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Pricing assets with stochastic cash-flow growth

ASSAF EISDORFER* and CARMELO GIACCOTTO

Department of Finance, University of Connecticut, 2100 Hillside Road, Storrs, CT 06269, USA

(Received 10 March 2010; revised 29 February 2012; in final form 27 June 2012)

We model the time series behavior of dividend growth rates, as well as the profitability rate,
with a variety of autoregressive moving-average processes, and use the capital asset pricing
model (CAPM) to derive the appropriate discount rate. One of the most important
implications of this research is that the rate of return beta changes with the time to maturity of
the expected cash flow, and the degree of mean reversion displayed by the growth rate. We
explore the consequences of this observation for three different strands of the literature. The
first is for the value premium anomaly, the second for stock valuation and learning about
long-run profitability, and the third is for the St. Petersburg paradox. One of the most
surprising results is that the CAPM implies a higher rate of return beta for value stocks than
growth stocks. Therefore, value stocks must have higher expected returns, and this is what is
required theoretically in order to explain the well-known value premium anomaly.

Keywords: Asset pricing; Dividends; St. Petersburg paradox; Time series analysis

JEL Classification: G12, G17

1. Introduction

The constant growth dividend discount model is a simple
and popular tool for approximating the intrinsic value of
an asset. The appropriate discount rate is, quite often,
taken from the capital asset pricing model (CAPM) of
Sharpe (1964) and Lintner (1965). Thus, both the growth
rate and the cost of capital are assumed to be constant
parameters. The theoretical justification for this method-
ology may be found in the works of Gordon (1962) and
Fama (1977).

However, within the context of the CAPM, it is easy to
show that a constant discount rate is appropriate only
when cash flows follow a random walk. Economic
intuition, plus historical experience, suggests that the
high cash flow growth rates experienced by many young
firms (e.g., firms in the high-tech industry, such as IBM,
Microsoft, and now Google) are unsustainable in the long
run. Competition from new start-up companies invariably
forces expected growth rates to decline over time. Hence,
the short-run rate is typically much greater than the
expected long-run profitability rate.

In the first part of this paper we model the time series
behavior of dividend growth rates with a first-order

autoregressive process, and then use the CAPM to derive
the appropriate discount rate. One of the most important
implications of this research is that the rate of return beta
changes with the time to maturity of the expected cash
flow and the degree of mean reversion displayed by the
growth rates. The CAPM then implies that dividends
received at different dates cannot have the same
expected returm.

We explore the consequences of this observation for
three different strands of the literature. For the first,
consider that one of the most notable violations of the
capital asset pricing model is the value premium anomaly.
Empirically, value stocks have lower betas than growth
stocks, yet growth stocks display lower average returns.
Lettau and Wachter (2007, henceforth L&W) develop
a stochastic discount factor model where only dividend
risk is priced.y The model delivers higher expected
returns for value firms because their cash flows occur
in the near future, and covary more with shocks to
aggregate dividends. Investors fear these shocks the most,
and require a larger risk premium to buy and hold value
firms.

The structural model for the aggregate dividend growth
rate introduced by L&W is equivalent to a first-order

*Corresponding author. Email: assaf.eisdorfer@business.uconn.edu
yKoijen et al. (2010) propose a three-factor model that prices the cross-section of stocks and bonds and in addition provides an
alternative explanation of the value premium.
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autoregressive moving-average time series process.

Assuming that shocks to the growth rate have constant
covariance with the market return, we define the growth

rate beta as this covariance divided by the market’s rate of

return variance. Then, applying the CAPM recursively in

the fashion of dynamic programming, we derive closed-

form solutions for the rate of return beta and the

corresponding risk premium. It is surprising to find that

growth stocks, which consist of long duration cash flows,
have lower rate of return beta than value stocks, which

are made up of short duration cash flows. Consistent with

the empirically observed value premium, the equilibrium

expected return for growth stocks must be lower than the

return for value stocks. Therefore, the CAPM may

explain the well-known value premium – provided that
the rate of return beta is properly adjusted for mean

reversion in the expected future dividends.
The foundation for this result is the assumption that

dividend growth follows a normal process with time-

varying mean. The corresponding reduced form time

series model is ARMA(1, 1), and it may display positive
or negative serial correlation. If shocks to the growth rate

display positive correlation, cash flows are expected to

grow faster (slower) when the market return is high (low),

and this will increase the rate of return beta. In turn, it

follows that longer duration cash flows will display higher

expected returns. To illustrate this result with numerical

examples, we calibrate the model using the same macro
parameters as those reported by L&W (see Section 3.1 for

specific details), and find that the rate of return beta and

return volatility are increasing functions of time to

maturity. Of course, these results are inconsistent with

the value premium.
The surprise finding is that when we model negative

serial correlation in dividend growth, the rate of return

beta, the risk premium, and the return volatility fall as the

time horizon – before a cash flow is received, increases.y

To see why, note that if the current growth rate is above

its long-run mean, then negative autocorrelation implies

that cash flows are expected to grow more slowly in the
future. In turn, this leads to lower correlation with the

overall market. From this point of view, long duration

cash flows may be less risky than short ones because

growth will display a tendency to reverse itself, and this

acts as a hedge. The implication of these results is that the

CAPM has the potential to explain the value premium

anomaly.
The second application of this research is to asset

valuation when the long-run profitability rate is

unknown. In particular, assets that appear to be irratio-

nally overpriced may actually be fairly priced if one takes

into account uncertainty about expected future profit-

ability. Pastor and Veronesi (2003, 2006; henceforth P&V)
develop several versions of the Gordon dividend discount

model in continuous time, and show that higher uncer-

tainty about long-run profitability leads to higher market-

to-book ratio.

It turns out that similar results hold within a

CAPM world. We model the accounting rate of return
on equity with a first-order autoregressive process. To

account for the business cycle, the expected long-run

profitability rate is assumed also to follow a mean

reverting process. Thus, investors do not know how

profitable a firm might be in the long run but they

rationally learn about its potential value by observing the

current rate. We then use CAPM to prove that the
market-to-book ratio is a convex function of the long-run

profitability rate. The intuition for this result comes from

the fact that when uncertainty is high, a sequence of high

growth rates has a much bigger impact on future expected

returns than a run of low growth rates. Therefore, both

the expected future firm value and the current value
increase.

The third and last application of our model is to the

classical St. Petersburg paradox. Durand (1957) shows

that the St. Petersburg game can be used to describe a

conventional model of stock prices. In particular, the

analogy is based on the assumption that the firm’s
expected future dividends (as the game’s future payoffs)

grow at a constant rate. If dividends are discounted at a

constant rate, this rate must be greater than the dividend

growth rate to assure a finite stock value. The value of the

stock is infinite if dividends grow at an equal or higher

rate than the discount rate.
The paradox arises for two reasons. First, the assump-

tion that the dividend stream will grow at a constant rate

permanently is unrealistic. As discussed above, competi-

tion will eliminate abnormal profits after a period of time.

In the long run, new market entrants will force the

earnings growth rate to slow down to a level consistent

with the growth rate of the overall economy. The second
reason is that the degree of risk implicit in the earnings

growth stream may cause investors to change the risk-

adjusted discount rate, i.e. the probability of actually

receiving the expected dividend stream. We formalize

these ideas within the context of the CAPM. We model

the dividend growth rate as an autoregressive process so
that the current rate can be very large but the long-run

growth rate is closer to that of the economy. We then use

the CAPM to derive the appropriate risk-adjusted

discount rate. We show that the value of the stock can

be finite without the unreasonable condition on the

constant growth rate.
The remaining of the paper is organized as follows.

Section 2 introduces the general time series model for the

dividend growth rate and the valuation based on the

CAPM. The following section shows that, by the law of

one price, the model holds in an arbitrage-free economy.

Section 3 presents three applications of the model.

