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Abstract. In this paper we research whether reversion trading strategies can
be profitable in volatility markets over time. We examine these strategies on

VIX time series and short term futures, which trade based on the VIX index.

We compare the performance of the technical strategies with a benchmark
strategy of buy and hold. We find out that technical strategies outperform

the benchmark even after applying a power utility with a relative high risk

aversion. We conclude that contrary to the equity markets, the profitability of
technical reversion strategies, when applied on VIX series, is pronounced even

after taking the friction costs into account.

1. Introduction

The subject of volatility behavior rose to prominence following the celebrated
Black Scholes formula for option pricing. Black and Scholes (1973) were first to
derive a formula for option prices. In the formula the only unobservable input was
the volatility of the underlying asset.

In spite of its importance, measurement of volatility remains challenging because
it is time varying and may depend on different economic regimes. Many researchers
have attempted to build market models to capture the variability of the volatility
process and explain its properties as observed in the market.

An example of such process that is used to improve option valuation was con-
structed by Heston (1993). He assumes the following stochastic dynamics for St:

(1) dSt = µStdt+
√
νtStdWt

S

where νt is the instantaneous variance and obeys the CIR process:

(2) dνt = κ (θ − νt) dt+ ψ
√
νtdWt

ν

dWt
S , dWt, ν are Wiener processes with correlation ρ. Under this dynamics the

market is incomplete. By adding more instruments we estimate the additional
parameters of the Heston model one of them is the expected future volatility. we
apply this estimation to price illiquid exotic options that are not traded in the
market. Despite its appeal, challenges remain in the implementation of the Heston
model. The main hurdles are the necessity to estimate the additional parameters
of the model, other than the volatility itself and parameter’s inherent instability.

Another major way to estimate volatility, is to assume certain GARCH models.
This direction of research was initiated by Bollerslev (1986) following Engle (1982).
Bollerslev (1986) assumes dynamics with the following error term: εt = σtzt, zt is
a white noise process while the series σ2

t are modeled as:

(3) σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i

According to recent literature, it seems that in this type of models, the difference
between model estimated and realized variances may predict stock market returns
and its direction in short term horizons. If true it has large potential applications,
because it will be a powerful tool to estimate the direction of the stock market and
various economic variables in general.

A similar direction is the application of Fractional Brownian Motions to model
volatility. Bollersev,J.Marrone,Lai Xu and Hao Zhou(1993) considered these type
of models to improve predictability of volatility model. They were the first to
estimate its Hurst exponent and discovered that it is consistently below 1

2 . initiated
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by Comte, Coutin and Renault (2003 ) attempted to improve the Heston model
and introduced Fractional Brownian Motion into the Heston model. They showed
that their model fits the behavior of long dated options well while preserving other
main properties of volatility. The general direction of these papers was to construct
models that predict future volatility and apply them to improve option pricing and
possibly predictability of the stock market. This line of research was continued
recently by Gatheral, Jaisson and Rosenbaum (2014). In the paper they looked
on the high frequency data of realized volatility for the last 4 years (2010-2014).
Estimating the Hurst exponent of the log of the realized volatility they show that
these series possess strong mean reversion properties. They arrive to the exponent
of 0.1 for the high frequency data set they possess.

The general conclusions of the paper by Gatheral, Jaisson and Rosenbaum points
to mean reversion in the volatility process. Intuitively this indicates that certain
strategies that exploit mean reversion should be able to outperform other strategies
like buy and hold.

We justify this intuition by considering a simple one period model that shows
this. The model we consider doesn’t rely on a specific presentation and applicable
to any process that has a reasonable mean reversion ( or momentum ) properties.
Conclude that these strategies should be palatable to it and out-perform simple
buy and hold ( for example for AR(1) process)

Reversion strategies are a recurring theme in equity and bond analysis research.
Because technical trading isn’t violates the efficient market hypothesis, many re-
searchers attempted to determine whether technical trading of any kind produces
abnormal returns in the stock market, for example, outperform buy and hold in a
statistically significant way. Brock Lakonishok and Le Baron(1992) examine tech-
nical rules in sample for returns data of Dow Jones industrial and discover that
technical rules outperform benchmark models of buy and hold. The rules they con-
sider are moving average rules similar to reversion rules in this note. The analysis
they carried was done in-sample and didn’t address the question of data snooping.
Sullivan, Timmerman and White( 1999) expanded the research of technical trading
rules. In their paper they design statistical test to address the data snooping bias
that Brock, Lakinoshol and Le Baron (1992) raised in their study. Sullivan, Tim-
merman and White(1999) performed out of sample analysis of technical rules and
found out that the reversion strategies didn’t out-perform buy and hold in out of
sample time frames. These papers don’t explain how to construct a trading strat-
egy that a real investor can implement. For example it may occur that multiple
selling signals follow each other without a buy signal in between and the authors
don’t articulate investor’s behavior in such a case. This type of analysis may be
significant because in real world investments are made for a fixed time horizons
and questions of this type may change the strategy performance. We explain in our
paper one possible way to incorporate technical rules into a viable trading strategy
that investor follows.

In another research direction reversion were applied to construction of market-
neutral portfolios. These have a total market value if 0 and consist of long short
equity investments.

Following Lo and Mckinlay (1990) who considered such strategies based on firm
size, a recent paper by Raman Uppal, De Miguel and Nogales (2012) assumes a VAR
(Vector AutoRegressive) model for stocks. The authors construct a portfolio that
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assigns positive weights to stocks whose expected conditional returns are higher
than the return of an equally weighted portfolio and negative weights to the rest
of the stocks. They show that such portfolio has a positive expected return. This
strategy outperforms other strategies, for example, the equally weighted portfolios
considered in the paper by Uppal, Garlappi and DeMiguel (2009).

As far as we are aware we are the first to research how technical rules perform
on the VIX series and their futures. Ait Sahalia,Karaman and Mancini (2012)
constructed a strategy resembling technical trading but which is model based: In
their paper they conclude that the strategy they construct is profitable as evident
from Sharpe ratios in table 7. Their work is essential because, the model they
construct may provide a clue for the phenomena we discover in our paper.

