future shocks by computing the average response over Q draws of future shock paths. Finally,

we average over a subsample of the Gibbs draws. The generalized response at horizon h is

IRi (h) =
1

G

1

R
[g]
i

1

Q

G∑
g

R
[g]
i∑
r

Q∑
q


[
Yt+h|Yt−1,Θ

[g], S
[g]
t = i, ut = δ,

{
u

[q]
t+l

}h
l=1

]
−
[
Yt+h|Yt−1,Θ

[g], S
[g]
t = i, ut = 0,

{
u

[q]
t+l

}h
l=1

]
 (7)

for each history starting with St = i, i = 0, 1, and the superscript g indicates the gth Gibbs itera-

tion. The error bands for the impulse responses can be constructed by computing the appropriate

coverage over the G Gibbs draws.

In addition to the policy shocks, a change in regime can cause a response in the macroeconomic

variables both through a change in the regime-dependent mean growth rate and a change in the

dynamics. We can compute the response to a change in the regime at time t. In this case, we do

not shock the system as in the GIRFs; the only difference in the two conditional expectations is

the change in regime.

We compute the response Yt+h of a change from St−1 = j to St = i by simulating the errors

out to horizon h:

RRij (h) =
1

G

1

R
[g]
i

1

Q

G∑
g

R
[g]
i∑
r

Q∑
q


[
Yt+h|Yt−1,Θ

[g], S
[g]
t = i, S

[g]
t−1 = j,

{
u

[q]
t+l

}h
l=1

]
−
[
Yt+h|Yt−1,Θ

[g], S
[g]
t = j, S

[g]
t−1 = j,

{
u

[q]
t+l

}h
l=1

]
 (8)
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for all histories in each Gibbs iteration for which S[g]
t−1 = j.

4 Results

To assess the effects of monetary policy in different phases of the business cycle, we compute the

impulse responses to a shock to the federal funds rate under various model assumptions. Our

baseline model is a monthly TVTP-FAVAR(12) with a single factor, where the transition variable

is the lag of monthly output (ZCOIN) data, normalized around its mean and standardized to have

unit variance. To account for the diminished variability of output after the Great Moderation,

we allow for a structural break in the mean and standard deviation of ZCOIN after 1984 when

standardizing the data.

Results are computed with 8000 draws of the Gibbs sampler, discarding the first 2000 draws

to ensure convergence. We compute the mean and 68-percent posterior coverage of the resulting

GIRFs and the responses to a change in regime. The GIRFs are computed over 400 equally-spaced

draws (thinning every 20th draw) from the posterior distributions.

4.1 Baseline Results

Figure 1 plots the posterior probability of recessions (St = 1) for the full sample with the posterior

mean and 68-percent coverage of the factor, filtered from the unbalanced panel of data described

in Section 3.2. The NBER recessions are shaded in grey for comparison. The results are consistent

with many other empirical models of monetary policy in a VAR environment with switching. The

posterior probability of a recession is generally high during NBER recessions and the estimated

regimes are persistent. The average across Gibbs iterations of the correlation between the estimated

recessions and the NBER recessions is 0.44. The model appropriately identifies the NBER recessions

in the pre-Great Moderation period. However, unlike the economic contractions of 2001 and 2007

which elicit a spike in the posterior probability of recession, the 1991 recession does not appear to

be associated with a contractionary period that causes a variation in the effects of monetary policy.
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Figure 1: Left Axis: Posterior mean and 68% posterior coverage interval of sentiment factor. Right

Axis: Posterior Mean Probability of Recession Regime.

The factor captures sentiment about current economic conditions as well as forward-looking

projections of future economic activity. Prior to all of the NBER recessions in the sample, the

factor declines substantially. Additionally, the factor begins to recover in the months leading up to

and through the offi cial end of each recession. The recession in 1980 elicits the deepest decline in

sentiment, indicative of a severe economic contraction. This recession also produces the most clear

identification of the recessionary regime, based upon the consistently high posterior probability of

St = 1 during this time. Likewise, the factor declines substantially more around the financial crisis

and Great Recession beginning in 2007, also associated with very high posterior probability of the

St = 1 regime. In order to identify the scale and sign of the factor, we restrict the loading on the

Conference Board Consumer Confidence Index to be equal to positive one. The estimated loadings

on all sentiment series are similar with loadings slightly larger than one on the University of Michi-

gan Consumer Sentiment Index and the Organization for Economic Cooperation and Development

Consumer Confidence Index and slightly less than one on the Institute for Supply Management

Purchasing Managers Index (PMI). The posterior mean and 68-percent coverage intervals for the

loading estimates are presented in the top panel of Table 2.