The first is for the value premium anomaly, the second
for stock valuation and learning about long-run profit-

ability, and the third is for the St. Petersburg paradox.

Section 4 concludes the paper. All proofs are in

Appendix B.

yThis result is based on the same level of negative correlation as that reported by L&W.
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2. Stochastic dividend growth models

In the first subsection, we model the dividend growth rate
as an autoregressive process so that the current rate can
be very large but the long-run growth rate is expected to
be much lower and therefore closer to that of the macro-
economy. We then use the CAPM to derive the present
value of an asset whose dividends may be modeled as an
autoregressive process. In Section 2.2 we show that the
roots of our model go back to Rubenstein’s (1976) paper
on the valuation of uncertain income streams. We use
state preference theory to show that our model is
consistent with arbitrage-free asset pricing.

2.1. Valuation of assets with the capital asset
pricing model

Let Dt be the time-t value of dividends or earnings (for
simplicity we will use these two terms interchangeably).
We assume that dividends grow at a mean reverting
growth rate gtþ1: Dtþ1 ¼ ðe

gtþ1ÞDt. To model mean rever-
sion, we assume that the continuously compounded
growth rate follows a first-order autoregressive
process AR(1):

gtþ1 ¼ ð1� �1Þ �gþ �1gt þ "tþ1, ð1Þ

where �g is the long-run (unconditional) mean dividend
growth rate, and �1 is the autoregressive coefficient. We
make the usual assumptions to insure that the process is
stationary and the growth rate is mean reverting. The
innovation terms "tþ1 are normally distributed random
variables with mean zero, variance �2" , no serial correla-
tion, and constant covariance with the market portfolio.
The major implication of the AR model is that while the
current growth rate can be abnormally large, in the long-
run earnings growth should slow down to a lower rate �g.
Intuitively, we expect �g to be close to the growth rate for
the overall economy because of competitive pressures
brought about by new startup companies.

To apply the dividend discount model we need to
forecast the path of expected future dividends using
equation (1), and also take into account market risk using
the CAPM. The conditional expectation (assuming t¼ 0)

of a future dividend DT ¼ D0 e
PT

t¼1
gt has a rather simple

form (Appendix A shows the derivation for a general
p-order autoregressive process). To compute this expec-
tation, we define the auxiliary autoregressive vector
Z0 � ðzT, zT�1, . . . , z1Þ, where each element may be com-
puted recursively from the previous one: zj ¼ �1 zj�1 þ 1
for j¼ 1, 2, . . . ,T, and starting value of z0 ¼ 0. Let g0 be
the current growth rate; then, conditional on time 0
information, the expected time-T dividend can be com-
puted as follows:

E0DT ¼ D0 e
ð1��1Þ �gð

PT

j¼1
zjÞþzT�1g0þð�

2
" =2Þ
PT

j¼1
z2j : ð2Þ

Equation (2) shows that the expected future dividend is
a convex function of the current and long-run growth
rate. However, the long-run rate has a bigger impact

because of the larger multiplier due to the cumulative
effect of serial correlation.

To obtain the risk-adjusted present value of each future
dividend we use the CAPM of Sharpe (1964) and Lintner
(1965):

ER ¼ Rf þ ½ERm � Rf��ROR, ð3Þ

where ER is the single period return on the asset, Rf is the
risk-free rate of interest, ERm is the expected market
portfolio return, and market risk is measured by the rate
of return beta ð�RORÞ. The following proposition shows
how to discount expected future dividends.

Proposition 1: The present value of a single future
dividend DT is given by its conditional expected future
value adjusted for its market risk and discounted to the
present at the risk-free rate of interest:

V0 ¼
ðE0 DTÞ

QT
j¼1 ½1� ðERm � RfÞzj�g�

ð1þ RfÞ
T

, ð4AÞ

where the growth rate beta, �g, is defined as the covariance
between the growth rate innovation ("tþ1) and the market
return, divided by the variance of the market return.
Summing over all future expected dividends yields the
CAPM price for an asset with a stochastic growth rate:

P0 ¼
X1
t¼1

ðE0 DtÞ
Qt

j¼1 ½1� ðERm � RfÞzj�g�

ð1þ RfÞ
t : ð4BÞ

Proof: Appendix B provides the proof for a general
AR(p) process.

Equations (4A) and (4B) may seem a little odd because
the expectation is taken with respect to the physical (i.e.
real) probability measure, and at the same time, the
riskless rate is used to discount future cash flows. To
provide some intuition, we rewrite (4A) in the more
familiar textbook formula. That is, discount the expected
cash flow with a risk-adjusted cost of capital:

V0 ¼ E0 DT=ð1þ ERTÞ
T, where the discount rate is

given by

ERT ¼
1þ RfQT

j¼1 ½1� ðERm � RfÞzj�g�
� �1=T � 1:

We note that the cost of capital will, in general, depend
on the cash flow maturity as well as the degree of mean
reversion in the growth rate.

Our pricing model retains the characteristics one would
expect to observe in a risk-averse environment. For
example, price is inversely related to the market risk
premium, growth rate beta, and risk-free rate. Price is also
expected to increase with the current and long-run
dividend growth rate. Higher growth rate volatility leads
to higher prices because long periods of above average
growth have a bigger impact on present value than
periods of low growth.

Equation (4B) neatly captures both the degree of
dividend predictability and the corresponding risk adjust-
ment. For example, as �1 increases from 0 to 1 the

Pricing assets with stochastic cash-flow growth 31007
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strength of mean reversion decreases and dividends
become less predictable. Then, the penalty for risk,
implied by the certainty equivalent formula, increases in
proportion to the growth rate beta. Alternatively stated,
more persistent shocks are riskier because they have a
larger impact on current price. This implies that stock
returns are more sensitive to dividend growth shocks and
thus become riskier.y

We note also that Gordon’s deterministic growth model
is a special case of equation (4B); it is obtained by setting
�1 ¼ 0 and �2" ¼ 0. In this case, dividends are expected to
grow in a deterministic fashion at a constant rate �g. The
beta factor (�g) equals zero and the annual discount rate r
equals the risk-free rate Rf.

A simple generalization of Gordon’s model is one with
stochastic growth but no serial correlation:
gtþ1 ¼ �gþ "tþ1. In this case, (log) earnings or dividends
follow a random walk with drift, and the stock price has a
closed-form solution similar to Durand’s (1957) formula:

P0 ¼
D0e

g�

r� eg�
, ð5Þ

where the discount rate r is given by

ð1þ RfÞ

1� ðERm � RfÞ�g
,

and the adjusted growth rate is g� ¼ �gþ �2" =2. The major
drawback of these two models, however, is that unlike our
autoregressive model, they do not allow a distinction
between current growth – which can be abnormally high,
and long-run growth.

2.2. General valuation of stochastic dividend growth

The roots of our growth valuation model go back to
Rubenstein’s (1976) paper on the valuation of uncertain
income streams and the pricing of options. In fact, our
dividend discount model generalizes Rubenstein’s theo-
rem 2 to the case where the growth rate is stationary but
not serially independent. In this section we discuss the
connection to Rubenstein’s dividend growth model and,
in the process, show that our methodology is consistent
with a one factor arbitrage-free asset pricing model.

Let @¼ {@1,@2, . . . ,@S} be a complete list of all states of
nature as of time t, where all states are assumed to be
mutually exclusive. We associate a strictly-positive prob-
ability ps with each state of nature, and thus

PS
s¼1 ps ¼ 1:

In the context of complete markets there exists an Arrow–
Debreu security that pays $1 in state s, and zero in all
other states; let �s be the price of such a security.

A random cash flow D pays off $Ds if state s occurs at
time t (formally, we identify D as a mapping from @ to the
real line. D: @!R1). From State Preference Theory, the
time t� 1 market value of D is given by the sum, over all
states of nature,

Vt�1 ¼
XS
s¼1

�sDs ¼
XS
s¼1

ps Ds�s ¼ EðD�Þ, ð6Þ

where the random variable �s ¼ �s=ps is commonly

referred to as the pricing kernel or the stochastic discount
factor (Cochrane 2005).