The reversion strategy we employ is model free and relies on past VIX values and
its futures and we are not attempting to construct a model of the VIX dynamics
as done in Gatheral, Jaisson and Rosenbaum (2014).

At the beginning of the paper we define the FBM model and explain the method
we use to measure the Hurst exponent of VIX time series and its futures. We
discover that the Hurst exponent associated with the series is below 1

2 . For VIX
futures we estimate different Hurst exponents based on their maturity horizon. We
discovered that the Hurst exponent of returns ( more precisely the log level of the
future) of futures with short horizons seems to be less than 1

2 . This presents a
certain puzzle as returns of the instruments that are actively traded in the market
are supposed to be martingales and the Hurst exponent should be close to 1

2 . We

use simulation to reject the hypothesis that H = 1
2 for VIX and VIX futures using

the P - value we determine.
In section 3 we derive a formula for the expected return of a one period look-

back strategy for FBM process whose H ≤ 1
2 , versus Buy-and-Hold. It follows

that strategies we consider have a good chance of being profitable and beat the
buy and hold benchmark. In the following sections we investigate whether this is
true: We calculate some statistical metrics of our reversion strategies with different
parameters. We compare these with buy-and-hold. All the tests are out of sample
and rely on the methods introduced in the paper by Uppal, De Miguel and Nogales
(2012). Out of sample is important, because an investor at a certain time t will not
have any information about time T ≥ t. It follows that in-sample analysis results
assume the knowledge if the future at time t ≤ T

To mimic actual trading environment we introduce leverage into our strategy. We
discover that application of leverage with a reversion strategy can lead to significant
losses and hence not advisable, however this doesn’t explain the Hurst exponent
puzzle of VIX futures because traders can fully fund their margin accounts as they
trade the futures.

We finalize our paper with further discussions of our finding and outlining po-
tential future work.

2. Fractional Brownian motion and VIX

Mandelbrot introduced Fractional Brownian to generalize the usual Gaussian
motion. While the usual Brownian motion postulates that for an increment dt
the corresponding stochastic process is normally distributed with a Variance being
proportional to dt, Fractional Brownian motion assumes that the Variance of the
stochastic process is proportional not to dt but to dt2H . More formally:
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Definition 2.1. A Gaussian process BH =
{
BHt, t ≥ 0

}
is called Fractional Brow-

nian Motion (FBM) of Hurst parameter H ∈ (0, 1) if it has mean 0 and covariance
of

E
(
BHt B

H
s

)
=

1

2

(
s2H + t2H − |t− s|2H

)
The Brownian motion is self similar and has the property that

E(BHt −BHs )2 = |t− s|2H .

Hence we see that the FBM is a generalization of the usual Brownian motion as the
latter corresponds to H = 1

2 . Contrary to the usual Brownian motion, it follows that
FBM doesn’t have mutual independence between disjoint intervals in [0, T ]. More
precisely we have a mean reversion phenomenon (a down move is more probable
after an up move) if H < 1

2 and a momentum (an up move will be most likely to

follow an up move) if H > 1
2 . Intuitively this implies that a strategy that uses this

momentum should outperform a buy-and-hold strategy for processes that follow
FBM. Our goal is to measure the Hurst exponents for different assets and explore
whether our strategies (that are paper trades) can be more profitable than buy-and-
hold strategies. We’ll explain the methodology of measuring the Hurst exponents
for time series and then produce a table with the results of our measurements.

2.1. Measuring Hurst Exponent. There are numerous representations of Hurst
exponents measurement in the market. Usually the implementations of the algo-
rithms are quite sophisticated and their precisions can vary. In order to determine
which algorithm is the most suitable to measure Hurst exponents of potential time
series we performed the following actions:

• We simulated FBM with different Hurst coefficients using R programming
language for 1000 paths
• For each path we applied different measurements to calculate its Hurst

exponent
• We selected the algorithm who had the closest expected value and minimal

standard deviation of the Hurst exponent of the simulation
• We use this selected algorithm to measure Hurst exponents of different time

series we investigate

Based on the methodology above we selected the DFA algorithm to measure Hurst
exponents of different time series. De-trended Fluctuation Analysis attempts to
measure the power proportionality of the variance versus the length of the interval
in a direct manner. If a random walk Xi, i = 1...t is given, we divide the sample
of length t into sub samples Yj of length L each. For each of the sub samples we
calculate a linear trend aj + b by minimizing the following expression:

(4) E2 =

L∑
j=1

(Yj − aj − b)2

Define F (L) =
(

1
L

∑L
j=1 (Yj − aj − b)2

) 1
2

(which is a deviation from the trend).

We create a log log graph of L versus F (L) considering different samples of length
L. If the log log plot is a straight line we have that F (L) ∝ Lα. Then α equals to
Hurst exponent. This algorithm was implemented in R. Using this implementation
we measure the Hurst exponents for the time series of the following assets:
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• SP 500 1957-1990 and 1990-2012
• VIX series 1957-1990 and 1990-2012
• Volatility time series 1957-1990 and 1990-2012

We chose the sub sample period of 1957-1990,since VIX was introduced in 1990 and
we desired to verify that mean reversion of volatility and its Hurst exponent wasn’t a
result of regime change in the trading environment. We chose 30 day rolling window
to measure the SP return time series at any given time. We annualized the monthly
volatility we measured. We compared the Hurst exponent of the synthetic volatility
with the Hurst exponent of the the SP 500 price levels, (based on its closing price
during 1950-2012) . We summarize the results of the Hurst exponents for the time
series and the periods we investigate in table (1): 2 The next table details the

Table 1. Hurst exponent results for Volatility and SP time series

Date SP Vol Series VIX

1950-1990 0.45 0.35 N/A
1990-2012 0.47 0.44 0.33

Hurst exponents of VIX futures and their log for the entire period (2004-2015).
The index for VIX futures that we used are the Bloomberg generic levels available
for the different VIX futures contract with expiry of 1, 2, 3, 6 month respectively.
The first index represents the closest future to the current spot level of the VIX
index. The second index represents the rolling price of the two months contract
and similarly for other indices as well. The table below represents the log level of
the different generic index levels. The first observation we have is that the term

Table 2. This table shows the Hurst exponent estimate of log
levels of VIX futures

Date 1 Month 2 Month 3 Month 6 Month

2004-2014 0.39 0.42 0.46 0.51

structure of Hurst exponent is upward sloping. The mean reversion is the most
eminent on the short end of expiry (close to the spot VIX index itself.) For longer
expiry horizon we have processes that resemble a random walk.