The bottom panel of Table 2 provides the posterior means and 68-percent coverage intervals for
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the TVTP coeffi cient estimates.17 The transition probabilities consist of a time-invariant compo-

nent, γji, and a time-varying component, γji, which represents the effects of lagged output on the

regime. The posterior mean estimates of γ10 and γ11 are −4.08 and 1.22, suggesting that the ex-

pansionary regime is more persistent than the recessionary regime. We impose that lagged output’s

effect on the transition from expansion to recession is negative (estimated to be equal to − 1.02),

which reduces the probability of switching from expansion to recession if output growth is above

average. Additionally, the posterior mean estimate of the coeffi cient affecting the persistence of

recessions, γ11, is also negative (−0.67). Therefore, an increase in output growth will reduce the

probability of remaining in recession from one period to the next. The time-varying effects are

significant, suggesting that lagged output growth is an important indicator for determining the

transition between the two regimes.

4.1.1 Comparison to Linear FAVAR

To establish a basis for comparison and to gauge the overall value-added of allowing the model

parameters to vary across regimes, we also estimated a linear FAVAR without Markov-switching in

any of the components.18 Figure 2 plots the posterior mean of the sentiment factors filtered from

both the linear and MS models. The factor series extracted from the model allowing for regime-

dependence in the model parameters exhibits more drastic variation, rising more during expansions

and falling more during recessions. This variation results from the time-varying propagation of

innovations to the series within the VAR. Table 3 compares the root mean-squared-error of in-

sample fitted values using the two models. For the ZCOIN and PCE inflation the RMSE’s are

essentially the same for both the linear and MS-TVTP models. However, for the federal funds

rate series, the RMSE from the MS-TVTP is lower than that from the linear model. Therefore, it

appears that the MS-TVTP model better describes the behavior of the policy rate, moving between

regimes of expansionary and contractionary policy based upon the prevailing economic conditions.

These comparisons indicate that much of the non-linearity and regime-switching nature of the

data are driven by variation in the volatility and covariance of the data series in recessionary

and expansionary phases. While we do uncover differences in the systematic VAR parameters

17The full set of parameter estimates are available from the authors upon request.
18As we did with the MS-TVTP-FAVAR, we allow for a one-time structural break in the covariance matrix in 1984

to accommodate the Great Moderation.
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when St = 1 versus St = 0, most of the separate regime identification comes through the regime-

dependent heteroskedastic covariance matrices Ω0 and Ω1.19 In both the pre- and post-Great

Moderation subperiods, the magnitudes of all reduced-form variance and covariance terms are

larger in the recessionary regime.

Figure 2: Sentiment factors extracted from both the TVTP-MS-FAVAR and the Linear FAVAR

models.

4.2 Generalized Impulse Responses to Shocks of Varying Size and Sign

Figure 3 illustrates the GIRFs across a range of shock sizes, conditional on being in a given regime

at the time of the shock. To model the likely behavior of the Fed at different points in the business

cycle, we compute the responses of all macro variables in the VAR to contractionary shocks (6.25,

12.5, and 25 basis points) during the expansionary regime (top row of Figure 3) and expansionary

shocks (-6.25, -12.5, and -25 basis points) during the recessionary regime (bottom row of Figure 3).

For all variables, we find some evidence of multiplicative scaling in the effects of shocks of varying

sizes. The responses to ±25 basis point shocks are approximately four times the magnitude of those

to ±6.25-basis-point shocks, similarly for ±12.5-basis-point shocks. This supports the conclusion
19This result is consistent with Sims and Zha (2006) who estimate a variety of structural VAR model specifications

to describe the potentially regime-switching behavior of monetary policy and its effects on the economy. They find
that the model which best fits the data is one in which only the variances of structural innovations change across
regimes.
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of Lo and Piger (2005) who find no evidence of asymmetries based on the size or sign of the policy

shock. Instead, they find evidence of asymmetries depending on the state of the business cycle at

the time of policy action, with larger effects during recessions than during expansions.