Equation (6) is the central contribution of modern asset

pricing theory: the asset price is given by the expected

value (across states of nature) of the market discount

factor times the cash flow. The risk adjustment arises

from co-variation between the cash flow and the random

discount factor. Indeed, to make this result more intuitive,
one may use the covariance representation:

Vt�1 ¼
EðDÞ 1þ CovðD=EðDÞ,�=Eð�ÞÞ½ �

1þ Rf
, ð7Þ

where E(�)¼ 1/(1þRf).
But it is easily shown that equation (6) also implies the

existence of the CAPM. To this end, let R be the single-
period rate of return, then 1 ¼ Eð�ð1þ RÞÞ. This relation

implies that the excess return (over the riskless rate) must

be orthogonal to the discount factor: 0 ¼ Eð�ðR� RfÞÞ.

Thus, the risk premium for any given security or portfolio

– including the market portfolio, equals minus the

covariance between the return and the scaled factor:
EðRÞ � Rf ¼ �Covð�=E�, RÞ and EðRmÞ � Rf ¼

�Covð�=E�, RmÞ. If the SDF is an affine function of

the market return, then the ratio of these two equations

yields:

EðRÞ � Rf

EðRmÞ � Rf
¼

CovðR,RmÞ

�2m

and the CAPM follows immediately. This equation yields

an analogous representation of equation (7):

Vt�1 ¼
ðEDÞð1� ðERm � RfÞ�gÞ

1þ Rf
: ð8Þ

Proposition 1 is based on equation (8), but one could

just as easily begin with a stochastic discount factor

representation. Theorem 2 of Rubenstein (1976) extends

these results to a multi-period setting. In particular,
consider the cash flow sequence fDtg

1
t¼1 with a (continu-

ously compounded) stochastic growth rate

gtþ1 ¼ �gþ "tþ1. Assume also that the dividend growth

rate and the factor return are serially uncorrelated, and

their respective lagged values are uncorrelated with each

other, then theorem 2 yields a closed form solution
analogous to our equation (5).

3. Applications of the stock valuation model

In the first subsection we model the dividend growth rate

as an autoregressive moving-average process and use the

CAPM to explain the value premium phenomenon. In the
second subsection, we explore asset valuation when

investors do not directly observe the long-run profitability

rate, but learn about this rate by observing the current

rate. The third deals with the St. Petersburg paradox and

yWe are grateful to an anonymous referee for comments on this result.
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derives a new, less stringent, condition on the dividend
growth rate.

3.1. CAPM analysis of the value premium

One of the most notorious violations of the CAPM is the
so-called ‘‘Value Premium’’. Almost 80 years ago Graham
and Dodd (1934) observed that growth stocks experience
lower average returns than value stocks. By definition,
growth stocks are characterized by high price to funda-
mentals ratio (such as high price to earnings ratio),
whereas value stocks display low price to fundamentals
ratio. After the development of the CAPM by Sharpe
(1964) and Lintner (1965), a simple explanation for the
value premium may be that higher systematic risk requires
a higher risk premium. If value stocks have relatively
higher beta risk than growth stocks, then firms with a
high dividend price ratio must offer a higher risk-adjusted
average return.

But the empirical evidence consistently rejects this
explanation. Fama and French (1992) and Lettau and
Wachter (2007) are but two examples from a long list in
the literature to show that value stocks have lower
systematic risk and higher average returns than growth
stocks. Contrary to the prediction of the CAPM, the
empirical slope of the security marker line appears to be
negative.

Lettau and Wachter (L&W) propose a stochastic
dividend growth model that explains why value stocks
should have higher expected returns than growth stocks.
The key for their result is a dynamic stochastic discount
factor where the price of risk is correlated with the growth
rate in aggregate dividends. Stated alternatively, in their
model dividend shocks are priced, whereas discount rate
shocks are not. Their model has a total of 12 free
parameters; an additional 5 parameters from the var-
iance-covariance matrix are set at zero. Model parameters
are calibrated to fit more than one hundred years of
aggregate data obtained from Campbell (1999).

The major implication of their model is that the risk
premium and rate of return volatility should be inversely
related with time to maturity. Thus, stocks or portfolios
heavily tilted toward low duration cash flows (i.e. value
stocks) should be characterized by higher expected
returns, lower return variance, and higher Sharpe ratios
than portfolios of high duration assets. L&W use simu-
lated data from their model and find that value stocks
indeed have higher excess returns and higher Sharpe
ratios than growth portfolios. A quite remarkable result
from their analysis is that the risk premium for a claim on
a dividend two years from now is 18% per year and only
4% per year for a claim on a dividend expected 40 years
from now.

It is well known that betas are nonmonotonic with time
to maturity, therefore, the traditional CAPM cannot
explain the additional risk premium required by value
stocks. On the other hand, the stochastic dividend
discount model developed in Section 2 suggests that the
risk premium may change with the maturity of the cash
flow, and may also depend on the degree of mean

reversion displayed by the dividend growth rate.

Therefore, it is natural to ask whether a version of the

CAPM that accounts for cash flow characteristics may be

capable of explaining the value premium. In this section

we explore this possibility.
In order to expand the class of growth rate processes

one may encounter in practice, we model gtþ1 as a

first-order autoregressive moving-average process

ARMA(1,1):

gtþ1 ¼ ð1� �1Þ �gþ �1gt þ "tþ1 � �1"t, ð9Þ

where ð�1, �1Þ are, respectively, the autoregressive and

moving-average coefficients. Again, we assume the pro-

cess is stationary and shocks to the growth rate have

constant beta (denoted by �g), that is constant covariance
with the market return. The ARMA model may display

mean reversion (negative serial correlation) or momentum

(positive correlation). It can be easily shown that the

structural model for (log) dividend growth rate assumed

by L&W is analogous to our ARMA model.
The following proposition shows how to compute asset

prices that are consistent with the CAPM.

Proposition 2: Suppose the CAPM holds and the dividend

growth rate follows the ARMA(1,1) process. Define also

the sequence of multipliers wj to account for the serial

correlation in the cumulative growth rate. The sequence of

wj’s can be computed recursively from two auxiliary

equations: wj¼ zj� �1zj�1 and zj ¼ �1 zj�1 þ 1 for

j¼ 1, 2, . . . ,T; the starting value is z0¼ 0. Then, the price

of zero-coupon equity that pays a single future dividend

DtþT is given by

VT, t ¼
ðEt DtþTÞ

QT
j¼1 ½1� ðERm � Rf Þwj�g�

ð1þ Rf Þ
T

, ð10AÞ

where the expected future cash flow is

EtDtþT ¼ Dte
ð�1 gt��1"tÞ zTþð1��1Þ �g

PT

j¼1
zjþð�

2
" =2Þ
PT

j¼1
w2
j :

ð10BÞ

For values of �1 and �1 between 0 and 1, both zj and wj

increase with T, therefore the current price increases with

the current growth rate and the long-run growth rate. The

price dividend ratio increases also with the growth rate

volatility. This result is due to the convexity of com-

pounded cash flows: a string of high growth rates has a

larger impact on future dividends than a run of low rates.

We show next that this proposition leads to closed form

solutions for the rate of return beta and the Sharpe ratio

for zero coupon equity. Thus, let RT,tþ1 be the holding

period return from holding zero-coupon equity from t to

tþ 1: RT,tþ1 ¼ VT�1,tþ1=VT,t, where both the current and

next period price are obtained from equation (10A). It can

be easily shown that the gross rate of return is a function

of the growth rate shock adjusted for risk:

1þ RT,tþ1 ¼ ewT"tþ1�ð�
2
" =2Þw

2
T

1þ Rf

1� ðERm � RfÞwT�g

� �
:
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The time series of returns are independent over time;
however, they display heteroscedasticity. Positive (nega-
tive) shocks to the dividend growth rate increase
(decrease) current returns. Last, the effect of the auto-
regressive moving-average parameters, captured by wj,
magnifies growth shocks and the growth rate beta.y

The following proposition shows how to compute the
rate of return beta, return volatility, and Sharpe ratio for
zero coupon equity.