Now assume P is the dynamics process of VIX futures. We have that

(5)
dP

P
= µdt+ σ(t)dWt

Applying Ito’s lemma we get that :

(6) logP =

∫ t

0

(µ− σ2(t))dt+

∫ t

0

σ(t)dWt

From this we see that the correct estimate of the Hurst exponent for returns time
series should be done for the logarithm of price level that determines the return
series. Because of the mean reversion of Hurst exponent the one month future

2Jim Gatheral communicated that the estimate of the Hurst exponent of VIX is consistent
with his estimate



CAN TECHNICAL TRADING BE PROFITABLE - EVIDENCE FROM VOLATILITY MARKETS7

generic sequence reversion strategies should have a better performance than buy
and hold strategy. We remark also that this implies that the generic time series of
VIX futures doesn’t belong as a martingale similar to the VIX index itself.

3. Hurst exponent confidence intervals and historical stability

In this section we examine the historical distribution of Hurst exponents for
stock returns and the underlying rolling realized volatility. Our goal is to research
whether the Hurst exponent of volatility is stable during different economic time
periods and we like to contrast it with the behavior of the overall stock prices. We
perform the following steps:

• We choose a rolling window of N days
• For series of length T we simulate k random uniform numbers between 1

to T −N
• for each simulated number ti we calculate the Hurst exponent between xti

to xti+N

As a result we obtain k Hurst exponents, which give a proxy of the distribution
of Hurst exponents for our time series. If Hurst aren’t stable, for example they
fluctuate above and below 0.5, a strategy that assumes just mean reversion will
fail. We investigate the possibility of the strategy being a stable one. Because
of the nature of the DFA algorithm and its scaling, we are forced to choose large
periods to measure the Hurst exponent reliably. We set N = 5000 and present Hurst
exponents measurement during 1950-2012 for synthetic volatility series and SP 500
adjusted closing price series. We choose k = 100 and simulate uniform distribution
within the interval [1, 10000]. We measure the Hurst exponent for SP 500 price
series and VIX series for the time series xtk ...xtk+N . The results of these time
simulations are presented in the table (2): This table shows that over the entire

Table 3. Hurst exponent for 5000 days. Initial day is selected randomly

Min 1 st Quantile Median Mean 3 rd Quantile Max

Synthetic Volatililty 0.35 0.41 0.43 0.43 0.45 0.49
SPX 0.43 0.49 0.51 0.50 0.51 0.56

period (1950-2012) SP 500 Hurst exponent fluctuated between momentum and
mean reverting strategy and most of the time the price dynamic of SP resembled a
random walk. But the Hurst exponent of volatility time series has been consistently
less than 0.5. We conclude that volatility is mean reverting during this period and
furthermore the mean reversion property is invariant historically. In the next section
we develop a simple model to show how an investor can possibly take advantage of
this phenomenon using a simple look-back strategy.

3.1. Testing for Random walk using the Hurst exponent. It’s possible that
in spite of the Hurst exponent below or above 0.5 we can still have a random walk.
For example we may have a Brownian motion but yet the probability of having
a Hurst exponent consistently greater or smaller than 0.5 is high for certain time
periods. This is similar to the following: Throw a fair coin large number of times.
The probability of an event that consecutive throws having same outcome will be
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high. We proceed to exclude this possibility. We use a simulation based approach
for that and perform the following steps:

(1) Simulate a normal random walk process for N times
(2) We measure the Hurst exponent in each path to obtain a Hurst exponent

distribution
(3) We calculate the 95 percentile to obtain the probability that our Hurst

exponents will be a measured Hurst exponent for a random walk process.

Table 4. Results of Hurst exponent measurement on a simulated
random walk

Mean Stdev 95% Percentile

0.50 0.02 0.45

Table (3) shows that although we have a random walk the measured Hurst exponent
is close to 0.4 for the entire period is less than 5 percent according to the results
of our simulation. Thus we for VIX series we can reject the hypothesis that the
VIX series is a random walk with a confidence of 95%. Next section presents a
simple model that justifies the expectation that a reversion strategy that a technical
strategy applied to a process with Hurst exponent exponent consistently than 1

2
produces positive returns versus a buy and hold benchmark.

4. Look back strategies for a mean reverting process

4.1. General survey. In this section we present a model that shows that for a
mean reverting process we expect technical trading strategies to outperform a buy
and hold strategy. The model we present includes more general processes than mean
reverting processes. We conclude based on the Sharpe ratio we calculate that even
if the Hurst exponent is not stable and time varying through different economic
regimes we still expect technical trading to be profitable for such a process as long
as the Hurst exponent is consistently less equal 0.5.

Consequently the stability we require in this case is a stability of Hurst expo-
nent ranges, rather the number of itself. As we showed in previous section Hurst
exponent of the VIX series is consistently below 0.5. This justifies theoretically our
motivation to explore technical trading performance for VIX time series and our
expectation of stable positive profit versus buy and hold strategies.

Additionally the model provides sensitivity analysis, and, expresses the Sharpe
ratio of our strategy as a function of the Hurst exponent. This should be important
for future theoretical investigations. The model we present is a one period model but
the technical trading we employ is multi period. This makes a direct comparison of
the strategy outcome with the model outcome challenging. Nevertheless we believe
the model illuminates some of the quantitative features of the strategy and that’s
the reason we present it here.