Figure 3 suggests that the behavior of the sentiment factor is similar in both regimes. The

peak response to all shocks is reached after 9 months. In both regimes, the peak effect on output

(ZCOIN) growth is reached 12 months after the shock. With regards to inflation in both regimes

and to all shock sizes, the peak effect is reached after 4 to 5 months. We see more volatility in the

projected future path of inflation but the response is not significantly different from zero. The peak

response of the policy rate is reached more quickly in recessions (2 months) than in the expansions

(4 months).

We focus specifically on the responses of the sentiment factor and output growth to the shocks

of 25 basis points, the shock size most commonly analyzed in the literature. Figure 4 illustrates

the posterior mean GIRFs in recession (left column) and expansion (right column), the 68-percent

posterior coverage interval, and the posterior mean response from the linear model without regime-

switching. While the GIRFs of the sentiment factor in recession and expansion are similar, they

both highlight that the regime-switching model suggests a larger response to policy shocks than that

identified by the linear model. The GIRFs of output growth suggest less variation between the linear

response and that produced in either regime. This result is due to the fact that the recessionary

regime is rather short-lived and the GIRF simulations quickly switch from the recessionary regime

into the expansionary regime. The RDIR for the expansionary regime closely resembles that of the

linear VAR.
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Figure 3: Generalized impulse responses to a range of shocks to the Federal Funds Rate between

+6.25 and +25 basis points in expansion (top row) or -25 and -6.25 basis points in recession (bottom

row).

Figure 4: Comparison of GIRF and Linear IRF of the sentiment factor and output growth in

response to a 25 basis point shock to the Federal Funds Rate.

16



4.3 Generalized Impulse Responses to a Change in Regime

If we think of St = 0 and St = 1 as two steady states, we can compute the transition path between

them. The GIRFs to a change in regime represent the behavior of macroeconomic variables in the

model, conditional on a difference in regimes at time t. Figure 5 plots the mean response and the

68-percent posterior coverage intervals for these GIRFs. The left column of Figure 5 illustrates

the effects of switching from expansion to recession. The subsequent months see a slight decline in

output growth and little noticeable change in inflation. Additionally, the federal funds rate exhibits

a shift upward in the mean but then declines following the regime shift. Sentiment falls at the time

of the change and then takes more than two years to recover back to a level path.

The right column of Figure 5 depicts the macroeconomic behavior given a switch from the

recession to the expansion regime. Due to the limited number of periods in recession, conditioning

on this history when computing these GIRFs results in less-precise estimates. Based on the posterior

mean path, output growth increases slightly at the time of the switch. In the subsequent months,

the mean path of the federal funds rate rises and sentiment adjusts slightly downward. This could

be indicative of precautionary behavior during the early stages of moderate recoveries.

Figure 5: Generalized impulse responses to either a switch from the expansionary to the recessionary

regime (left column) or a switch from the recessionary to the expansionary regime (right column).
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4.4 Conditioning on Economic Conditions

In addition to computing GIRFs based on the economy either being in state St = 0 or St = 1 at

the time of the shock, we can perform policy experiments that condition on the specific economic

climate at the time of the policy action. For example, a recession during which inflation is far above

target may witness different policy effects than a recession during which inflation is controlled. We

examine the state-dependent effects of expansionary policies taken during recessions characterized

by a variety of inflation and output growth values.

Panel (A) of Figure 6 plots the responses of the sentiment factor and output growth to 25- and

6.25-basis-point reductions in the federal funds rate (left and right columns, respectively) during

recessions in which output growth was either: (1) less than 1-standard-deviation below average, (2)

between 0- and 1-standard-deviation below average, (3) between 0- and 1-standard-deviation above

average, and (4) greater than 1-standard-deviation above average. We compute these responses at

the posterior mean estimate of all model parameters. As seen in Figure 6, a small expansionary

shock of 6.25 basis points results in responses with considerable variation, depending on the state

at the time of the shock. This variation decreases with the size of the shock and is less apparent

with the 25-basis-point rate cut.

Panel (B) of Figure 6 plots the responses of the sentiment factor and output growth to 25- and

6.25-basis-point reductions in the federal funds rate (left and right columns, respectively) during

recessions in which inflation was either above or below 3% at the time of the shock. The responses

do not seem to show much variation depending on the level of inflation when policymakers took

action. Interestingly, the most noticeable differences are seen for the sentiment factor when inflation

is low. When inflation is less than 3%, expansionary policy shocks are more persistent over the

medium- and long-term horizons and thus produce a larger boost to sentiment.
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Figure 6: Generalized impulse responses to a 6.25 and 25 basis point reduction in the federal funds

rate, conditional on being in recession with various levels of output growth at the time of the shock.