Proposition 3: Suppose the CAPM holds and the dividend
growth rate follows the ARMA(1,1) process. Then, the rate
of return beta, return variance, and the Sharpe ratio for the
zero-coupon equity are given by

�ROR,T ¼
ð1þ RfÞwT�g

1� ðERm � RfÞwT�g
, ð11AÞ

VarðRT,tþ1Þ ¼
1þ Rf

1� ðERm � RfÞwT�g

� �2

ðew
2
T �

2
" � 1Þ,

ð11BÞ

SRT ¼
ðERm � RfÞwT�g

½ew
2
T
�2" � 1�1=2

: ð11CÞ

It is not immediately clear from proposition 3 what
type of relationship may exist between the stock return
characteristics, such as rate of return beta or volatility,
and cash flow duration. To shed some light on this point,
we estimate the price-dividend ratio, market risk pre-
mium, rate of return standard deviation, and the Sharpe
ratio for zero coupon equity with a single cash flow DtþT.

Tables 1 and 2 report these values for time to maturity
(T) ranging from 1 to 30 years. We use the same macro
parameters as L&W’s statistics. Thus, we set the annu-
alized risk-free rate at 0.0193, the market risk premium
EðRM � RFÞ at 0.0633, the long-run dividend growth rate
at 0.028, and the growth rate variance at 0.14482. In
table 1, we set the growth rate beta at 0.5, while the
autoregressive moving-average parameters are set at 0.545
and 0.16, respectively, to model positive growth rate
autocorrelation. These values imply that the correlogram
decays exponentially starting from a first-order correla-
tion coefficient of 0.50.

Table 1. Characteristics of zero-coupon equity when the dividend growth rate displays positive serial correlation (momentum).
This table reports values of (zj,wj), price-dividend ratio, rate of return beta (�ROR), market risk premium EðRT,tþ1 � RFÞ, return
volatility, and Sharpe ratio for zero-coupon equity. The sequence (zj, wj) are computed recursively from two auxiliary equations:

zj ¼ 0:545 zj�1 þ 1, and wj¼ zj� 0.16zj�1 for j¼ 1, 2, . . . ,T, with starting value z0¼ 0..

Time
horizon Z W

Price–dividend
ratio �ROR

Risk
premium Volatility

Sharpe
ratio

1 1.00 1.00 0.976 0.53 0.033 0.08 0.22
2 1.55 1.39 0.955 0.74 0.046 0.15 0.22
3 1.84 1.59 0.937 0.86 0.054 0.20 0.21
4 2.00 1.71 0.920 0.92 0.058 0.23 0.21
5 2.09 1.77 0.905 0.96 0.060 0.25 0.21
6 2.14 1.81 0.891 0.98 0.061 0.26 0.21
7 2.17 1.82 0.877 0.99 0.062 0.27 0.21
8 2.18 1.83 0.863 0.99 0.062 0.27 0.21
9 2.19 1.84 0.850 1.00 0.063 0.27 0.21
10 2.19 1.84 0.837 1.00 0.063 0.27 0.21
11 2.20 1.84 0.825 1.00 0.063 0.27 0.21
12 2.20 1.85 0.812 1.00 0.063 0.27 0.21
13 2.20 1.85 0.800 1.00 0.063 0.27 0.21
14 2.20 1.85 0.788 1.00 0.063 0.27 0.21
15 2.20 1.85 0.776 1.00 0.063 0.27 0.21
16 2.20 1.85 0.764 1.00 0.063 0.27 0.21
17 2.20 1.85 0.752 1.00 0.063 0.27 0.21
18 2.20 1.85 0.741 1.00 0.063 0.27 0.21
19 2.20 1.85 0.730 1.00 0.063 0.27 0.21
20 2.20 1.85 0.719 1.00 0.063 0.27 0.21
21 2.20 1.85 0.708 1.00 0.063 0.27 0.21
22 2.20 1.85 0.697 1.00 0.063 0.27 0.21
23 2.20 1.85 0.687 1.00 0.063 0.27 0.21
24 2.20 1.85 0.676 1.00 0.063 0.27 0.21
25 2.20 1.85 0.666 1.00 0.063 0.27 0.21
26 2.20 1.85 0.656 1.00 0.063 0.27 0.21
27 2.20 1.85 0.646 1.00 0.063 0.27 0.21
28 2.20 1.85 0.636 1.00 0.063 0.27 0.21
29 2.20 1.85 0.627 1.00 0.063 0.27 0.21
30 2.20 1.85 0.617 1.00 0.063 0.27 0.21

yWhen applied to multi-period problems, the classical CAPM precludes stochastic variation in the parameters of the opportunity
set. Also, the model precludes correlation between realized returns and the opportunity set (see Fama (1977) for a thorough
discussion of these points).
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The first two columns of table 1 show that the sequence
(zj,wj) increases quite rapidly with time to maturity.
However, from T¼ 11 years and on, both values converge
to a steady-state level; convergence to a constant value is
required in order to achieve a finite price. Consistent with
economic intuition, we expect the present value of DtþT to
fall with time to maturity, and indeed the price dividend
ratio in column 3 starts at 0.976 and decreases monoton-
ically thereafter.

The rate of return beta, the risk premium, and the
return volatility (shown in columns 5 thru 7) are directly
dependent on wj, therefore they must share the same time
pattern. Beta starts at 0.53 for T¼ 1 and increases
monotonically up to 1.00 for cash flows with at least 9
years to maturity. The risk premium ranges from 3.3% to
6.3%, while the equity return standard deviation increases
rapidly from 8% to 27%. For all practical purposes, the
Sharpe ratio is constant at 0.22. This last result suggests
that our model with only seven parameters is not flexible
enough to allow the risk premium to move independently
of return volatility.

The intuition for the results displayed in table 1 is
straightforward: growth rate shocks have positive serial
correlation, thus they take longer to die down. Since these
shocks are positively correlated with the market return,
cash flows are expected to grow faster (slower) when the

market return is high (low), and this will increase the rate
of return beta. It is for this reason that longer duration
cash flows will display higher systematic risk.

The range of values displayed in table 1 is not
inconsistent with those derived by L&W for zero
coupon equity. For example, the long-run Sharpe ratio
converges to the same value in both our model and
L&Ws. Return volatility and �ROR display the same
pattern – for values of T up to 10 years, as the results in
figure 5 of L&W.

Taken together the results in table 1 are inconsistent
with the value premium. However, table 2 tells a different
story. To model negative serial correlation in dividend
growth, we set �1 ¼ 0:30 and �1¼ 0.40; these values imply
a first-order serial correlation coefficient of �0.10. This
degree of negative correlation is roughly the same as that
found by L&W in one hundred years of data from 1890 to
2002 (table VI, p. 71). The growth rate beta is set to 1.25,
and all other parameters are the same as in table 1.

The first two columns of table 2 show that while the
sequence zj is still increasing, wj is decreasing with time to
maturity. Thus, the rate of return beta, the risk premium,
and the return volatility fall as the time horizon – before a
cash flow is received, increases. The risk premium starts at
8.7% for a cash flow with one year to maturity and falls
to 7.4% for a 30-year zero coupon equity. The rate of

Table 2. Characteristics of zero-coupon equity when the dividend growth rate displays negative serial correlation (mean reversion).
This table reports values of (zj,wj), price-dividend ratio, rate of return beta (�ROR), market risk premium EðRT,tþ1 � RFÞ, return
volatility, and Sharpe ratio for zero-coupon equity. The sequence (zj,wj) are computed recursively from two auxiliary equations:

zj ¼ 0:3zj�1 þ 1, and wj¼ zj�0.4zj�1 for j¼ 1, 2, . . . ,T, with starting value z0¼ 0..

