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ABSTRACT 

Durand (1957) shows that the classical St. Petersburg paradox can apply to the valuation of a 

firm whose dividends grow at a constant rate forever. To capture a more realistic pattern of 

dividends, we model the dividend growth rate as a mean reverting process, and then use the 

CAPM to derive the risk-adjusted present value. The model generates an equivalent St. 

Petersburg game. The long-run growth rate of the payoffs (dividends) is dominant in driving the 

value of the game (firm), and the condition under which the value is finite is less restrictive than 

that of the standard game. 
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1. Introduction 

The St. Petersburg paradox is one of the most well-known and interesting problems in the 

history of financial economics. The paradox describes a situation where a simple game of chance 

offers an infinite expected payoff, and yet any reasonable investor will pay no more than a few 

dollars to participate in the game. Since the paradox was presented by Daniel Bernoulli in 1738, 

it has attracted a great deal of interest, mainly by theorists who provide solutions and derive its 

implications.  

One of the applications of the paradox is in the area of financial asset pricing. Durand (1957) 

shows that the St. Petersburg game can be transformed to describe a conventional stock pricing 

model for growth firms. The analogy is based on the assumption that the firm’s future dividends 

(as the game’s future payoffs) grow at a constant rate g. Economic intuition and the historical 

evidence suggest, however, that the very high growth rates experienced by many young firms 

(e.g., firms in the high-tech industry) are expected to decline over time. Hence, the short-run 

growth rate is typically much greater than the expected long-run rate. In this study we model the 

dividend growth rate as a mean reverting process; we then find the risk-adjusted growth rate 

under the equilibrium setting of the classical Capital Asset Pricing Model (CAPM), and derive 

its equivalent modified St. Petersburg game.1  

Our paper has several interesting results. First, we assume an autoregressive process for the 

dividend growth rate, and then use the CAPM to derive a closed form solution for the price of a 

growth stock. Second, by distinguishing between the short-run and long-run growth rates, the 

model shows that the latter is the dominant factor in driving the properties of the St. Petersburg 

game (or the firm), including its value. Third, and last, we derive the condition under which the 

expected payoff of the game (or equivalently, the value of a growth firm) is finite; as expected, 

                                                 
1 Assuming a stochastic dividend growth is rather common in asset pricing studies; see, for example, Bansal and 

Yaron (2004), and Bhamra and Strebulaev (2010).  



 

 3

this condition is much less restrictive than the one required under constant growth. This result 

provides an indirect solution to the game; we show that if the payoffs’ growth rate is mean 

reverting, then the present value is finite, and the fee players are willing to pay is finite.  

 

2.   The paradox and its common solutions 

The St. Petersburg paradox is based on the following simple game. A fair coin is tossed 

repeatedly until the first time it falls on ‘head’. The player’s payoff is n2  dollars (‘ducats’ in the 

original Bernoulli’s paper), where n is the number of tosses. Since n is a geometric random 

variable with p=0.5, the expected payoff of the game is: 
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Yet, while this game offers an expected payoff of infinite dollars, a typical player will pay no 

more than a few dollars to participate in the game, reasoning that there is a very small probability 

to earn a significant amount of money. For example, the chance to earn at least 32 dollars is 

03125.02 5 =− , and at least 128 dollars is 00713.02 7 =− ; hence, paying a game fee of even 

1,000 dollars seems unreasonable. 

A number of solutions proposed to resolve the paradox rely on the concept of utility.2 The 

basic idea is that the relative satisfaction from an additional dollar decreases with the total 

amount of money received. Thus, the game fee should be based on the expected utility from the 

dollars earned, rather than the expected amount of dollars. Bernoulli himself suggested the log 

utility function; in this case, the expected value of the game is:  

∞<==+×+×+×= ∑
∞

=

)2ln(2
2

)2ln(
...)8ln(

8

1
)4ln(

4

1
)2ln(

2

1
)(

1n
n

n

UE                   (2) 