5 Sequential Shocks

Empirical evidence on Taylor rules and reaction functions suggests that the Fed smooths interest

rates. For example, the Fed may anticipate that it will reduce the federal funds rate in the face

of a recession. It can do so in one large move or make a series of smaller moves. A number of

theoretical models show that monetary policy shocks of different sizes have asymmetric effects on
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the macroeconomy.20

We have argued before that, in the linear model, the response is invariant to the size of the

shock, up to a scalar multiple– that is, a 25-basis-point shock produces the same response as a

1-basis-point shock multiplied by 25. Thus, a 25-basis-point shock produces a response equivalent

to four consecutive 6.25-basis-point shocks, except for the slight variation in timing. On the other

hand, altering the magnitude of the shock in the nonlinear model does not produce a scalar multiple

response. Thus, there is no guarantee that the 25-basis-point shock will produce anything similar

to a sequence of four 6.25-basis-point shocks. Therefore, our nonlinear model allows us to address

the mixed evidence of asymmetric effects of monetary policy shocks of different sizes.21

5.1 Sequential Shock Responses

In order to evaluate the effect of smoothing the shocks, we compare the responses of the economic

variables to two sets of shocks: (i) a 25-basis-point change in the federal funds rate and (ii) four

consecutive 6.25-basis-point changes in the federal funds rate. We then measure the expected

paths of the macroeconomic variables, including the latent state, integrating over the histories,

future shocks, and Gibbs iterations:

IRi (h) =
1

G

1

R
[g]
i

1

Q

G∑
g

R
[g]
i∑
r

Q∑
q


[
Yt+h|Yt−1,Θ

[g], S
[g]
t = i, ut = 25,

{
u

[q]
t+l

}h
l=1

]
−
[
Yt+h|Yt−1,Θ

[g], S
[g]
t = i,

{
ut+p−1 = u

[q]
t+p−1 + 6.25

}4

p=1
,
{
u

[q]
t+l

}h
l=1

]
 .

(9)

Notice that we are conditioning on the same (structural) shocks for period t + 1 to t + h even

though we have additional shocks for the second term in periods t+1 to t+3. Thus, the innovation

to the federal funds rate can be thought of as a 6.25-basis-point shock above and beyond the set of

Monte Carlo structural shocks. This conditioning ensures the shocks to both terms are the same

20Theoretical models with menu costs generate asymmetric effects of monetary policy shocks of different sizes. Ball
and Romer (1990) and Ball and Mankiw (1994) outline a menu cost model in a deterministic setting where only
small money shocks have real effects whereas large shocks are neutral. The intuition behind this result is that firms
will only want to pay the menu cost to adjust their price when the nominal shock to demand is suffi ciently large.
Therefore, individual firms will adjust output levels and leave their price unchanged in response to small monetary
shocks.
21Weise (1999), Ravn and Sola (2004), Donayre (2014), and Barnichon and Matthes (2016) find results in favor of

size asymmetry, whereas Sensier, Osborn, and Öcal (2002) and Lo and Piger (2005) conclude that monetary policy
does not have asymmetric effects with regards to their size.
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except for the innovations that we are interested in.

Figure 7 plots the GIRFs based on either a single 25-basis-point change or four sequential 6.25-

basis-point changes. The left column portrays the responses if the federal funds rate is increased 25

basis points at time t or in four consecutive 6.25-basis-points moves at times t, t+1, t+2, and t+3

during an expansion and the sentiment factor is listed first in the VAR. These two contractionary

policy sequences induce significantly different behavior in the factor. Even after the four months

it takes to fully implement both policy prescriptions, the factor is still significantly lower after the

one-time, large contractionary shock. The large shock results in a slightly deeper contraction in

output growth, but this is not persistent. There is little discernible difference in the response of

inflation. The differences in the paths of the federal funds rate suggest that a series of smaller

rate hikes leads to a higher path for the policy rate over the medium- to longer-term horizons, as

represented by the GIRF taking on negative values after the four months it takes to implement the

smoothed policy approach.

The right column of Figure 7 shows the responses if the federal funds rate is decreased in a

single 25-basis-point move or four sequential 6.25-basis-point moves during a recession. Under these

conditions, when the factor is listed first in the VAR, the difference in responses of the factor stays

positive after the large shock for longer than the four months witnessing small, incremental shocks.