Time
horizon Z W

Price–dividend
ratio �ROR

Risk
premium Volatility

Sharpe
ratio

1 1.00 1.00 0.912 1.38 0.087 0.20 0.54
2 1.30 0.90 0.855 1.23 0.078 0.16 0.54
3 1.39 0.87 0.808 1.19 0.075 0.15 0.54
4 1.42 0.86 0.765 1.18 0.074 0.15 0.54
5 1.43 0.86 0.725 1.17 0.074 0.15 0.54
6 1.43 0.86 0.688 1.17 0.074 0.15 0.54
7 1.43 0.86 0.652 1.17 0.074 0.15 0.54
8 1.43 0.86 0.618 1.17 0.074 0.15 0.54
9 1.43 0.86 0.586 1.17 0.074 0.15 0.54
10 1.43 0.86 0.556 1.17 0.074 0.15 0.54
11 1.43 0.86 0.527 1.17 0.074 0.15 0.54
12 1.43 0.86 0.499 1.17 0.074 0.15 0.54
13 1.43 0.86 0.474 1.17 0.074 0.15 0.54
14 1.43 0.86 0.449 1.17 0.074 0.15 0.54
15 1.43 0.86 0.426 1.17 0.074 0.15 0.54
16 1.43 0.86 0.404 1.17 0.074 0.15 0.54
17 1.43 0.86 0.383 1.17 0.074 0.15 0.54
18 1.43 0.86 0.363 1.17 0.074 0.15 0.54
19 1.43 0.86 0.344 1.17 0.074 0.15 0.54
20 1.43 0.86 0.326 1.17 0.074 0.15 0.54
21 1.43 0.86 0.309 1.17 0.074 0.15 0.54
22 1.43 0.86 0.293 1.17 0.074 0.15 0.54
23 1.43 0.86 0.278 1.17 0.074 0.15 0.54
24 1.43 0.86 0.263 1.17 0.074 0.15 0.54
25 1.43 0.86 0.250 1.17 0.074 0.15 0.54
26 1.43 0.86 0.237 1.17 0.074 0.15 0.54
27 1.43 0.86 0.225 1.17 0.074 0.15 0.54
28 1.43 0.86 0.213 1.17 0.074 0.15 0.54
29 1.43 0.86 0.202 1.17 0.074 0.15 0.54
30 1.43 0.86 0.191 1.17 0.074 0.15 0.54

Pricing assets with stochastic cash-flow growth 71011

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

on
ne

ct
ic

ut
] 

at
 0

4:
27

 2
6 

Ju
ne

 2
01

4 



return beta falls from 1.38 to 1.17. The Sharpe ratio is
again constant at 0.54 for all T.

Clearly, these results must be due to the negative serial
correlation in dividend growth. To see why, note that if
the current growth rate is above its long-run mean, then
negative autocorrelation implies that cash flows are
expected to grow more slowly in the future. In turn, this
leads to lower correlation with the overall market. From
this point of view, long duration cash flows may be less
risky than short ones because growth will display a
tendency to reverse itself: an extended period of
high growth is likely to be followed by slower growth
(and vice versa).

The most important implication of the results in table 2
is that the CAPM has the potential to explain the value
premium anomaly. The market risk premium pattern in
table 2 is strikingly similar to that reported in the top
panel of figure 4 of L&W. In both cases, the risk premium
declines with time to maturity T. Thus, firms with low
duration cash flows – such as value firms, display higher
rate of return beta, higher risk premium, and higher
return volatility than firms with long duration cash flows
– such as growth firms.

To establish whether these results hold in practice,
empirical analysis must be based on a different type of
sort. Firms should be sorted by degree of serial correla-
tion in fundamental variables such earnings to price or
cash flow to price. Also, higher-order autoregressive
moving-average processes may be required to capture
variation in the long-run growth rate driven by the
business cycle.

3.2. Stock valuation with a known profitability rate

Between 1996 and 2000, stock prices of technology firms
experienced phenomenal growth, but by October 2002
prices were back to the same starting point. A natural
question to ask is whether this event represents a
‘‘bubble’’ or a return to fundamentals. Pastor and
Veronesi (2003, 2006; henceforth P&V) review the
bubble literature, and argue in favor of the hypothesis
that technology stocks were overpriced relative to funda-
mentals. They develop a highly sophisticated version of
the Gordon model in continuous time (there are 20
parameters), and analyze the role of uncertainty about the
long-run dividend growth rate. In this section we show
that in a much simpler framework, the CAPM leads to
similar results provided one accounts for mean reversion
in profitability.

Firms are assumed to follow a constant payout-ratio
dividend policy. To capture the smooth behavior of
dividends, let c be the constant proportion of time-t book
equity (Bt) paid out as a periodic dividend: Dtþ1¼ cBt. To
model the large number of firms that pay no dividends
one may set c¼ 0. Define also �tþ1 as the accounting rate

of return on book equity (ROE): firm’s earnings – as of

end of period tþ 1, divided by book value of equity as of

period t. Then, because of the clean surplus accounting

relation, book equity value increases with earnings less

dividends paid:y

Btþ1 ¼ ðe
�tþ1�cÞBt: ð12Þ

To model the (continuous time) profitability rate, P&V

assume a first-order autoregressive process: �tþ1 ¼
ð1� �Þ ~�t þ � �t þ "tþ1, where ~�t represents long-run prof-

itability. However, the long-run rate itself may be mean

reverting as a result of the economy-wide business cycle.

Thus, the reduced form model for the book ROE is

analogous to an ARMA(2,1) process:

�t ¼ ð1� �1 � �2Þ ��þ �1�t�1 þ �2�t�2 þ "t � �1"t�1,

ð13Þ

where �� is the long-run mean profitability rate. We

assume that profitability rate shocks follow the pattern of

white noise with variance �2" , and have constant covari-

ance with the market return. This covariance – divided by

the variance of the market return, is defined as the

profitability rate beta: ��. The last assumption needed to

complete the model is that at a future date T competition

will reduce abnormal returns to the point where market

value equals book value: MT¼BT.z If �� is known with

certainty, proposition 4 shows how to obtain the current

market-to-book (M/B) ratio.

Proposition 4: Suppose the CAPM holds, and the time

series behavior of the profitability rate follows an

ARMA(2,1) model with a known long-run profitability

rate ��. Define the autocovariance auxiliary variables

zj ¼ 1þ �1zj�1 þ �2 zj�2 and wj ¼ zj � �1 zj�1, for

j¼ 1, . . . ,T and with starting values z0¼ z�1¼ 0. Then,

the market-to-book ratio is given by

Mt

Bt
¼

c

1þ Rf
þ c

XT�1
�¼1

H1ð ��Þ��� þH1ð ��ÞT�T, ð14Þ

where

H1ð ��Þ� ¼ e
��ð1��1��2Þ

P�

j¼1
zjþð�1�tþ�2�t�1��1"tÞz�þ�2�tz��1�� cþð�

2
" =2Þ
P�

j¼1
w2
j ,

and

�� ¼
Y�
j¼1

1� ðERm � RfÞwj��
1þ Rf

:

Proposition 4 shows that the CAPM leads to a fairly

straightforward relationship between the market-to-book

ratio and the profitability rate parameters. For example,

M/B is positively related to the current rate �t, the long-

run rate ��, and the volatility of profits. We note also that

an increase in the risk-free rate, the market risk premium,

or profitability rate beta lowers the market-to-book ratio.

yEquation (12) holds exactly only as the length of one period approaches 0. Specifically, the rate of growth in book equity value
isBtþ1 ¼ ðe

lnð1þ�tþ1�cÞÞBt � ðe
�tþ1�cÞBt, which becomes exact in continuous time.

zPastor and Veronesi (2003) discuss this assumption in detail, and allow for a stochastic horizon in P&V (2006). To simplify the
presentation, we keep the time horizon parameter T as a fixed parameter.
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In sum, the results obtained by P&V (2003) with a
stochastic discount factor also hold within the context of
the CAPM in a simplified framework.