4.2. The model. Let x = (x1, x2) be a two dimensional normally distributed
variable with mean 0, vector of standard deviations σ = (σ1, σ2) and correlation
ρ ≤ 0. Assume that the state x1 records the initial state of the asset at t1 and x2
records the return of asset between time t1 and t2. Employ the following trading
strategy by looking at the state at t1 :
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(1) If x1 ≥ 0 then sell the asset
(2) If x1 ≤ 0 then buy the asset

The P&L of the asset will be the value of random variable x2 returned at time t2.
Thus if we’ve sold the asset the return will be −x2 and if we’ve bought the asset
the return will be x2. For the usual setup of conditional distributions we know that:
x2 is distributed normally given x1 with the following parameters:

E(x2|x1) = ρ
σx2

σx1

x1

and

V ar (x2|x1) = σ2
x2

(
1− ρ2

)
.

But in our case because the sign flips if we sell the asset the distribution will have
the same variance but the expected value will be:

E(x2|x1) = −ρσx2

σx1

x1

when x1 > 0. This is a random variable in x1 and hence the expected return of the
strategy will be:

− 1√
2πσx1

∫
x1>0

ρ
σx2

σx1

x1 exp

(
− x1

2σ2
x1

)
dx1+

1√
2πσx1

∫
x1<0

ρ
σx2

σx1

x1 exp

(
− x1

2σ2
x1

)
dx1

Taking the common terms out of the parentheses we will get that:

1√
2π
ρ
σx2

σ2
x1

(
−
∫
x1>0

x1 exp

(
− x21

2σ2
x1

)
dx1 +

∫
x1<0

x1 exp

(
− x21

2σ2
x1

)
dx1

)
Thus we are reduced to evaluate :

1√
2π
ρσx2

([
exp

(
− x21

2σ2
x1

)]∞
0

−
[
exp

(
− x21

2σ2
x1

)]0
−∞

)
= −

√
2

π
ρσx2 ≥ 0

because ρ < 0.
Now it’s turn to calculate the standard deviation. I will use the law of total variance
that states that for variable X and Y we have that:

V ar(Y ) = E (V ar [Y |X]) + V ar (E [Y |X]) .

Since V ar(x2|x1) = σ2
x2

(
1− ρ2

)
is constant we will get that E(σ2

x2

(
1− ρ2

)
) =

σ2
x2

(
1− ρ2

)
and V ar (E [x2|x1]) = ρ2σ2

x2
. It concludes from the total law of variance

that the standard deviation is : σx2 . Thus the Sharpe ratio of the strategy is:

−
√

2
πρ. Now we apply this to the Hurst exponent case. Assume that the interval

between consecutive trades is 1
N . Hence we have:

(1) The variance corresponding to the trade at t2 is:
(
1
n

)2H
.

(2) The covariance between successive intervals tn−1 and tn is: 1
n2H

(22H−1−1)
2

(3) The Sharpe ratio is: 1√
2π
|
(
22H−1 − 1

)
|

(4) Note: It doesn’t depend on the length of the interval
(5) The strategy remains profitable if H ≥ 1

2 or H ≤ 1
2 through the entire time

period.
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3Using this model as a motivating example we perform a simple look-back strategy
on our VIX series.

5. Look back strategy and VIX

We saw in previous sections that the Hurst exponent is consistently below 0.5
for VIX process. Based on the theoretical model we presented we expect that
it is profitable to apply look-back strategies on the VIX time series. We modify
the strategy above to adept to level series (note that in the model we developed
our series were return series). For VIX return series the power law structure is
destroyed and hence no look-back strategy works for them. We apply the strategy
on VIX level itself and not on its functional modification ( like the logarithm of the
time series ) because we like to be consistent with the previous studies on technical
trading. In those studies technical rules were applied directly on the level of the
SP time series directly. To perform our look-back strategy select a fixed number of
days N. Assume v1, ..., vt, ..., vT is the time series of the VIX. For each vt calculate:

(1) Vmax = max(vt−1, vt−2, vt−3...vt−N )
(2) Vmin = min(vt−1, vt−2, vt−3, ...vt−N )

Compare vt with Vmax and Vmin and perform the following trading actions:

(1) if vt > Vmax and I didn’t short the VIX then I either short it or sell my
long shares. Otherwise do nothing.

(2) vt < Vmin and I didn’t long the VIX then I either buy shares or close my
short position. Otherwise do nothing.

Our goal is to investigate the performance of this strategy during two historical
periods:

(1) entire period 1990-2012
(2) 2004-2012

The reason for choosing this second period is the introduction of VIX future con-
tracts and thus the ability to implement the strategy in real life using futures
contracts. We would like to see whether the introduction of simple ways of trading
the futures instrument on the VIX leading to removal or reduction of these trading
opportunities. We calculated the daily return of this strategy assuming our invest-
ment in cash yields 0% gain. The returns are calculated daily (not compounded)
hence they are what the trader will look at to decide whether or not to short or
long the VIX index. We like to emphasize the following features of our paper trade:

(1) No doubling down
(2) Self financing

The first item implies that if we’re already shorting the instrument because of a
trading signal and more signals are coming through that imply further shorting we
are not going to short more of it. Thus the next action after VIX shorting will be
closing the short once a positive signal comes through. Similar comment applies to a
signal to buy the instrument. We will avoid any further buying and our next action
will be closing the position once a sell signal comes through. Our self financing
strategy shows that we don’t inject cash into positions in the middle of the trading
strategy. Thus initial investment comes at the beginning of the period and no

3We performed simulations to verify the formulas. Results of the simulations showing the
derivations are correct are available upon request
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further investments or cash contribution are allowed. If Mt is the money available
for us after time t this money come from investing 1 dollar into the strategy and
continuously trading with no cash contributions coming in. Our calculation of the
return is in the usual manner. Thus if Pt is the price of the index at time t and
Pt+1 is the price of the index at t+ 1 the return is:

Pt+1 − Pt
Pt

If we short the index the return we calculate is:
Pt − Pt+1

Pt
The next table presents results of the look-back strategy for the period 1990-2012
with different look back days:

Table 5. General Properties of Return Distribution 1990-2012
paper trades

Maximal Daily Loss 1st Qu. Median Mean 3rd Qu. Maximal Daily Gain

LookBack Days 3 -64.22% -1.12% 0.00% 0.46% 2.32% 51.72%
LookBack Days 4 -64.22% -1.33% 0.00% 0.51% 2.58% 51.72%
LookBack Days 5 -64.22% -1.33% 0.00% 0.56% 2.72% 51.72%
LookBack Days 6 -64.22% -1.54% 0.00% 0.51% 2.76% 51.72%
LookBack Days 7 -64.22% -1.57% 0.00% 0.52% 2.85% 51.72%
LookBack Days 8 -64.22% -1.68% 0.00% 0.48% 2.89% 51.72%
LookBack Days 9 -50.00% -1.68% 0.00% 0.50% 2.88% 51.72%

LookBack Days 10 -50.00% -1.83% 0.00% 0.44% 2.85% 51.72%
LookBack Days 11 -50.00% -1.83% 0.00% 0.41% 2.80% 51.72%
LookBack Days 12 -50.00% -1.86% 0.00% 0.41% 2.82% 51.72%
LookBack Days 13 -50.00% -1.92% 0.00% 0.41% 2.84% 64.22%
LookBack Days 14 -50.00% -1.94% 0.00% 0.42% 2.87% 64.22%
LookBack Days 15 -51.50% -1.96% 0.00% 0.38% 2.84% 64.22%
LookBack Days 16 -51.50% -2.07% 0.00% 0.38% 2.95% 64.22%

The table shows the general return distributions of the strategy for different look-
back days. We can see that in general we can make around 40 basis points on a daily
basis trading. These are substantial gains on an annual basis. However an investor
who employs this strategy must be ready to withstand a potentially substantial
daily loss. A daily swing of the VIX can be between in tens of percentages. Our next
table presents the annual Sharpe return for the look-back strategy with different
look-back days: We see that the returns of the strategy are highly volatile but the
Sharpe ratios for our strategies are high.

6. Buy-and-Hold comparison

In this section we compare our strategies with a simple buy-and-hold strategy
of investing and holding the VIX for the period from 1990 to 2012. The table
describing the general properties of buy-and-hold strategy for the VIX is given
below: The buy-and-hold strategy appears less risky than the corresponding look-
back strategies. In particular we see that maximal loss we have on a daily basis
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Table 6. Annualized Sharpe of Strategy Returns with different
Look back window 1990-2012

Annualized Mean Standard Deviation Sharpe Ratio Annualized

LookBack Days 3 116.05% 83.10% 1.40
LookBack Days 4 127.92% 84.21% 1.52
LookBack Days 5 140.57% 84.66% 1.66
LookBack Days 6 129.40% 86.57% 1.49
LookBack Days 7 131.80% 87.21% 1.51
LookBack Days 8 121.16% 87.41% 1.39
LookBack Days 9 124.84% 86.33% 1.45
LookBack Days 10 111.46% 86.87% 1.28
LookBack Days 11 103.17% 87.79% 1.18
LookBack Days 12 103.72% 88.16% 1.18
LookBack Days 13 102.77% 89.60% 1.15
LookBack Days 14 105.69% 89.72% 1.18
LookBack Days 15 95.05% 90.47% 1.05
LookBack Days 16 96.74% 90.93% 1.06

Table 7. VIX Buy and Hold Strategy

Min. 1st Qu. Median Mean 3rd Qu. Max.

-29.57% -3.49% -0.31% 0.19% 3.16% 64.22%

is −29% versus −64% with the look-back strategies. According to the model we
presented above we should expect that our look-back strategies perform better than
the buy-and-hold. To quantify this we form a total return index for the strategies
and observe the index at the end of the period. This tells us how much total return
we will make if we follow the looking back strategy or the buy-and-hold strategy
for the VIX. The results of this computations are given in the attached table: This

Table 8. Buy-and-Hold Comparison Versus a Look back strategy

Cumulative Return

Look Back 3 455.95
Buy-and-Hold 0.96

table clearly shows that the simple look-back strategy we performed is much more
profitable than any buy-and-hold strategy on the VIX. Furthermore, the strategy
appears to be highly profitable prior to the crisis in 2007 and the total return index
drops from 52 to 18 in a period of one day when the VIX loses sixty four percent
of its value. But it takes the strategy less than a year to recover from this loss.

The profitability of the strategy implies the strong mean reversion property of
the VIX series and it is supported by the simple one period model we presented.
Table (8) in this section will be the comparison with the look-back of SP 500.
The Hurst exponent we measured for the SP 500 is closer to 0.5 and hence we
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Table 9. Strategies Sharpe ratios, VIX and S&P 1990-2012. The
last column is the S&P Buy and Hold Strategy

LookBack Days Sharpe VIX Sharpe SP Sharpe Ratio ( VIX/SP) Sharpe Ratio (VIX/ S&P B& H)

3 1.40 0.58 2.42 3.41
4 1.52 0.46 3.33 3.70
5 1.66 0.48 3.47 4.05
6 1.49 0.36 4.21 3.65
7 1.51 0.38 3.95 3.69
8 1.39 0.31 4.53 3.38
9 1.45 0.38 3.81 3.53
10 1.28 0.23 5.53 3.13
11 1.18 0.20 5.75 2.87
12 1.18 0.16 7.43 2.87
13 1.15 0.20 5.75 2.80
14 1.18 0.16 7.56 2.87
15 1.05 0.18 5.74 2.56
16 1.06 0.23 4.64 2.59
17 1.03 0.29 3.56 2.50
18 0.98 0.25 3.90 2.40
19 1.01 0.23 4.37 2.46
20 1.00 0.15 6.75 2.44
21 0.93 0.13 7.12 2.28
22 0.95 0.02 38.67 2.33

don’t expect to achieve similar gains by using a look-back approach on it. The last
column of the table quantifies the relationship between VIX Sharpe and SP 500
buy-and-hold strategies. We can see from the corresponding Sharpe ratios that the
buy-and-hold strategy on the SP 500 is on par with the look-back strategies. This
is contrary to the case of the VIX when the reversion strategies are outperforming
the buy-and-hold strategy by a wide margin.