This result suggests a longer-lasting, more favorable response of the sentiment factor after a large

policy accommodation. Congruently, the large shock induces a slightly bigger boost to output

growth but, again, little variation in the response of inflation. After four months, by the time

both policies have been fully implemented, any difference between the paths for output growth

and inflation disappears. Therefore, the larger stimulus initially provides an immediate, stronger

boost to output growth that is not surpassed by the smooth policy approach. By construction,

for the first four months in which the sequential policy is enacted, the decline in the policy rate

is more substantial after the initial large shock. Once both policies have had time to induce the

same systematic changes in the federal funds rate, the difference in paths becomes positive. This

result suggests that, following the large rate cut, the federal funds rate takes on larger values in

the medium term than if the Fed enacts a series of smaller rate cutes to achieve its target.
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Figure 7: Generalized impulse responses to a single 25 basis point reduction (increase) in the Federal

Funds Rate compared with 4 sequential 6.25 basis point cuts (increases), conditioning on being in

recession (expansion) at the time of the policy shock.

5.2 Sequential Shocks and Conditioning on Economic Conditions

Section 4.4 above illustrated how the effects of countercyclical policy can depend on the prevailing

economic conditions at the time of the policy shock. We found that smaller shocks induce responses

which are more sensitive to the level of inflation or output growth when the policy is enacted. In this

section, we extend this experiment to look at the difference in responses to the single 25-basis-point

shock and the four sequential 6.25-basis-point shocks when inflation is above and below target or

when output growth is strong or weak. These GIRFs use the posterior mean estimates of all model

parameters.

Figure 8 plots the GIRFs of the sentiment factor and output based on the single or sequential

shocks, conditional on the relevant levels of output growth or inflation. The left column shows

the GIRFs during recessions in which output growth was either: (1) less than 1-standard deviation

below average, (2) between 0- and 1-standard deviation below average, (3) between 0 and 1 stan-

dard deviation above average, and (4) greater than one standard deviation above average. Any

substantial differences in the responses are seen after the four months it takes to cut the federal
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funds rate the full 25 basis points using incremental steps. When output growth is negative, the

response of the sentiment factor exhibits greater persistence throughout the one-and-a-half years

following the first four months of policy changes. Additionally, while we find less variation in the

responses of output growth, we also see slightly greater persistence in the responses when output

growth is negative. The right column shows the GIRFs based on whether inflation was above

or below 3% at the time of the initial policy shock. We find almost no variation in the GIRFs

conditioning on inflation levels and the responses appear similar to those using the full history of

recessions identified in the sample, as in the right column of Figure 6.

Figure 8: Generalized impulse responses to a single 25 basis point reduction in the Federal Funds

Rate compared with 4 sequential 6.25 basis point cuts, conditional on being in recession with various

levels of output growth at the time of the first shock.

6 Extending the Sample through the ZLB

As discussed in Section 3.2, the baseline sample ends in 2008:12 because of the challenges facing

conventional monetary policy at the zero lower bound. We also estimate the MS-TVTP model

with an extended sample through 2017:12 in order to assess the regime-dependence of the effects

of monetary policy throughout the Great Recession. In order to maintain a cohesive measurement

of the stance of policy, we replaced the federal funds rate with the shadow rate generated in Wu
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and Xia (2016) for the period during which the nominal federal funds rate was restricted by the

zero lower bound. Figure 9 shows the posterior mean probability of the recessionary regime for the

baseline and extended specifications. During the portion of the sample in which the baseline and

extended datasets overlap, 1960:1-2008:12, the correlation between the posterior estimates of the

posterior probability of the recessionary regime is 0.93. We find comparable results regarding the

persistence of regimes and the role of output as the transition variable. The posterior probability

of the recessionary regime rises again near the end of 2012 and beginning of 2013, thus suggesting

variation in the dynamics of the economy during the end of Operation Twist and the Fed’s third

round of quantitative easing.

The GIRFs generated by the baseline and extended samples are similar and suggest comparable

conclusions regarding the asymmetric effects of monetary policy shocks as measured by the federal

funds rate or the shadow rate. This is in accordance with Francis, Jackson, and Owyang (2018)

who find that the shadow rate acts as a reasonable proxy for monetary policy in models using a

dataset that spans both the pre-ZLB and ZLB periods.22

Figure 9: Posterior Mean Probability of Recession Regime from the baseline sample (1960:1-

2008:12) and the extended sample with the ZLB (1960:1-2017:12).