It is easy to see from equation (14) that M/B is a convex
function of ��. Figure 1 illustrates this relationship for
three levels of the payout ratio: c¼ 0.0, 0.04, and 0.10.
The other parameters are chosen to be as close as possible
to those obtained by P&V (2003) from a large sample of
firms from CRSP/Compustat database over the time
period from 1962 through 2000. Thus, we set T¼ 15,
�1¼ 0.397 and �2¼ 0.0, the current rate �t¼ 0.11, the
idiosyncratic variance �2" ¼ 0.08342, and the profitability
rate beta ��¼ 0.85. We set the risk-free rate at 0.03, and
the market risk premium at 0.051.

From figure 1, the following patterns are evident: First,
M/B is convex in long-run profitability. Second, this
convexity increases with �� but decreases as the payout
ratio c increases. Third, and last, a higher level of c
increases M/B when the long-run rate is low because the
dividends are received earlier. Alternatively, for highly
profitable firms, an increase in the dividend rate leads to a
lower market-to-book ratio. Figure 1 confirms the intu-
ition from Corollaries 1 and 2 in P&V (2003). But, the big
surprise is that our results follow from a recursive
application of the CAPM; moreover, learning about
profitability may be easily incorporated into our model as
we show next.

3.3. Stock valuation with an unknown profitability rate

In this section, we assume that the ROE parameter �� is
unknown. Let E0 �� and V0 �� represent the prior mean and
variance of investors’ beliefs about long-run average
profitability. Investors consider the pair of random
variables ð ��, �tÞ and learn about �� by observing the

current rate �t. The following proposition applies Bayes

rule to derive the posterior distribution of long-run ROE

after observing the full sample ð�1, �2, . . . , �tÞ.

Proposition 5: Suppose at time t¼ 0 investors’ opinions

about long-run profitability are normally distributed:
�� � NðE0 ��, V0 ��Þ. The distribution of ��, after observing

the sample ð�1, �2, . . . , �tÞ, is also normal with

posterior mean

Et �� ¼ ð1� ktÞðE0 ��Þ þ kt �̂�t=ð1� �1 � �2Þ, ð15AÞ

and variance

Vt �� ¼ ð1� ktÞðV0 ��Þ, ð15BÞ

where

k� ¼
V0 ��

�2"
ð1� �1 � �2Þ

2
Xt
j¼1

x2j , �̂�t ¼

Pt
j¼1 xjyjPt
j¼1 x

2
j

,

and the (x, y) variables are computed recursively as

xj ¼ �1 xj�1 þ 1, and yj ¼ �1yj�1 þ �j � �1 �j�1 � �2 �j�2
for j¼ 1, . . . , t with starting values x0¼ y0¼ 0.

Given this description of the learning process, propo-

sition 6 shows how to compute the M/B under the

assumption that long-run average profitability is

unknown. It will become transparent that higher uncer-

tainty about �� leads to higher market-to-book values.

Proposition 6: Suppose the long-run profitability rate �� is

unknown, and investors revise their beliefs according to

proposition 5. Then, the market-to-book ratio is given by

Mt

Bt
¼

c

1þ Rf
þ c

XT�1
�¼1

H2ðEt ��,Vt ��Þ���

þH2ðEt ��,Vt ��ÞT�T, ð16Þ
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Figure 1. Relationship between M/B ratio and long-run average profitability. The vertical axis represents the current market-to-
book (M/B) ratio assuming that the long-run average profitability ( ��) is known with certainty, for different levels of dividend yield.
The model parameter values are: T¼ 15, �1¼ 0.397 and �2¼ 0.0, the current rate �t¼ 0.11, �2" ¼ 0.08342, and ��¼ 0.85. Rf¼ 0.03,
and the market risk premium is set to 0.051.
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where H2ðEt ��,Vt ��Þ� ¼ e
½ð1��1��2Þ

P�

j¼1
zj�

2ðVt ��=2Þ
H1ðEt ��Þ�,

and the discount factor �� was defined in proposition 4.

It is easy to see from proposition 6 that the market-to-

book ratio is a convex function of Vt ��. Thus, higher

uncertainty about long-run profitability leads to a higher

M/B ratio. Intuitively, this is so because a sequence of

highly profitable years has a greater impact on expected

future book value than a similar run of low growth. In

turn, a higher future book value results in a higher current

market-to-book ratio.
This effect may be seen in figure 2, especially so for

firms that pay no dividends. This figure presents the M/B

ratio as a function of the posterior profitability uncer-

tainty (
ffiffiffiffiffiffiffiffi
Vt ��
p

). The values are computed with �1¼ 0.55,

�2¼ 0.0, and �1¼ 0.33. The current rate �t¼ 0.11 and the

remaining parameters are the same as in figure 1. What is

most striking is how close our results are to those in the

top panel of figure 3 of P&V. Once again, proposition 6

and figure 2 confirm that, properly applied, the CAPM

has the potential to explain the observed impact of

learning on stock valuation.

3.4. The St. Petersburg paradox

The similarity between the St. Petersburg game and a

growth stock valuation model was first recognized by

Durand (1957). Suppose that the firm’s expected future

dividends (as the game’s future payoffs) grow at a

constant rate; if dividends are discounted at a constant

rate, then to obtain a finite present value this discount

rate must be greater than the dividend growth rate. The

value of the stock is infinite if dividends grow at an equal

or higher rate than the discount rate; and in the same way,

the expected payoff of the St. Petersburg game is infinite

only when the payoffs are increasing at an equal or higher

rate than the rate at which the correspondent probabilities
are decreasing.

In light of the results in Section 2.1, both assumptions
appear to be unrealistic. The dividend stream is unlikely
to grow at a constant rate in perpetuity because compe-
tition will eliminate abnormal earnings after a period of
time. The second assumption of a constant cost of capital
is also unnecessary because proposition 1 shows how to
set the risk-adjusted discount rate.

To derive the condition under which the asset value is
finite, observe that for large j, zj converges to a constant
value of 1=ð1� �1Þ. Therefore, the expected future divi-
dend will evolve along the path AT ¼ eð �gþð1=2Þ½�

2
" =ð1��1Þ

2
�ÞT.

Also, for dividends far into the future, the risk-adjusted
present value factor may be approximated by
½f1� ðERm � RfÞ�g=ð1� �1Þg=ð1þ RfÞ�

T. Therefore, the
present value of DT, for large T, may be approximated
as follows:

V0 � D0 e
½ �gþð1=2Þ½�2" =ð1��1Þ

2
��Rf�ðERm�RfÞ½�g=ð1��1Þ��T ð17Þ

This value will converge to zero, and thereby the sum of
the present values of all future dividends (i.e. the firm
value) will be finite, provided the expression inside the
square brackets is negative. Thus, the restriction on long
term growth is

�gþ
1

2

�2"
ð1� �1Þ

2
� Rf þ ðERm � RfÞ

�g
ð1� �1Þ

: ð18Þ

The right-hand side of this expression is similar to the
CAPM risk-adjusted return. The only difference is that
risk is measured by the growth rate beta adjusted by the
degree of predictability in the earnings stream. The left-
hand side consists of the long-run growth rate adjusted by
one-half the long-run variance of earnings growth. This
condition is less restrictive than the one for the constant

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

M
/B

Long-Run Profitability Uncertainty

Div Yield = 0 Div Yield = 0.04 Div Yield = 0.10

Figure 2. Relationship between M/B ratio and profitability uncertainty. The vertical axis represents the current market-to-book
(M/B) ratio as a function of the long-run average profitability uncertainty (

ffiffiffiffiffiffiffiffi
Vt ��
p

), for different levels of dividend yield. The model
parameter values are: T¼ 15, �1¼ 0.55, �2¼ 0.0 and �1¼ 0.33; the remaining parameters are the same as in figure 1.
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growth (i.e. g5 r). First, the condition allows a very high

growth rate of dividends for a certain number of years (it

depends only on the long-run growth rate); and second,

since the risk-premium is positive, the discount rate is

higher than the risk-free rate.