                                                 
2 See Senetti (1976) on solving the paradox using expected utility in light of modern portfolio theory, and Sz´ekely 

and Richards (2004) for other suggested solutions to the paradox. 
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It turns out, however, that the utility-based solutions are incomplete: the game can be 

converted to a convex stream of payoffs, and this change reverses the benefit of a concave utility 

function. For example, if instead of n2 , the game’s payoff is 
n

e2 , then for the log utility just 

considered, the expected value again tends toward infinity. In general, for every unbounded 

utility function the payoffs can be changed such that the expected utility will be infinite. This 

generalization of the game often goes by the name “super St. Petersburg paradox.” 

Proposed solutions to the super game rely on the concept of risk aversion (Friedman and 

Savage (1948), and Pratt (1964)); that is, holding everything else constant, a typical player 

prefers less risk, and therefore is willing to pay a lower fee for high-risk games. Weirich (1984) 

shows that, while the game may offer an expected infinite sum of money, it involves also an 

infinite amount of risk. This is because the dispersion of the possible payoffs results in an infinite 

standard deviation. Thus, the fair game fee resembles the difference between an infinite expected 

payoff and an infinite measure of risk. While the answer may actually be finite, it does not 

explain the specific amounts typical players are willing to pay, which range between 2 to 25 

dollars. (The risk-aversion assumption is central for our analysis of the paradox in the CAPM 

environment in Section 4). In sum, it appears that none of the solutions offered so far provides a 

complete answer to all aspects of the problem. 

 

3.   Application of the paradox to growth stocks 

One of the applications of the St. Petersburg paradox is in the area of asset pricing. Durand 

(1957) shows that with some modifications, the paradox can describe a conventional stock 

pricing model. A growth firm expects to generate an increasing stream of future earnings, and 

thus to pay an increasing stream of dividends. The value of such a firm is given by the present 

value of all future dividends: 
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where tD  is the per-share dividend of year t and r is the discount rate. The constant growth 

model, also known as the Gordon (1962) model, assumes that future dividends grow at a 

constant rate (g); i.e., the dividend stream is ...,)1(),1(, 2
111 gDgDD ++  for the years 1, 2, 3,… 

In that case, the present value of this growing perpetual future dividend stream equals: 
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Thus, the firm value is finite only if the growth rate is lower than the discount rate.  

Durand derives the St. Petersburg analogue of the constant growth model using the following 

analysis. Consider the St. Petersburg game, where instead of a fair coin, the probability that a 

‘head’ appears is )1( rr + , where 0>r . Assume further that instead of earning a single payment 

when the game ends (i.e., when ‘head’ appears in the first time), the player earns a specific 

amount of dollars as long as the game continues. Specifically, the player will earn 1D  if the first 

toss is ‘tail’, )1(1 gD +  if the second toss is ‘tail’, 2
1 )1( gD +  if the third toss is ‘tail’, and so on. 

That is, if the game lasts for n tosses, instead of earning n2 , the player will earn: 
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which is identical to the value of a constant dividend growth firm (as appears in Equation 4).  

Note that the analogy is based on the translation of the discount rate r to the coin probability

)1( rr + . That is, while in the original St. Petersburg game any future payment will be paid with 
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some probability, in the modified game, which is equivalent to the dividend stream generated by 

growth firms, any future payment will be paid for sure, but will be evaluated with a discount 

factor. This analogy helps explaining the condition under which the expected payoff of the game 

is infinite. The value of the stock is infinite only when the dividend grows at an equal or higher 

rate than the discount rate; and in the same way, the expected payoff of the game is infinite only 

when the payoffs are increasing at an equal or higher rate than the rate at which the 

correspondent probabilities are decreasing.  