22For brevity, we do not show the GIRFs produced by the extended sample with the shadow rate. These results
are available upon request.
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7 Conclusions

We estimate a self-exciting, TVTP-VAR in which lagged output growth affects the underlying

state of the economy. As a result, countercyclical policy affecting the variables within the VAR also

affects the latent state explaining the transition between expansionary and recessionary regimes.

Additionally, we extract a factor representing overall sentiment regarding the health and outlook

of the economy. We find that this factor declines in the months preceding each of the NBER-dated

recessions and recovers in the months leading up to the trough. Our model appropriately identifies

NBER recessions in the pre-Great Moderation subperiod but does not identify as much variation in

the dynamics of the model in these predetermined expansion or recession periods in the post-Great

Moderation period.

We find empirically relevant differences in the effects of policy between the two regimes, as well

as variation depending on the type of policy enacted at various points in the business cycle. The

effects of small policy changes are sensitive to the levels of output growth and inflation at the time

of the shocks, but large policy shocks have relatively similar effects in these different environments.

Finally, smoothing of policy rates in order to enact gradual adjustments induces different effects

than large, one-time policy shocks which ultimately result in changes in the policy rate of the same

magnitude. The greater stimulus to overall sentiment and output from large policy shocks may

suggest that more aggressive policy intervention, without as much emphasis on smoothing, may be

appropriate to combat recessions.
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A Sampler Details

The following subsections describe the draws of the estimation method.

A.1 Drawing B0 (L) , B1 (L) ,Ω0,Ω1 conditional on Θ−{B0(L),B1(L),Ω0,Ω1},ST ,FT

Conditional on the factor and the parameters of φ (.), the VAR model parameters are simply conju-

gate N-IW. Let YT−p = [YT−p, ..., Y1+P−p]
′, ST−p = [ST−p, ..., S1+P−p]

′,

X∗t = [1T−P ,YT−1, ...,YT−P ,ST−P ,ST−1 �YT−1, ...,ST−P �YT−P ]′, andX∗ represent the vector

of stacked X∗t’s.

Then, given the prior, a draw of {B0 (L) , B1 (L)} can obtained fromB0 (L) , B1 (L) |Θ−{B0(L),B1(L)},FT ∼

N (b,B), where

B =
(
B−1

0 +X∗
′
X∗
)−1

,

b = B
(
B−1

0 b0 +X∗
′
YT

)
.

Let εT reflect the stacked vector of errors; then, given the prior, we can draw Ω from

Ω−1 ∼W (ν,$) ,

where ν = ν0 + T/2 and $ = ($0 + εTε
′
T ) /2.

A.2 Drawing St|Θ,Y

Let Ωt = {yτ : τ ≤ t} collect all the data up to time t. From Chib (1993), the conditional density

for S is

p (S|Θ,Y) = p
(
ST |⊗T ,µ, σ2,γ

) T−1∏
t=1

p
(
St|St+1,⊗t,µ, σ2,γ

)
. (10)

The density p (St|Θ,Y) is computed by Hamilton’s modification of the Kalman filter, the last

iteration yielding p (ST |Θ,Y). From Bayes Law, we have

p (St|St+1,Θ,Y) =
pSt+1,Stp

(
St|⊗t,µ, σ2,γ

)∑3
j=1 pSt+1,jp (St = j|⊗t,µ, σ2,γ)

,
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where pj,i is the (time varying) transition probability. Combined, this allows us to generate St

recursively.

A.3 Drawing γ|Θ−γ ,Y,S

The transition parameters are drawn using the difference random utility model described in Frühwirth-

Schnatter and Frühwirth (2010) and Kaufmann (2015). Under this specification, the regime variable

has an underlying continuous utility representation, Um,t. The period t latent state utility for regime

k is

Ukt = Z′tγk + vk,t, k = 0, 1

where

Zt = [zt−d(1− St−1), zt−dSt−1, (1− St−1), St−1]′ ,

γk = [γk0, γk1, γ̄k0, γ̄k1] ,

and vk,t follows a Type 1 extreme value distribution. We assume the regime with the maximum

utility at time t is the observed regime:

St = j ⇐⇒ Uj,t = max
k=0,1

Uk,t.