4. Conclusions

The main contributions of this paper may be summarized

as follows. Suppose the dividend growth rate is mean

reverting, then the CAPM implies that rate of return beta

must vary with the strength of mean reversion. We derive

explicit formulas for the return beta, return volatility, and

Sharpe ratio assuming dividend growth follows an

autoregressive moving-average process. When the model

is calibrated to display even a small degree of negative

correlation – consistent with the empirical results in

L&W, the rate of return beta, and the return volatility fall

as the time horizon increases. Thus, firms with low

duration cash flows exhibit higher systematic risk than

firms with long duration cash flows; and this is all

required theoretically in order to explain the well known

value premium anomaly.
A second application of our methodology deals with

stock valuation when long-run profitability is unknown.

We model the accounting rate of return on equity with an

ARMA process; however, investors do not know how

profitable a firm might be in the long-run. They rationally

learn about its potential value by observing the current

rate. We prove that within a CAPM world the market-to-

book ratio is a convex function of the uncertainty related

to long-run profitability. Thus, young firms may be more

valuable because relatively little is known about their

long-run potential.
The last application of our model is to the classical St.

Petersburg paradox. To preclude an infinite present value,

a stock with a constant dividend growth rate requires that

the discount rate must be greater than the rate of growth.

We argue that the current dividend growth rate can be

very large but the long-run rate cannot be that far away

from the growth rate of the macro economy. We show

that the CAPM implies a non-constant risk-adjusted

discount rate. These two observations lead to a new,

much less stringent restriction on the growth rate that is

independent of the short-run growth rate, and a new

potential resolution of the paradox.
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Appendix A

To apply the dividend discount model we need to forecast
the path of future expected dividends given that
the growth rate follows a pth-order autoregressive
process AR(p):

gtþ1 ¼ ð1� �1 	 	 	 � �pÞ �gþ �1 gt 	 	 	 þ �p gt�pþ1 þ "tþ1,

ðA:1Þ

where �g is the long-run (unconditional) mean growth rate
and �1, . . . ,�p are the autoregressive coefficients. Then,
the CAPM may be applied recursively (in the fashion of
dynamic programming) to account for market risk.

The purpose of this Appendix is to derive the condi-
tional expectation of a future dividend DT ¼ D0 e

PT

t¼1
gt .

Observe that, conditional on p previous growth rates
ð g0, . . . , g1�pÞ, this expectation is the moment generating
function of the cumulative growth evaluated at the real
value 1. Given the assumptions on "tþ1, it follows that
expected dividends depend only on the mean and variance
of
PT

t¼1 gt.
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To obtain a simple closed-form solution, observe that
the sequence of future growth rates G0 � ð g1, g2, . . . , gTÞ
has the following representation in matrix form:
�G ¼ ð1� �1 	 	 	 � �pÞ �giþ�0G0 þ E where the T
 T
semi-difference matrix � is constructed as follows: the
first row consists of 1 followed by T� 1 0 s, the second
one consists of ��1, followed by 1 and T� 2 0 s.
Similarly, the third row is ��2, � �1, 1 and T� 3 0 s, on
down to the last row which consists of T� 1� p 0 s
followed by ��p, . . . , � �1, 1. For the T
 p matrix �0

the first row consists of �1, . . . ,�p, followed by
0,�2, . . . ,�p for the second row, down to the pth row
which is 0, . . . , 0, �p. The remaining rows are all 0 s. i is a
column vector of 1 s and the initial growth rates are
G00 � ð g0, g�1, . . . , g1�pÞ. E

0 � ð"1, "2, . . . , "TÞ is a vector of
random innovation terms. Using this setup, the cumula-
tive growth rate has conditional mean
ð1� �1 	 	 	 � �pÞ �g i

0��1iþ i0��1�0G0 and variance
�2" i
0��1ð��1Þ0i. Using a result from Ali (1977), we show

next that these moments may be computed without the
need to invert the � matrix. Define the vector
Z0 � ðzT, zT�1, . . . , z1Þ ¼ i0��1 and note that each element
may be computed recursively from the previous one:
zj ¼ �1 zj�1 þ 	 	 	 þ �p zj�p þ 1 for j¼ 1, 2, . . . ,T, and
starting values of zj ¼ 0 for j¼ 0,�1, . . . , 1� p. Hence,
the expected time-T dividend may be computed as

E0DT ¼ D0 ATe
zTð�1g0þ			þ�pg1�pÞþ			þzT�pþ1ð�pg1�pÞ, ðA:2Þ

where AT ¼ e
ð1��1			��pÞ �g

PT

j¼1
zjþð�

2
" =2Þ
PT

j¼1
z2j .

Appendix B: Proofs

This Appendix contains the proofs of propositions 2 thru
6. Proposition 1 in the paper is a special case of 1A below.

Proposition 1A: Suppose the dividend growth rate follows
a pth-order autoregressive process as in equation (A.1).
Define the auxiliary variable zj ¼ �1 zj�1 þ 	 	 	þ
�p zj�p þ 1 for j¼ 1, 2, . . . ,T, and starting values of zj ¼ 0
for j¼ 0,�1, . . . , 1� p. Then, the present value of a single
future dividend DT is given by its conditional expected
future value adjusted for its market risk and discounted to
the present at the risk-free rate of interest:

V0 ¼
ðE0 DTÞ

QT
j¼1 ½1� ðERm � RfÞzj�g�

ð1þ RfÞ
T

, ðB:1Þ

where the growth rate beta, �g, is defined as the covariance
between the growth rate innovation and the market return,
divided by the variance of the market return. Summing over
all future expected dividends yields the CAPM price for an
asset with a stochastic growth rate:

P0 ¼
X1
t¼1

ðE0 DtÞ
Qt

j¼1 ½1� ðERm � RfÞzj�g�

ð1þ RfÞ
t : ðB:2Þ

Proof: The proof is by induction on t. Clearly, at time T,
VT ¼ DT. Let T�1 be one period prior to the realization
of the earnings or dividend; insert the return

RT ¼ ðDT=VT�1Þ � 1 into the security market line (equa-

tion (3)) to show that the discounted value of DT is

given by

VT�1 ¼ ET�1DT



1� ðERm � RfÞCovðDT=ðET�1DTÞ,RmTÞ=�

2
m

1þ Rf

� �
:

Using Stein’s lemma it follows that

Cov
DT

ET�1 DT
,RmT

� �
¼ Covð"T,RmTÞ:

Next, define the growth rate beta as

�g ¼ Covð"T,RmTÞ=�
2
" , and substitute this beta into the

valuation formula to show that equation (4A) holds for

t¼T� 1. Assume the result holds for time period

t¼ �þ 1. Then, the ratio of V�þ1 to its conditional

expectation as of one prior period, E�V�þ1, equals the

ratio of recursive cash flow expectations:

V�þ1

E� V�þ1
¼

E�þ1 DT

E� DT
:

Once again, we use Stein’s lemma to show that the

Cov
V�þ1

E� V�þ1
,Rm, �þ1

� �
¼ Cov

XT
s¼�þ1

gs,Rm, �þ1

 !
:

To simplify the last expression, observe that the

stochastic component of the aggregate growth rate is

i0��1E. Hence, the covariance has a simple closed form

solution: zT�� Covð"�þ1,Rm, �þ1Þ, and the discount factor

from period �þ 1 to � becomes

1� ðERm � RfÞzT���g
1þ Rf

� �
:

This last step shows that equation (B.1) holds for all

time periods including t¼ 0. The second part of the

proposition (B.2) holds by the principle of value

additivity. h

Proof of proposition 2: The core of the proof is based on

the sequence of growth rates G0 � ð gtþ1, . . . , gtþTÞ. The

entire sample has the following representation in

matrix form:

�G ¼ ð1� �Þ �giþ�Eþ G0, ðB:3Þ

where the T
T matrix � consists of 1 s along the main

diagonal, ��1 in each cell right below the main diagonal

and 0s everywhere else. � has the same dimensions and is

defined similarly but with �1 in place of �1; i is column

vector of 1s, and G0 is a column vector with initial

condition �1 gt � �1 "t in the first row, and 0 s in the

remaining rows. E0 � ð"tþ1, "tþ2, . . . , "tþTÞ is a row vector

of growth rate shocks. It follows immediately that the

conditional mean and variance of the cumulative growth

rate
PT

s¼1 gtþs are, respectively: Et i
0G ¼ ð1� �Þ 


�gi0��1iþ i0��1G0 and Vt i
0G ¼ �2" ði

0��1�Þði0��1�Þ0.
These expressions may be simplified considerably. To

this end, define the vector Z0 � ðzT, zT�1, . . . , z1Þ ¼ i0��1

so that each element may be computed recursively from
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the previous one: zj ¼ �1 zj�1 þ 1, and starting value of
z0¼ 0. Define also the vector W0 �
ðwT,wT�1, . . . ,w1Þ ¼ Z0� to aggregate serial correlation
induced by the moving average component of growth.
Each element may be computed recursively as a follows:
wj ¼ zj � �1 zj�1 for j¼ 1, 2, . . . ,T. Given these transfor-
mation, the conditional expected future cash flow (equa-
tion (10B)) follows immediately.

The rest of the proof is by induction on t. From
proposition 1, we know that at T� 1 the discounted value
of DT is given by

VT�1 ¼ ET�1 DT
1� ðERm � RfÞ�g

1þ Rf

� �
:

Thus, equation (10A) holds as of T� 1 because the
first value of w is 1. Assume the result holds for time
period t¼ �þ 1. From Stein’s lemma we have

Cov�
XT
s¼�þ1

gs,Rm, �þ1

 !
¼ Cov�ðW

0E,Rm, �þ1Þ

¼ wT��Cov�ð"�þ1,Rm, �þ1Þ:

Using the same logic as in proposition 1, as we move
back one time period from �þ 1 to �, the discount factor
is

1� ðERm � RfÞw��g
1þ Rf

� �
:

Thus, the time t¼T� � price is given by

Vt,T ¼
ðET�� DTÞ

Q�
j¼1 ½1� ðERm � RfÞwj�g�

ð1þ RfÞ
� :

This last step shows that the proposition holds for
time period t¼T��, and all other times t. h

Proof of proposition 3: The covariance of the market
return with the return’s random component has an
explicit solution

CovðewT"tþ1 ,RM, tþ1Þ ¼ wTðEe
wT"tþ1ÞCovð"tþ1,RM, tþ1Þ:

Thus, by definition of rate of return beta we have

�ROR,T ¼
CovðRT,tþ1,RM, tþ1Þ

�2m
¼

ð1þ RfÞwT�g
1� ðERm � RfÞwT�g

,

and part (11A) holds. To obtain the rate of return
variance, note that the random variable wT"tþ1 is
normally distributed with mean 0 and variance w2

T�
2
" .

Therefore, equation (11B) follows from the properties of a
lognormal random variable. Last, we use the security
market line (equation (3)), to show that the risk premium
is given by

ERT,tþ1 � Rf ¼
ð1þ RfÞwT�g

1� ðERm � RfÞwT�g

� �
ðERm � RfÞ,

and the Sharpe ratio (equation (11C)) follows by
definition. h

Proof of proposition 4: The full sample of ROEs
R0 � ð�tþ1, . . . , �tþTÞ may be represented in matrix form

as: �R ¼ ð1� �1 � �2Þ ��iþ�Eþ R0. The square matrix
� has T columns; the first consists of 1 in the first row,
followed by ��1, ��2, and T�3 0 s in the remaining rows.
The second column has 0 in the first row, followed by 1,
��1, ��2, and T�4 0 s. The remaining columns have the
same format up to column T which consists of T� 1 0 s
and 1 in the last row. The matrix � has the same
dimensions as �, and is defined similarly but with two
changes: �1 in place of �1 and 0 in place of �2. i is a
column vector of 1s, and R0 is a column vector with initial
conditions: �1�t þ �2�t�1 � �1"t in the first row, �2 �t in
the second row, and 0s in the T� 3 remaining rows.
E0 � ð"tþ1, "tþ2, . . . , "tþTÞ is a row vector of profitability
shocks. Given this set up, the derivation of equation (14)
is analogous to that of proposition 2, hence it is
omitted. h

Proof of proposition 5: Let R0 � ð�1, . . . , �tÞ be the
sample of ROEs from period 1 thru t; the matrix
representation for R is the same as that described in
proposition 4 with the obvious change in sample size. We
assume that as of time t¼ 0, investors form beliefs about
the distribution of ��, and use the ARMA process to set
expectations about the joint behavior of �� and the sample
ð�1, �2, . . . , �tÞ. Thus, the covariance of long run profit-
ability and R is given by: Cov0ð ��,RÞ ¼
ð1� �1 � �2ÞðV0 ��Þ��1i. The mean and variance of R
are: E0R ¼ ð1� �1 � �2ÞðE0 ��Þ��1iþ��1 R0, and
V0R ¼ �

2
" ��1� �0ð��1Þ0. Next, apply the partition theo-

rem for normal random variables to arrive at the
posterior moments:

Et �� � Eð ��j�1, . . . , �tÞ ¼ E0 ��

þ ðV0 ��Þð1� �1 � �2Þi
0ð��1Þ0½�2"�

�1 ��0ð��1Þ0��1


 ðR� E0RÞ,

and

Vt �� � Vð ��j�1, . . . , �tÞ ¼ V0 ��� ðV0 ��Þ2


 ð1� �1 � �2Þ
2i0ð��1Þ0½�2"�

�1��0ð��1Þ0��1��1i:

The proof is completed once we set the (x, y) variables.
First, define the vector Y0 � ð y1, y2, . . . , ytÞ ¼ ��1P0,
where the jth element of the column vector P0 is
�j � �1�j�1 � �2�j�2 for j¼ 1 thru t. Thus,
yj ¼ �1yj�1 þ ð�j � �1�j�1 � �2�j�2Þ, with a starting value
of y0¼ 0. Second, define the vector
X0 � ðx1, x2, . . . , xtÞ ¼ ��11 to aggregate serial correla-
tion induced by the moving average component of
profitability. Each element may be computed recursively
as a follows: xj ¼ 1þ �1xj�1 for j¼ 1, 2, . . . , t. h

Proof of proposition 6: Proposition 5 shows that the
posterior distribution of �� is normal with mean and
variance given by equations (15A) and (15B). Therefore,
the distribution of ��ð1� �1 � �2Þ

Pt
j¼1 zj is also normal

with mean ½ð1� �1 � �2Þ
Pt

j¼1 zj�Et �� and variance
½ð1� �1 � �2Þ

Pt
j¼1 zj�

2Vt ��. The expectation of H1( ��)
over the posterior distribution of �� yields

e
½ð1��1��2Þ

Pt

j¼1
zj�

2ðVt ��=2Þ
times H1 evaluated at Et �� in

place of ��. h
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