We believe the paradox arises for two reasons. First, the assumption that the dividend stream 

will grow at a constant rate permanently is unrealistic. For example, economic intuition, as well 

as the historical evidence, suggests that high growth tech firms (such as IBM, Microsoft and now 

Google) may grow very rapidly in the short run. But nothing attracts competition like market 

success; therefore, in the long run new market entrants (e.g., Google) will force the earnings 

growth rate to slow down (almost surely) to a level consistent with the growth rate of the overall 

economy. The second reason is that the degree of risk implicit in the dividend stream may cause 

investors to change the risk-adjusted discount rate, i.e., the probability of actually receiving the 

expected dividends. 

In the next section we formalize these ideas within the context of the Capital Asset Pricing 

Model (CAPM) of Sharpe (1964) and Lintner (1965). We model the dividend growth rate as a 

mean reverting process so that the current rate can be very large but the long run rate is expected 

to be much lower. We then use the CAPM to derive the appropriate risk-adjusted present value. 

We find that the equity price can be finite without the unreasonable condition required by the 

constant growth model. 
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4.  Stochastic dividend valuation in the CAPM world 

Let tD  be the time-t value of dividends or earnings (for simplicity we will use these two 

terms interchangeably), and assume these values grow at rate 1+tg : t
tg

t De  D )( 1
1

+
+ = . We use a 

first order autoregressive process ( AR(1) ) to model mean reversion:  

11 )1( ++ ++−= ttt gg  g εφφ                       (6) 

Where g  is the long run (unconditional) mean growth rate and φ  is the autoregressive 

coefficient. We make the usual assumptions to insure the process is stationary and the growth 

rate is mean reverting. The innovation terms 1+tε  are normally distributed random variables with 

mean zero, variance 2
εσ , no serial correlation, and constant covariance with the market portfolio.  

The major implication of the AR model is that while the current growth rate can be abnormally 

large, in the long run earnings growth should slow down to a lower rate. Intuitively, we expect 

g  to be close to the growth rate for the overall economy because of competitive pressures 

brought about by new startup companies. 

To obtain the risk-adjusted present value of each future dividend we use the CAPM of 

Sharpe (1964) and Lintner (1965):  

RORfmf RERR  ER β][ −+=                       (7) 

where ER is the single period return on the asset, fR  is the risk-free rate of interest, mER  is the 

expected market portfolio return, and market risk is measured by the rate of return beta )( RORβ . 

Then, the CAPM price for an asset with a stochastic dividend stream 
∞
=1}{ ttD  is given by the 

sum of expected dividend values adjusted, for market risk, and discounted to the present at the 

riskless rate of interest (Equation (8) is derived in the Appendix): 
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The deterministic variable zj captures the effect of mean reversion on cash flows and the market 

risk. It may be computed recursively as: 11 += −jj z z φ  for j=1, 2, …   and starting value 00 =z . 

The growth rate beta, gβ , is defined as the covariance between the growth rate innovation (εt+1) 

and the market return, divided by the variance of the market return. 

Equation (8) shows that the current price depends on the current growth g0, and the long run 

rate g ; however, the impact of the latter is much stronger because it is multiplied by the sum of 

zj, which is always positive. Intuitively, stronger mean reversion implies faster reversal to the 

long run mean; therefore, a currently high growth rate has only a transitory impact on the equity 

price. Today’s price depends also on the appropriate risk adjustment. Since the market risk, 

represented by gjz β increases with j -- up to )1/( φβ −g as j approaches infinity, the adjustment 

for risk becomes increasingly large for distant expected dividends, and this helps obtain a finite 

present value. 

Two special cases of the general model are worth mentioning. The first is Gordon’s 

deterministic growth model which is obtained by setting 0=φ  and 02 =εσ .  In this case, 

dividends are expected to grow in a deterministic fashion at a constant rate g . The beta factor  

( gβ ) equals zero and the discount rate r equals the riskless rate fR .  

The second, originally developed by Rubenstein (1976) within the context of a single factor 

arbitrage-free model, allows stochastic growth but no serial correlation: 11 ++ += tt g  g ε . In this 
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case, (log) earnings or dividends follow a random walk with drift, and the stock price has a 

closed-form solution similar to Durand’s formula: 
*

*

0
0 g
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= , where the discount rate r is 
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, and the adjusted growth rate is 2/* 2

εσ+= g  g . The major 

drawback of these two models is that unlike our autoregressive model, they do not allow a 

distinction between current growth – which can be abnormally high, and long-run growth. 