7. Reversion Strategies and VIX Futures

In this section we test our strategies on the actual instruments that are traded
based on VIX, namely VIX futures. VIX futures started trading in 2004 the CBOE.
One VIX futures contract has 1000 dollars of notional. Hence if the futures contract
is 16.00 dollars and the final price is 17 dollars the buyer ( or seller of the contract
) will get on hand: 1000× (17−16) = 1000. Futures contracts have margin require-
ments but we fully fund the contract when we short or long it. We incorporate bid
ask information available in BB. We compare trading two time series:

(1) Generic short term series contract time formed by Bloomberg ( Symbol
UX1 Index)

(2) Futures contract monthly time series available at the CBOE website.

For reader’s convenience we remind the reader of the Hurst exponent of the short
term series: The mean reverting feature is present in the real time series trading
and hence it shows that it might be possible to perform our technical strategy on
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Table 10. Hurst Exponent Measurement for the monthly VIX
and Generic Future Contract

Series Hurst Exponent

One month Future 0.39
Generic Series 0.4

it. We incorporate transaction costs by introducing the bid ask spread. Namely
the trading strategy will be as followed:

(1) Generate the signal using the Bid series for generic contracts
(2) Initiate a buy using the ask price (thus the higher price)
(3) Initiate a sell using the bid price (use the lower price)

The results of the strategy are presented in the table:

Table 11. General results for look-back strategy with transaction costs

Min. 1st Qu. Median Mean 3rd Qu. Max. Standard Deviation Sharpe

LookBack Days 3 -25.00% -1.38% 0.00% 0.26% 1.27% 30.31% 4.17% 1.01
LookBack Days 4 -25.00% -1.62% 0.00% 0.22% 1.49% 30.31% 4.29% 0.81
LookBack Days 5 -25.00% -1.67% 0.00% 0.20% 1.50% 30.31% 4.49% 0.72
LookBack Days 6 -28.77% -1.80% 0.00% 0.14% 1.64% 30.31% 4.52% 0.49
LookBack Days 7 -25.00% -1.75% 0.00% 0.22% 1.78% 30.31% 4.65% 0.76
LookBack Days 8 -25.00% -1.76% 0.00% 0.22% 1.94% 30.31% 4.61% 0.76
LookBack Days 9 -25.00% -1.79% 0.00% 0.25% 1.98% 30.31% 4.58% 0.87

LookBack Days 10 -25.00% -1.94% 0.00% 0.17% 1.95% 30.31% 4.63% 0.57
LookBack Days 11 -25.00% -1.96% 0.00% 0.14% 1.91% 30.31% 4.68% 0.48
LookBack Days 12 -25.00% -2.02% 0.00% 0.13% 1.87% 30.31% 4.69% 0.44
LookBack Days 13 -25.00% -2.03% 0.00% 0.14% 1.86% 30.31% 4.72% 0.46

To gauge the impact of transaction costs as manifested through the bid ask
spread we adjust our algorithm eliminating buy high sell low resulting from trans-
action costs and assumed that we have just one series that we work with. The
results of this strategy from are given below: Let us inspect both tables with and
without transaction costs respectively. While the volatility of the daily return of
both time series (with and without transaction costs) stays the same we can see
that Sharpe ratios is reduced by around 30 percent if transaction costs are incorpo-
rated. However, with the presence of transaction costs the strategy still produces
significant positive returns. The average return for different look-back days with the
presence of transaction costs is around 26 basis points. This is translated roughly
to 65% of annual gains. Investors should be able to withstand huge market swings
if they like to invest in this type of strategy. A daily loss of 25 percentages in the
monthly VIX series is plausible according to the analysis above. performance for
investors in the time horizon of two years.

7.1. Portfolio turn over. We researched portfolio turnover for our strategies.
Our definition of portfolio turnover is the average of the absolute value of trades
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Table 12. General results of the strategy without transaction
costs (one month futures) 2004-2012

Min. 1st Qu. Median Mean 3rd Qu. Max. Standard Deviation Sharpe

LookBack Days 3 -25.43% -1.08% 0.00% 0.37% 1.27% 31.04% 4.28% 1.36
LookBack Days 4 -25.43% -1.28% 0.00% 0.31% 1.49% 31.04% 4.50% 1.09
LookBack Days 5 -25.43% -1.36% 0.00% 0.28% 1.50% 31.04% 4.52% 0.99
LookBack Days 6 -29.45% -1.50% 0.00% 0.22% 1.65% 31.04% 4.66% 0.75
LookBack Days 7 -25.43% -1.46% 0.00% 0.30% 1.70% 31.04% 4.61% 1.02
LookBack Days 8 -25.43% -1.47% 0.00% 0.28% 1.78% 31.04% 4.58% 0.98
LookBack Days 9 -25.43% -1.52% 0.00% 0.31% 1.84% 31.04% 4.64% 1.07

LookBack Days 10 -25.43% -1.69% 0.00% 0.25% 1.87% 31.04% 4.69% 0.84
LookBack Days 11 -25.43% -1.73% 0.00% 0.21% 1.82% 31.04% 4.70% 0.70
LookBack Days 12 -25.43% -1.77% 0.00% 0.20% 1.83% 31.04% 4.74% 0.68
LookBack Days 13 -25.43% -1.78% 0.00% 0.22% 1.84% 31.04% 4.78% 0.72

across N available assets:

(7) Turnover =
1

T −M

T−M∑
i=1

N∑
j=1

|ŵk,j,t+1 − ŵk,j,t|
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The results of the comparison of the turnover are given below:

Table 13. Turn over comparison between look-back and optimal portfolio

365 days

LookBack Days 3 46.22%
LookBack Days 4 34.57%
LookBack Days 5 28.15%
LookBack Days 6 23.29%
LookBack Days 7 21.18%
LookBack Days 8 18.89%
LookBack Days 9 17.15%
LookBack Days 10 15.31%
LookBack Days 11 14.21%
LookBack Days 12 12.75%
LookBack Days 13 12.38%

Given the high turnover of the look-back strategy it is natural to ask whether
this can be remedied. For that we introduce norm constrained portfolios. That is
to say we are not going to invest our entire wealth into the strategy but just part of
it while the rest will be invested in Treasury Bill. We display results of the strategy
when we invest 0.75, 0.5 of our money in the strategy respectively while the other
portion is invested in Treasury Bill. The characteristics of the investments are given
in tables (17),(18):

Table 14. Main characteristics for out of sample for 75% investing
in VIX and the rest in treasury

Min. 1st Qu. Median Mean 3rd Qu. Max.

lookback 3 -44.64% 19.85% 126.90% 160.50% 261.10% 980.20%
lookback 4 -21.85% 27.56% 74.04% 104.90% 157.70% 397.70%
lookback 5 -23.02% 17.97% 40.86% 72.86% 130.90% 323.60%
lookback 6 -50.54% -6.19% 21.82% 44.21% 89.60% 262.30%
lookback 7 -58.58% 1.98% 59.59% 59.93% 105.20% 418.30%
lookback 8 -61.18% 12.21% 56.81% 65.05% 111.40% 527.20%
lookback 9 -66.48% 23.10% 59.85% 60.03% 103.90% 502.60%

lookback 10 -60.89% 21.08% 57.62% 58.89% 83.72% 666.60%
lookback 11 -67.32% 3.82% 32.28% 41.58% 61.90% 583.00%
lookback 12 -73.69% -7.68% 25.12% 28.08% 59.71% 470.40%
lookback 13 -75.36% -10.74% 29.98% 42.19% 75.35% 706.80%

Comparing both tables we see the following properties:

• The gains on the upside and downside for the 50% investment in VIX are
roughly 3

4 of that for the 75% investment in VIX
• The downside for the reduced investment is subdued. This potentially

appeals to risk averse investors.
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Table 15. Main characteristics for out of sample for 50% investing
in VIX and the rest in treasury

Min. 1st Qu. Median Mean 3rd Qu. Max.

lookback 3 -27.97% 18.62% 81.61% 91.51% 147.10% 424.00%
lookback 4 -11.73% 24.90% 53.12% 66.45% 99.14% 205.80%
lookback 5 -10.04% 19.31% 33.46% 49.62% 86.49% 176.40%
lookback 6 -32.66% 0.53% 21.73% 32.16% 62.35% 156.60%
lookback 7 -40.23% 6.81% 43.97% 41.47% 73.40% 224.80%
lookback 8 -42.85% 13.32% 43.21% 43.83% 74.32% 267.60%
lookback 9 -47.99% 20.58% 44.72% 41.60% 71.08% 259.40%

lookback 10 -42.30% 19.64% 43.35% 40.87% 58.78% 322.50%
lookback 11 -48.69% 7.81% 27.23% 30.32% 46.50% 291.10%
lookback 12 -55.68% 0.59% 22.92% 22.28% 44.58% 248.40%
lookback 13 -57.50% -3.13% 26.91% 30.00% 54.45% 337.90%

7.2. Turnover of Constrained Portfolios. In the last subsection we present the
average turnover of our constrained portfolios. They are given in the following
table:

Table 16. Turn over of Normed Portfolio for 365 days

weight =50% weight = 75%

LookBack Days 3 23.1% 34%
LookBack Days 4 17% 25%
LookBack Days 5 14% 21%
LookBack Days 6 11.6% 17.4%
LookBack Days 7 10.6% 15.9%
LookBack Days 8 9.45% 14.17%
LookBack Days 9 8.575% 12.86%
LookBack Days 10 7.65% 11.475%
LookBack Days 11 7.10% 10.65%
LookBack Days 12 6.37% 9.5%
LookBack Days 13 6.19% 9.28%

The last table above shows that if we constrain the investment into our strat-
egy that the average turnover drops significantly ( approximately by a half in the
case when only half of the portfolio is invested in the risky asset.) This is not
surprising because our investment strategy is to invest only half ( or three quarters
respectively) of our wealth into the risky strategy while the other half is left as a
reserve.

8. The cost of Leverage and Maximal Drawdown

We like to investigate the behavior of leveraged portfolios under our strategy.
This is interesting because most market participants will trade VIX futures with
margin accounts and it is instructive to verify whether a technical strategy will
make money when the futures contract isn’t fully funded. We first measure the
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maximal draw-downs of the strategies. This is defined as the maximal loss from
the peak from the investment horizon. More formally if X = X(t) is a random
process we define:

(8) D(T ) = Max
{

0,maxt∈[0,T ]X(t)−X(T )
}

The maximum drawdown up to time T is:

(9) MDD(T ) = Maxτ∈(0,T )

{
0,maxt∈[0,τ ]X(t)−X(T )

}
We will use the draw down effect to determine the leverage a look-back strategy
requires. Let us recall that if we introduce leverage the performance of the levered
instrument will be L×r, where r is the un-levered performance and L is the average
ratio. Hence if r ≤ 0 and we lever too much we will lose the entire investment.. We
will use the average maximum drawdown to find the optimal levered ratio. (Note
that we find this ratio in-sample.) Our levered ratio will be the minimal levered
ratio required so that we will not lose the entire investment). The main properties
of the MDD out of sample distribution are: From the table we see that there are

Table 17. Maximal Draw Down distribution properties

Min. 1st Qu. Median Mean 3rd Qu. Max.