Differences in utility are given by

ωk,t =

 U0,t − U1,t if k = 0

U1,t − U0,t if k = 1
,

where, analogous to the case above, the observed regime is the one with the highest utility

St = j ⇐⇒ ωj,t = max
k=0,1

ωk,t.

We can rewrite the state utilities as

Uk,t = log(ζk,t) + v−k,t,
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where

ζk,t = exp (Z′tγk),

ζ−k,t =

 ζ1,t if k = 0

ζ0,t if k = 1
.

Similarly, the difference in state utilities can be rewritten as

ωk,t = Z′tγk − log(ζ−k,t) + vk,t − v−k,t

= Z′tγk − log(ζ−k,t) + εk,t, εk,t ∼ Logistic.

For normalization purposes, we impose k = 0 to be the reference regime. This implies the

restriction γ0 = [0, 0, 0, 0]′. Thus, it is only necessary to draw the transition parameters for the

regime k = 1. Practically, there are three substeps to the sampling technique for γ1. The first

substep is to sample the latent state utility differences outlined above for all time periods:

ω1,t = Z′1,tγ1 + ε̃t,

where

ε̃t = log

[
St +Wt

(
1− St −

ζ1,t

1 + ζ1,t

)]
− log

[
1− St −Wt

(
1− St −

ζ1,t

1 + ζ1,t

)]
,

Wt ∼ U (0, 1) .

Next, we estimate the logistic distribution of the true errors, ε, by a mixture of normal distrib-

utions with six components. The components, Rt, are sampled from the distribution

p(Rt = r) ∝ wr
sr

exp

[
−0.5

(
ω1,t − Z′tγ1

sr

)2
]
, r = 1, . . . , 6,

where the component weights, wr, and component standard deviation, sr, are given in Table 1 of

Frühwirth-Schnatter and Frühwirth (2010).

Finally, given the prior γ1 ∼N(g0,G0), we generate the draw of γ1 from the normal posterior
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distribution γ1 ∼N(g,G), where

g = G

(
G−1

0 g0 +
T∑
t=1

Ztω1,t

s2
Rt

)
,

G =

(
G−1

0 +

T∑
t=1

ZtZ
′
t

s2
Rt

)−1

.

A.4 Drawing λm, σ2
m conditional on Θ−{λm,σ2m},ST ,FT

Conditional on the factor, the factor equation parameters are N-IG. Given the prior, a draw of λm

can obtained from λm|Θ−λm ,FT ∼ N (dm,Dm), where

D =
(
D−1

0 + F′TFT
)−1

,

d = D
(
D−1

0 d0 + F′TXmT

)
,

and XmT = [Xm1, ..., XmT ]′.

Define XT = [X1T , ...,XMT ]′. Then, we can sample σ−2
m from a gamma posterior σ−2

m |Ψ−Ω ∼

G (rm, ρm), where rm = (r0 + T ) /2 represents the degrees of freedom and the scale parameter is

ρm = (ρ0 + uTu
′
T ) /2.

A.5 Drawing FT conditional on Θ,ST

Conditional on the VAR parameters, the transition function, and the factor equation parame-

ters, the factor can be filtered using a linear Kalman filter. It will be convenient to rewrite

the model in its state-space representation. Define the state ςt =
[
Ξ′t, , ...Ξ

′
t−p+1

]′, where Ξt =[
[1− φ (zt−d)] ξ

′
t, φ (zt−d) ξ

′
t

]′. Then,

Zt = Hςt + et, (11)

ςt = Wςt−1 + vt,
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where Zt = [Y ′t , X
′
t]
′, et = [0′N , u

′
t]
′, vt =

[
ε′t,0

′
2(N+1)(P−1)×1

]′
. The state-space coeffi cient matrices

are

H =

 IN 0N×1 0N×2(N+1)(P−1)

0M×N λ 0M×2(N+1)(P−1)


and

W =

 B01 · · · B0P B11 · · · B1P

I2(N+1)(P−1) 02(N+1)(P−1)×2(N+1)

 , (12)

where each Bip is a (N + 1×N + 1) matrix collecting the pth lag coeffi cients for the ith regime.

Given a set of starting values of ς0|0 and P0|0, the filter iterates prediction and update steps

forward for t = 1, .., T . The prediction step computes a projection of the period−t state variable

based on information available at time t− 1. The prediction density is typically written as

ςt|t−1 = Wςt−1|t−1,

P xt|t−1 = WP xt−1|t−1W
′ +Q,

where Q = E [$$′].