We can now derive the condition under which the asset price is finite. Observe that for large 

j, jz  converges to a constant value of )1(1 φ− ; therefore, the expected future dividend will 

evolve along the path
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This value will converge to zero, and thereby the sum of the present values of all future 

dividends (i.e., the firm value) will be finite, provided the expression inside the square brackets 

is negative. Thus, the restriction on long term growth is: 
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The right hand side of this expression is similar to the CAPM risk-adjusted return with two 

modifications. First, risk is measured by the growth rate beta adjusted by the degree of 

predictability in the dividend stream, and second, since the growth rate is continuously 
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compounded, we need to subtract one half the long-run variance of dividend shocks. Clearly this 

condition is less restrictive than for constant growth (i.e., rg < ); and, more importantly, it 

imposes no restrictions on the short term dividend growth rate. 

Figure 1 illustrates the upper bound condition described by Equation (10). We vary the level 

of mean reversion, φ , on the horizontal axis from 0.0 (strong) to 0.6 (weak), and include three 

levels of gβ : 0.5, 1.0, and 1.5. To set the riskless rate and the market risk premium, we use data 

from Professor Ken French’s website. We have 037.0=fR
 
and 0804.0)( =− fm RRE , which 

correspond to the sample averages from 1927 thru 2010. Last, 
2
εσ  is set arbitrarily at 0.01 

because its exact value has a marginal effect on the upper bound.  

The horizontal line at 3.7% corresponds to the constant growth Gordon model; clearly this is 

a low bar for the long run growth rate. The more realistic cases reflect varying degrees of mean 

reversion. In the strongest case, where φ  = 0.0, the upper bound increases with beta. When gβ = 

0.5, the risk-adjusted upper bound is 7.2%, and increases to 11.2% for gβ = 1.0, and to 15.3% 

for gβ = 1.5. Figure 1 shows that these upper bounds increase even faster as mean reversion 

weakens. No firm can be expected to grow permanently at such high rates. 

 

5.  A modified St. Petersburg game for stochastic growth stocks  

 
As Durand (1957) shows, the classical St. Petersburg game (with some modifications) can 

describe an investment in a stock with a constant dividend growth rate. To capture the more 

realistic pattern of growth firms (as outlined in the previous section), we present a modified St. 

Petersburg game that is analogous to a stock with a mean reverting dividend growth rate in the 

equilibrium setting of the CAPM.   



 

 11

Consider the St. Petersburg game, where instead of a constant probability that the coin will 

fall on ‘head’, the probability is different for every toss; specifically, the probability that ‘head’ 

appears at the jth toss is of the form
jj aa )1( − , where 1>ja  j∀ . Assume further that the player 

earns a different amount of dollars every toss, as long as the game continues: 1D  if the first toss is 

‘tail’, 2D  if the second toss is ‘tail’, 3D  if the third toss is ‘tail’, and so on. That is, if the game 

lasts for n tosses, the player will earn ∑
−
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1

1

n
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jD  dollars. The expected payoff of the game is: 
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Assume now that the stream of payoffs, as the stream of dividends discussed above, grows at 

a mean reverting growth rate 1+tg  (Equation 6). Note that the expected payoff for the nth toss, 

nDE0 , is equivalent to the one appearing in Equation (8). Next, define the ratio 
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+
= ; since the risk-free rate, fR , and the market risk-premium, 

gjfm zRER β)( − , are both positive, ja  is greater than 1. This guarantees a probability of ‘head’ 

between 0 and 1. Therefore, the expected payoff of the game is: 
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which matches exactly the stock value in the CAPM world (Equation 8).  