Lookback days 2 -28.00% -43.00% -51.00% -51.59% -58.00% -77.00%
Lookback days 3 -26.00% -40.00% -45.00% -45.09% -49.00% -58.00%
Lookback days 4 -32.00% -40.00% -49.00% -46.58% -53.00% -60.00%
Lookback days 5 -30.00% -48.00% -51.00% -50.81% -58.00% -67.00%
Lookback days 6 -31.00% -42.00% -58.00% -54.45% -61.00% -72.00%
Lookback days 7 -29.00% -35.00% -54.00% -51.89% -57.00% -75.00%
Lookback days 8 -29.00% -33.00% -54.00% -52.00% -57.00% -77.00%
Lookback days 9 -27.00% -29.00% -54.00% -51.85% -57.00% -79.00%

Lookback days 10 -23.00% -37.00% -57.00% -53.78% -59.00% -79.00%
Lookback days 11 -21.00% -37.00% -58.00% -55.56% -67.00% -79.00%
Lookback days 12 -21.00% -37.00% -57.00% -57.45% -79.00% -83.00%
Lookback days 13 -21.00% -37.00% -57.00% -57.15% -77.00% -84.00%

cases where the look-back strategy sustains heavy losses Hence it has a high risk
of losing substantial amount of money. We implement the actual levered portfolio
with a look-back strategy. Our implementation consists of the following steps:

(1) Fix an initial leverage amount - for example 1:2 means that 50% of our
initial investment at the beginning of the period will be own capital and
the rest being borrowed money.

(2) Fix a margin call limit - this is the limit that we liquidate if the total
investment amount falls below this limit. For example if our margin call
limit is 25% we sell the position once our original leverage investment drops
to 25% of the entire position.

Once again we perform this strategy out of sample with a rolling window of one
year. As an example we consider two cases:

(1) Initial margin of 50% and margin limit of 25%.
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Table 18. Average return, Standard deviation, Sharpe ratio and
certainty equivalence with ρ = 4

Mean return Standard Devation Sharpe Ratio Certainty Equivalence

look-back days 3 689% 963% 72% 0.23
look-back days 4 334% 629% 53% 0.37
look-back days 5 170% 362% 47% 0.16
look-back days 6 11% 143% 7% 0.10
look-back days 7 47% 137% 34% 0.04
look-back days 8 77% 227% 34% 0.04
look-back days 9 45% 129% 35% 0.05
look-back days 10 35% 124% 28% 0.06
look-back days 11 -23% 65% -35% 0.06
look-back days 12 -16% 85% -19% 0.04
look-back days 13 27% 186% 14% 0.04

The tables below describe the average return of the investment and its Sharpe ratios:
We can see from the table that while the expected returns are high for the shorter
look-back the Sharpe ratios are substantially lower than those when implying the
strategy without any leverage (i.e. the initial contract is fully funded). This isn’t a
surprising result because the volatility of the look-back strategy is high and hence
a levered investment has a high probabaility of being liquidated on the losing side.
This is reiterated by the certainty equivalence calculated by us in this case. The
certainty equivalent numbers are low because many of the 1 year rolling horizon
sub-periods have a losing streak since they are forced to liquidate the investment
in the middle because of a potential margin call.

9. Conclusion

In this note we considered reversion strategies on VIX and its futures. We
researched this type of strategies for VIX because its Hurst exponent H displays
stability over long period of time and is consistently less than half. Conclude that
VIX time series are mean reverting and this mean reversion is stable over the
historical time period we considered. A simple model we described shows that for
such processes a reversion trading strategy should be profitable.

We started the paper by estimating the Hurst exponent of VIX on long time
horizons. We constructed a rolling volatility index prior to the VIX and discovered
that these series exhibit a remarkable stability of the Hurst exponent. The Hurst
exponent is fluctuating between 0.35−0.45 and never exceeds 0.5. This is in contrast
with the underlying S&P index whose exponent is fluctuating around 0.5 between
momentum and mean reversion regimes.

Another interesting finding is the behavior of the log of the VIX futures level. It
turns out that short term contracts has a mean reversion property while the longer
term contract display features of the usual martingale ( The exponent approaches
0.5).

As a result reversion strategies should outperform buy and hold in an absolute
and risk adjusted basis both in and out of sample. This is fully confirmed by
simulation of reversion strategies both on VIX and VIX futures. We incorporated
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transaction costs through the bid ask spread and while they reduced gains they
didn’t eliminate the strategy out-performance. Trading futures using these strate-
gies behooves us to fully fund the contract as otherwise the wild fluctuations of
these strategies can cause a major loss to investors. On a risk adjusted basis we
can see We show that the risk of the strategy considerably from Sharpe ratio and
CE perspectives.

A use of normed constrained portfolios (where only part of the money is in
the strategy while the rest sits in less risky investments like Treasury Bills. Our
findings indicate that this might be an interesting way for investors to exploit the
advantages of the technical trading strategy while limiting the downside risks. In
this case potential losses of the strategy are diminished.

We are left with certain theoretical puzzles in our work: The major one is the
Hurst exponent of the log level of the VIX futures. According to the accepted
theories these must be martingales and hence their Hurst exponent must be close
to 1

2 and hence no strategy that is based on look-back prices should outperform a
simple buy and hold strategy. Yet the analysis done in this paper shows that this
isn’t the case and technical trading strategies seem to outperform buy and hold even
out-of-sample. A possible explanation is the nature of the futures trades which is
done mostly on leveraged basis. As a result strategies that make money even on af
fully funded basis are simply irrelevant to the current trading practiced by market
participants. Another interesting finding is the long term stability of the Hurst
exponent. During historical time periods Hurst exponent displays of volatility time
series displays remarkable stability (below half). This is in contrast with the S&P
that has a regime changing Hurst exponent and resembles a true martingale in its
behavior. 4
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