From the prediction density, we can update the state vector using the next period realization

of the data. Define the prediction error as

ηt|t−1 = Zt −Hςt|t−1, (13)

where the variance can then be written as:

P yt|t−1 = Hςt|t−1P
x
t|t−1H

′ + V.

The covariance with ςt|t−1 as
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P xyt|t−1 = P xt|t−1H
′.

The updated state vector density is then

ςt|t = ςt|t−1 + P xyt|t−1P
−1
t|t−1ηt|t−1,

with variance

P xt|t = P xt|t−1 − P
xy
t|t−1P

−1
t|t−1P

xy′
t|t−1.

From these, we can retain
{
ςt|t
}T
t=1
,
{
P xt|t

}T
t=1
,
{
ςt|t−1

}T
t=1

and
{
P xt|t−1

}T
t=1
. In a single-move

Gibbs sampler, we would draw ςt from N
(
ςt|T , P

x
t|T

)
, which requires smoothing. A standard

backward smoother yields:

ςt|T = ςt|t + P xt|tW
′
(
P xt+1|t

)−1 (
ςt+1|T − ςt+1|t

)
(14)

with variance

P xt|T = P xt|t + P xt|tW
′
(
P xt+1|t

)−1
((

P xt+1|T

)−1
−
(
P xt+1|t

)−1
)(

P xt+1|t

)−1
WP xt|t.

An alternative is to use a multi-move sampler (Carter and Kohn (1994)), which draws the entire

state vector at once from p
(
ςt|Ωt, ς

∗
t+1

)
, where Ωt represents the data known at time t and the

superscript ∗ indicates the truncation of the state vector due to the singular covariance matrix. We

then draw Ft from N
(
Ft|t,ςt+1 , P

x
t|t,ςt+1

)
, where

Ft|t,ςt+1 =

[
ςt|t + P xt|tW

∗′
(
W ∗P xt|tW

∗′ +Q∗
)−1 (

ς̂∗t+1 − ςt+1|t
)]
eN , (15)

P xt|t,ςt+1 = e′N

[
P xt|t + P xt|tW

∗′
(
W ∗P xt|tW

∗′ +Q∗
)−1

W ∗P xt|t

]
eN ,

and eN is a vector with a 1 as the (N + 1)th element and 0’s everywhere else. The main difference

between (14) and (15) is that the former generates all the posterior distributions simultaneously
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while the latter forms them recursively, conditional on the t+ 1 period draw.
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B Tables

Table 1: Priors for Estimation

Parameter Prior Distribution Hyperparameters

[B0, B1] N (b0,B0) b0 = [GDP0, 0N×P , GDP1 −GDP0, 0N×P ]′(1)

B0: See note (2).

Ω−10 ,Ω−11 W (ν0, $0) ν0 = N + 2 ; $0 = IN+1

γ1 N(g0,G0) g0 = [−4,−4,−4, 4]′ ; G0 = diag(4, 4, 1, 1)

λm N (d0,D0) d0 = 0 ; D0 = 1

σ2m IG (r0, ρ0) r0 = 1 ; ρ0 = 1

Table 1: (1) We set GDP0 equal to the mean value of ZCOIN growth in NBER expansions and

GDP1 equal to the mean of ZCOIN growth in NBER recessions. (2) B0 imposes unit variance

on the constant in each equation and shrinkage on higher lags of Yt. Consider the components

of B0 corresponding to the VAR coeffi cients for lag p in equation n. We assign the variance on

the coeffi cient on variable n’s own lag to be 0.5
p2
and the variance of the coeffi cients on the other

variables to be 0.25
p2
.
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Table 2: Select Parameter Estimates

Factor Loadings

Posterior Mean 68% Posterior Coverage Sentiment Series

λ1 1.00 · · CBCCI

λ2 1.15 1.10 1.20 UMCSI

λ3 1.09 1.04 1.14 OECDCCI

λ4 0.83 0.78 0.88 PMI

TVTP Coeffi cients

Posterior Mean 68% Posterior Coverage

γ10 −4.08 −4.58 −3.62

γ11 1.22 0.72 1.72

γ10 −1.02 −1.34 −0.69

γ11 −0.67 −1.08 −0.25

Table 3: Root Mean-Squared Errors

MS-TVTP-FAVAR Linear-FAVAR

ZCOIN Growth 0.26 0.26

PCE Inflation 0.11 0.11

Federal Funds Rate 0.39 0.48
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