The condition under which the value of the game is finite, therefore, is identical to the one 

that makes the stock price finite, as given in Equation (10). Since this condition is less restrictive 

than the classical St. Petersburg game (as discussed above), it provides an indirect solution to the 
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paradox. That is, under the more realistic setup of a stochastic mean reverting growth rate, it is 

more likely that the value of the game is finite, and therefore the game fee the players are willing 

to pay is finite.  

 

6.   Conclusions 

The St. Petersburg paradox describes a simple game of chance with infinite expected payoff, 

and yet any reasonable investor will pay no more than a few dollars to participate in the game. 

Researchers throughout history have provided a number of solutions as well as variations of the 

original paradox. One of these, developed by Durand (1957), shows that the standard St. 

Petersburg game can describe an investment in a firm with a constant growth rate of dividends.  

To capture a more realistic growth pattern, we present a model that allows mean reversion in 

dividends. We then derive the risk adjustment required in a CAPM environment, and propose an 

equivalent St. Petersburg game. We show that the expected payoff of the modified game (or 

equivalently, the value of growth firms) is driven mainly by the long-run growth rate of the 

payoffs (dividends), while the short-term growth rate has a minor effect on the properties of the 

game or the firm. The model further shows that the condition under which the value of the game 

or the firm is finite is much less restrictive than that of the classical St. Petersburg game, and this 

might provide an indirect solution to the paradox. 
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Figure 1. Upper bound on long run dividend growth rate 

 

The three sloping lines represent the upper bound on the long run dividend growth rate, 

computed from Equation (10), as a function of the degree of mean reversion (φ ), for three levels 

of gβ . The model parameters are: 037.0=fR , market risk premium 0804.0)( =− fm RRE , and 

2
εσ = 0.01. The horizontal line, set at 037.0=fR , represents the upper bound on the constant 

(deterministic) growth rate in the Gordon model.  
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Appendix: Proof of Equation (8)  

The sequence of future growth rates ),,,( 21
'

Tgg gG K≡  may be represented in matrix form as 

follows: Ε++−=Φ 0)1( Gig G φ , where the TT ×  matrix Φ  consists of 1s along the main 

diagonal, φ−  in the each of the cells immediately below the main diagonal and 0 everywhere 

else.  i is a 1×T vector of 1s, 0G  is a column vector with 0gφ  in the first row and 0 in the 

remaining rows, and ),,,( 21
'

T E εεε K≡  is a vector of random innovation terms. Using this set 

up, ∑
=

T

t
tg

1

has conditional mean 0
1'1')1( Giiig −− Φ+Φ−φ  and variance ii '11'2 )( −− ΦΦεσ . Using a 

result from time series analysis, we show next that these moments may be computed without 

inverting the Φ  matrix.  Define the vector 1'
11

' ),,,( −
− Φ=≡ izz zZ TT K  and note that each 

element may be computed recursively from the previous one: 11 += −jj z z φ  for j=1, 2, … , T, 

and starting value z0=0. Hence, the expected future dividend is given by: 
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each future dividend TD  starting from T=1, 2, and so on. Let 1
0
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D
  R  be the rate of return on 

a claim that pays off a single cash flow $D1 at T=1. Plug this return into the security market line 

(Equation 7) to show that the present value of D1 is given by:
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Therefore, the present value of the first dividend is given by 
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Next, let V1 be the time-1 value of a single cash flow $D2 expected at T=2. Again, let  1
0

1 −=
V

V
  R  

be the rate of return (from 0 to 1) from holding the claim on $D2. Equation (7) implies that 
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. Using a similar argument as in Fama 

(1977), we can show that ( )
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. Moreover, the ratio of V1 to its 

conditional expectation one period prior, E0V1, equals the ratio of cash flow expectations: 

DE

DE
 

VE

V

20

21

10

1 = . Then, from Stein’s lemma we have 
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( )1,12 , mRCovz ε . Therefore, the present value of the second dividend is given by: 
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Proceeding in this fashion one may show that for any DT , the present value is: 

( ) [ ]
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. Thus, Equation (8) holds by the principle of value 

additivity.   ■   

 

 

 

 


